◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CSci 8980: Advanced Topics in Graphical Models Dirichlet Processes

Instructor: Arindam Banerjee

October 4, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measurable Space

• Given a set X, let 2^X be the power set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - $\textcircled{O} \mathcal{A} \text{ is closed under countable unions}$
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections
- Examples

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections
- Examples
 - $X = \{a, b, c, d\}$, and $A = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections
- Examples
 - $X = \{a, b, c, d\}$, and $A = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
 - $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections
- Examples
 - $X = \{a, b, c, d\}$, and $A = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
 - $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
- Tuple (X, A) is called a measurable space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ -algebra if

 - 2 \mathcal{A} is closed under complements
 - O \mathcal{A} is closed under countable unions
- $\bullet\,$ Hence, ${\cal A}$ is closed under countable intersections
- Examples
 - $X = \{a, b, c, d\}$, and $A = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
 - $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
- Tuple (X, A) is called a measurable space
- One can define a *measure* μ on a measurable space

(ロ)、(型)、(E)、(E)、 E) の(の)

Measurable Space (Contd.)

• Measurable function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Measurable function
 - Function between two measurable spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
 - Random variables are measurable functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
 - Random variables are measurable functions
 - For real-valued random variables, $Y = \mathbb{R}$

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
 - Random variables are measurable functions
 - For real-valued random variables, $Y = \mathbb{R}$
- A measure is a function $\mu:\mathcal{A}\mapsto [0,\infty]$ such that

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
 - Random variables are measurable functions
 - For real-valued random variables, $Y = \mathbb{R}$
- A measure is a function $\mu:\mathcal{A}\mapsto [0,\infty]$ such that
 - $\mu(\emptyset)=$ 0, and

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
 - Random variables are measurable functions
 - For real-valued random variables, $Y = \mathbb{R}$
- A measure is a function $\mu:\mathcal{A}\mapsto [0,\infty]$ such that
 - $\mu(\emptyset) = 0$, and
 - For a countable sequence of pairwise disjoint sets E_1, E_2, \ldots

$$\mu\left(\cup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$

Measurable Space (Contd.)

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$

Example

- Random variables are measurable functions
- For real-valued random variables, $Y = \mathbb{R}$
- A measure is a function $\mu:\mathcal{A}\mapsto [0,\infty]$ such that
 - $\mu(\emptyset) = 0$, and
 - For a countable sequence of pairwise disjoint sets E_1, E_2, \ldots

$$\mu\left(\cup_{i=1}^{\infty}E_i\right)=\sum_{i=1}^{\infty}\mu(E_i)$$

• A probability measure satisfies P(X) = 1

Measurable Space (Contd.)

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$

Example

- Random variables are measurable functions
- For real-valued random variables, $Y = \mathbb{R}$
- A measure is a function $\mu:\mathcal{A}\mapsto [0,\infty]$ such that
 - $\mu(\emptyset) = 0$, and
 - For a countable sequence of pairwise disjoint sets E_1, E_2, \ldots

$$\mu\left(\cup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$

- A probability measure satisfies P(X) = 1
- (X, \mathcal{A}, P) is called a probability space

(ロ)、(型)、(E)、(E)、 E) の(の)

Distribution Over Distributions

• How to define random probability measures P over (X, A)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - $\mathcal P$ yields the distributions P

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - $\mathcal P$ yields the distributions P
 - $[0,1]^\mathcal{A}$ is the space of all functions P from $\mathcal{A}\mapsto [0,1]$

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - $\mathcal P$ yields the distributions P
 - $[0,1]^\mathcal{A}$ is the space of all functions P from $\mathcal{A}\mapsto [0,1]$
 - With P(X) = 1 these functions are probability distributions

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - $\mathcal P$ yields the distributions P
 - $[0,1]^\mathcal{A}$ is the space of all functions P from $\mathcal{A}\mapsto [0,1]$
 - With P(X) = 1 these functions are probability distributions
- \bullet Goal: To construct such a ${\mathcal P}$ over probability distributions

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m(A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P} \text{ on } ([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - $\mathcal P$ yields the distributions P
 - $[0,1]^\mathcal{A}$ is the space of all functions P from $\mathcal{A}\mapsto [0,1]$
 - With P(X) = 1 these functions are probability distributions
- \bullet Goal: To construct such a ${\mathcal P}$ over probability distributions
- Parametric vs non-parametric Bayes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\mathsf{Constructing}\ \mathcal{P}$

• It is convenient to work with a partition of X

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
- Define random probability *P* as follows:

$\overline{\mathsf{Constructing}}\ \mathcal{P}$

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
- Define random probability *P* as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
- Define random probability *P* as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$

Constructing ${\cal P}$

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
- Define random probability *P* as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$
- For arbitrary sets A_1, \ldots, A_m , with $\gamma_j = 0$ or 1, define

$$B_{\gamma_1,\cdots,\gamma_m} = \cap_{j=1}^m A_j^{\gamma_j}$$

(日) (同) (三) (三) (三) (○) (○)

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i; \quad B_i \cap B_j = \emptyset, \forall i \neq j; \quad \cup_{i=1}^k B_i = X$
- Define random probability *P* as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$
- For arbitrary sets A_1, \ldots, A_m , with $\gamma_j = 0$ or 1, define

$$B_{\gamma_1,\cdots,\gamma_m} = \cap_{j=1}^m A_j^{\gamma_j}$$

• Then $\{B_{\gamma_1,\cdots,\gamma_m}\}$ is a valid partition of X

Constructing \mathcal{P} (Contd.)

• We have a valid partition $\{B_{\gamma_1,\cdots,\gamma_m}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructing \mathcal{P} (Contd.)

- We have a valid partition $\{B_{\gamma_1,\cdots,\gamma_m}\}$
- Now, define a joint distribution over partitions

$$\{P(B_{\gamma_1,\cdots,\gamma_m});\gamma_j=0 ext{ or } 1,j=1,\ldots,m\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Constructing \mathcal{P} (Contd.)

- We have a valid partition $\{B_{\gamma_1,\cdots,\gamma_m}\}$
- Now, define a joint distribution over partitions

$$\{P(B_{\gamma_1,\cdots,\gamma_m}); \gamma_j=0 ext{ or } 1, j=1,\ldots,m\}$$

• The joint distribution over $(P(A_1), \ldots, P(A_m))$

$$P(A_i) = \sum_{\substack{(\gamma_1, \cdots, \gamma_m) \\ \gamma_i = 1}} P(B_{\gamma_1, \cdots, \gamma_m})$$

A Consistency Requirement

• There is one consistency requirement we need for $P(B_1, \cdots, B_k)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
- Consider two partitions $B' = (B'_1, \cdots, B'_{k'})$ and $B = (B_1, \cdots, B_k)$

A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
- Consider two partitions $B' = (B'_1, \cdots, B'_{k'})$ and $B = (B_1, \cdots, B_k)$
- Let B' be a refinement of B, i.e.,

$$B_1 = \bigcup_{1}^{r_1} B'_i, B_2 = \bigcup_{r_1+1}^{r_2} B'_i, \cdots, B_k = \bigcup_{r_{k-1}+1}^{k'} B'_i$$

A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
- Consider two partitions $B' = (B'_1, \cdots, B'_{k'})$ and $B = (B_1, \cdots, B_k)$
- Let B' be a refinement of B, i.e.,

$$B_1 = \bigcup_{i=1}^{r_1} B'_i, B_2 = \bigcup_{r_1+1}^{r_2} B'_i, \cdots, B_k = \bigcup_{r_{k-1}+1}^{k'} B'_i$$

• Then the distribution of $(P(B_1), \dots, P(B_k))$ is identical to that of

$$\left(\sum_{1}^{r_1} P(B'_i), \sum_{r_1+1}^{r_2} P(B'_i), \cdots, \sum_{r_{k-1}+1}^{k'} P(B'_i)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Key Lemma

 Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)
 - So far, we have only seen distribution over parameters

- Lemma: If the joint distribution (P(B₁), ..., P(B_k)) satisfies the consistency condition, and, if for arbitrary sets (A₁,..., A_m), the joint distribution is constructed as outlined earlier, then there exists P which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)
 - So far, we have only seen distribution over parameters
- Can inference be tractably done over such models?

Dirichlet Distribution

• Distribution over finite discrete distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$D(\alpha_1, \dots, \alpha_k) = f(x_1, \dots, x_k | \alpha_1, \dots, \alpha_k) = \frac{\Gamma\left(\sum_{i=1}^k \alpha_i\right)}{\prod_{i=1}^k \Gamma(\alpha_i)} \prod_{i=1}^k x_i^{\alpha_i - 1}$$

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

 $D(\alpha_1,\ldots,\alpha_k)=f(x_1,\ldots,x_k|\alpha_1,\ldots,\alpha_k)=\frac{\Gamma\left(\sum_{i=1}^k\alpha_i\right)}{\prod_{i=1}^k\Gamma(\alpha_i)}\prod_{i=1}^kx_i^{\alpha_i-1}$

• Well defined on the unit simplex $\sum_{i=1}^{k} x_i = 1$

 $-(\nabla k)$

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$D(\alpha_1,\ldots,\alpha_k) = f(x_1,\ldots,x_k | \alpha_1,\ldots,\alpha_k) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$$

- Well defined on the unit simplex $\sum_{i=1}^{k} x_i = 1$
- Key Property: If (X₁,...,X_k) ~ D(α₁,...,α_k), and r₁,...,r_ℓ are integers such that 0 < r₁ < ··· < r_ℓ then

$$\left(\sum_{1}^{r_1} X_i, \sum_{r_1+1}^{r_2} X_i, \cdots, \sum_{r_{\ell-1}+1}^k X_i\right) \sim D\left(\sum_{1}^{r_1} \alpha_i, \sum_{r_1+1}^{r_2} \alpha_i, \cdots, \sum_{r_{\ell}+1}^k \alpha_i\right)$$

-(-k)

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$D(\alpha_1,\ldots,\alpha_k) = f(x_1,\ldots,x_k | \alpha_1,\ldots,\alpha_k) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$$

- Well defined on the unit simplex $\sum_{i=1}^{k} x_i = 1$
- Key Property: If (X₁,...,X_k) ~ D(α₁,...,α_k), and r₁,...,r_ℓ are integers such that 0 < r₁ < ··· < r_ℓ then

$$\left(\sum_{1}^{r_1} X_i, \sum_{r_1+1}^{r_2} X_i, \cdots, \sum_{r_{\ell-1}+1}^k X_i\right) \sim D\left(\sum_{1}^{r_1} \alpha_i, \sum_{r_1+1}^{r_2} \alpha_i, \cdots, \sum_{r_{\ell}+1}^k \alpha_i\right)$$

• In particular, the marginal distribution of $X_j \sim B(\alpha_j, \sum_{1}^{k} \alpha_i - \alpha_j)$ where

$$B(\alpha,\beta) = f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Gamma and Dirichlet

• Gamma distribution, with $x > 0, \alpha, \theta > 0$, is

$$\Gamma(\alpha, \theta) = f(x|\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}$$

Gamma and Dirichlet

• Gamma distribution, with $x > 0, \alpha, \theta > 0$, is

$$\Gamma(\alpha,\theta) = f(x|\alpha,\theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha}\Gamma(\alpha)} x^{\alpha-1}$$

• Key property: If $X_i \sim \Gamma(\alpha_i, \theta), i = 1, \dots, k$, then

$$\sum_{i=1}^{k} X_i \sim \Gamma\left(\sum_{i=1}^{k} \alpha_i, \theta\right)$$

Gamma and Dirichlet

• Gamma distribution, with $x > 0, \alpha, \theta > 0$, is

$$\Gamma(\alpha,\theta) = f(x|\alpha,\theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha}\Gamma(\alpha)} x^{\alpha-1}$$

• Key property: If $X_i \sim \Gamma(\alpha_i, \theta), i = 1, \dots, k$, then

$$\sum_{i=1}^{k} X_i \sim \Gamma\left(\sum_{i=1}^{k} \alpha_i, \theta\right)$$

• Let $Z_i = \frac{X_i}{\sum_{i=1} X_i}$, then $(Z_1, \dots, Z_k) \sim D(\alpha_1, \dots, \alpha_k)$

Gamma, Exponential, Geometric

• Recall Gamma distribution

$$\Gamma(\alpha,\theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha}\Gamma(\alpha)} x^{\alpha-1}$$

Gamma, Exponential, Geometric

• Recall Gamma distribution

$$\Gamma(\alpha,\theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha}\Gamma(\alpha)} x^{\alpha-1}$$

• With $\alpha=1, \theta=1/\lambda,$ we get exponential distribution

 $f(x|\lambda) = G(1, 1/\lambda) = \lambda \exp(-\lambda x)$

Gamma, Exponential, Geometric

• Recall Gamma distribution

$$\Gamma(\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1}$$

• With $\alpha = 1, \theta = 1/\lambda$, we get exponential distribution

 $f(x|\lambda) = G(1, 1/\lambda) = \lambda \exp(-\lambda x)$

• Discrete version of exponential is the geometric distribution

$$f(k|q) = (1-q)^{k-1}q$$

•
$$(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$$

• Expectation
$$E[X_i] = \frac{\alpha_i}{\alpha}$$

• Variance
$$E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}$$

•
$$(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$$

• Expectation
$$E[X_i] = \frac{\alpha_i}{\alpha}$$

• Variance
$$E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}$$

• Covariance
$$E[X_iX_j] = \frac{-\alpha_i\alpha_j}{\alpha^2(\alpha+1)}, i \neq j$$

•
$$(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$$

• Expectation
$$E[X_i] = \frac{\alpha_i}{\alpha}$$

• Variance
$$E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}$$

- Covariance $E[X_i X_j] = \frac{-\alpha_i \alpha_j}{\alpha^2(\alpha+1)}, i \neq j$
- X_1 is independent of $X_2/(1-X_1), \cdots, X_k/(1-X_1)$
Properties of Dirichlet Distribution

- $(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$
 - Expectation $E[X_i] = \frac{\alpha_i}{\alpha}$
 - Variance $E[X_i^2] = \frac{\alpha_i(\alpha \alpha_i)}{\alpha^2(\alpha + 1)}$
 - Covariance $E[X_i X_j] = \frac{-\alpha_i \alpha_j}{\alpha^2(\alpha+1)}, i \neq j$
 - X_1 is independent of $X_2/(1-X_1), \cdots, X_k/(1-X_1)$
 - Similarly for each X_i

Properties of Dirichlet Distribution

•
$$(X_1,\ldots,X_k) \sim D(\alpha_1,\cdots,\alpha_k), \alpha = \sum_{i=1}^k \alpha_i$$

• Expectation
$$E[X_i] = \frac{\alpha_i}{\alpha}$$

• Variance
$$E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}$$

- Covariance $E[X_iX_j] = \frac{-\alpha_i\alpha_j}{\alpha^2(\alpha+1)}, i \neq j$
- X_1 is independent of $X_2/(1-X_1), \cdots, X_k/(1-X_1)$
- Similarly for each X_i
- If prior distribution is $D(\alpha_1, \cdots, \alpha_k)$, then posterior

$$P(X_1,\ldots,X_k|X=j)=D(\alpha_1^{(j)},\cdots,\alpha_k^{(j)})$$

where

$$\alpha_i^{(j)} = \begin{cases} \alpha_i & \text{if } i \neq j \\ \alpha_j + 1 & \text{if } i = j \end{cases}$$

Dirichlet Processes

Definition: Let α be a non-negative finite measure on (X, A). Then P is a Dirichlet Process on (X, A) with parameter α if for every k = 1, 2, ..., and a partition (B₁,..., B_k) of X, the distribution of (P(B₁),..., P(B_k)) is Dirichlet D(α(B₁),..., α(B₂)).

Dirichlet Processes

Definition: Let α be a non-negative finite measure on (X, A). Then P is a Dirichlet Process on (X, A) with parameter α if for every k = 1, 2, ..., and a partition (B₁,..., B_k) of X, the distribution of (P(B₁),..., P(B_k)) is Dirichlet D(α(B₁),..., α(B₂)).

• For any
$$A \in \mathcal{A}$$
, $E[P(A)] = \frac{\alpha(A)}{\alpha(X)}$

Dirichlet Processes

- Definition: Let α be a non-negative finite measure on (X, A). Then P is a Dirichlet Process on (X, A) with parameter α if for every k = 1, 2, ..., and a partition (B₁,..., B_k) of X, the distribution of (P(B₁),..., P(B_k)) is Dirichlet D(α(B₁),..., α(B₂)).
- For any $A \in \mathcal{A}$, $E[P(A)] = \frac{\alpha(A)}{\alpha(X)}$
- Let Q be a fixed probability measure on (X, A) with Q ≪ α. Then for any m, and any A₁,..., A_m, and ε > 0,

 $\mathcal{P}\{|P(A_i) - Q(A_i)| < \epsilon, i = 1, \dots, m\} > 0$

Dirichlet Processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Properties of Dirichlet Processes

• Three main properties for DPs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)
 - Here P acts as the "parameter," DP is the prior

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)
 - Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, A)

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)
 - Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, A)
 - Easy to show using a constructive definition of DP

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)
 - Here *P* acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, A)
 - Easy to show using a constructive definition of DP
- Prop 3: The posterior distribution given X is the DP with parameter $\alpha + \delta_X$

- Three main properties for DPs
- Prop 1: DP is a probability measure on $([0,1]^{\mathcal{A}},\mathcal{F}^{\mathcal{A}})$
 - Samples from a DP are distributions P on (X, A)
 - Here *P* acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, A)
 - Easy to show using a constructive definition of DP
- Prop 3: The posterior distribution given X is the DP with parameter $\alpha + \delta_X$
 - Posterior given X_1, \ldots, X_n is the DP with parameter $\alpha + \sum_{i=1}^n \delta_{X_i}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stick Breaking Construction

• A constructive definition of DP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \dots, I)$

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, ..., I)$
 - Taking values in $(([0,1] \times \mathcal{X})^\infty \times N, (\mathcal{B} \times \mathcal{A})^\infty)$

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, ..., I)$
 - Taking values in $(([0,1]\times \mathcal{X})^\infty \times \textit{N}, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, ..., I)$
 - Taking values in $(([0,1]\times \mathcal{X})^\infty \times \textit{N},(\mathcal{B}\times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \dots, I)$
 - Taking values in $(([0,1] \times \mathcal{X})^\infty \times N, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
 - (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(X))$

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \dots, I)$
 - Taking values in $(([0,1]\times \mathcal{X})^\infty \times \textit{N},(\mathcal{B}\times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
 - (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(X))$
 - $(Y_1, Y_2, ...)$ are i.i.d. with distribution $\beta(A) = \alpha(A)/\alpha(X)$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \dots, I)$
 - Taking values in $(([0,1]\times \mathcal{X})^\infty \times \textit{N}, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
 - (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(X))$
 - $(Y_1, Y_2, ...)$ are i.i.d. with distribution $\beta(A) = \alpha(A)/\alpha(X)$
 - $Q(I = n | (\pi, Y)) = p_n = \pi_n \prod_{1 \le m \le (n-1)} (1 \pi_m)$ so that

$$\sum_{1 \le m \le n} p_n = 1 - \prod_{1 \le m \le n} (1 - \pi_m) \to 1 \quad w.p. \ 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stick Breaking Construction (Contd.)

• Now, we have a probability space (Ω, \mathcal{S}, Q)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$P_{(\theta,Y)}(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)$$

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$P_{(\theta,Y)}(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)$$

• *P* is a random measure over (X, A), due to (θ, Y)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$P_{(\theta,Y)}(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)$$

- *P* is a random measure over (X, A), due to (θ, Y)
- $\bullet~{\it P}$ is a sample from a Dirichlet process with parameter α

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$P_{(\theta,Y)}(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)$$

- *P* is a random measure over (X, A), due to (θ, Y)
- $\bullet~{\it P}$ is a sample from a Dirichlet process with parameter α
- By construction, clearly P can only be discrete

Dirichlet Process Mixtures

• (X, \mathcal{A}) is the space on which DP was defined

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on $\mathcal A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- \bullet Based on a fixed measure α on ${\cal A}$
- Consider a probability space (U, \mathcal{B}, H)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- \bullet Based on a fixed measure α on ${\cal A}$
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U imes \mathcal{A}$

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on ${\cal A}$
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U imes \mathcal{A}$
- For any $A_1,\ldots,A_m\in\mathcal{A}$, we have

 $(P(A_1),\ldots,P(A_m))\sim \int_u D(\alpha(u,A_1),\ldots,D(u,A_m))dH(u)$

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on ${\cal A}$
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U imes \mathcal{A}$
- For any $A_1,\ldots,A_m\in\mathcal{A}$, we have

 $(P(A_1),\ldots,P(A_m))\sim \int_u D(\alpha(u,A_1),\ldots,D(u,A_m))dH(u)$

• In "practice" DPM is a infinite mixture model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DPM (Contd.)

• Mike Jordan's NIPS'05 Tutorial
Model-Based Clustering

- A generative approach to clustering:
 - pick one of K clusters from a distribution $\pi = (\pi_1, \pi_2, \dots, \pi_K)$
 - generate a data point from a cluster-specific probability distribution
- This yields a finite mixture model:

$$p(x \mid \phi, \pi) = \sum_{k=1}^{K} \pi_k \ p(x \mid \phi_k),$$

where π and $\phi = (\phi_1, \phi_2, \dots, \phi_K)$ are the parameters, and where we've assumed the same parameterized family for each cluster (for simplicity)

• Data $\{x_i\}_{i=1}^n$ are assumed to be generated conditionally IID from this mixture

Finite Mixture Models (cont)

• Another way to express this: define an underlying measure

$$G = \sum_{k=1}^{K} \pi_k \, \delta_{\phi_k}$$

where δ_{ϕ_k} is an *atom* at ϕ_k

 And define the process of obtaining a sample from a finite mixture model as follows. For i = 1, ..., n:

$$\begin{array}{cccc} \theta_i & \sim & G \\ x_i & \sim & p(\cdot \mid \theta_i) \end{array}$$

- Note that each θ_i is equal to one of the underlying ϕ_k
 - indeed, the subset of $\{\theta_i\}$ that maps to ϕ_k is exactly the kth cluster

Finite Mixture Models (cont)

$$G = \sum_{k=1}^{K} \pi_k \, \delta_{\phi_k}$$

$$\theta_i \sim G$$

$$x_i \sim p(\cdot | \theta_i)$$

Bayesian Finite Mixture Models

(e.g., Lo; Ferguson; Escobar & West; Robert; Green & Richardson; Neal; Ishawaran &

Zarepour)

- Need to place priors on the parameters ϕ and π
- \bullet The choice of prior for ϕ is model-specific; e.g., we might use conjugate normal/inverse-gamma priors for a Gaussian mixture model
 - let's denote this prior as G_0
- Place a symmetric Dirichlet prior, ${\rm Dir}(\alpha_0/K,\ldots,\alpha_0/K),$ on the mixing proportions π
 - the symmetry accords with the (usual) assumption that we could scramble the labels of the mixture components and not change the model
 - the scaling (α_0/K) gives α_0 the semantics of a concentration parameter; the prior mean of ϕ_k is equal to 1/K

Bayesian Finite Mixture Models (cont)

• Note that G is now a *random measure*

Going Nonparametric—A First Perspective

(e.g., Kingman; Waterson; Patil & Taillie; Liu; Ishwaran & Zarepour)

• Define a countably infinite mixture model by taking K to infinity and hoping that " $G = \sum_{k=1}^{\infty} \pi_k \ \delta_{\phi_k}$ " means something, where

$$\phi_k \sim G_0$$

 $\pi_k \sim \operatorname{Dir}(\alpha_0/K, \dots, \alpha_0/K) \text{ as } K \to \infty$

- Several mathematical hurdles to overcome:
 - What is the distribution of any given π_k as $K \to \infty$? Does it stabilize at some fixed distribution?
 - Is $\sum_{k=1}^{\infty} \pi_k = 1$ under some suitable notion of convergence?
 - Do we get a few large mixing proportions, or are they all of similar "size"?
 - Do we get any "clustering" at all?
- This seems hard; let's approach the problem from a different point of view

A Second Perspective—Stick-Breaking

(e.g., Connor & Mosimann; Doksum; Freedman; Kingman; Pitman; Sethuraman)

• Define an infinite sequence of Beta random variables:

$$\beta_k \sim \text{Beta}(1, \alpha_0) \qquad \qquad k = 1, 2, \dots$$

• And then define an infinite sequence of mixing proportions as:

$$\pi_1 = \beta_1$$

 $\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \qquad k = 2, 3, \dots$

• This can be viewed as breaking off portions of a stick:

Stick-Breaking (cont)

- We now have an explicit formula for each π_k : $\beta_k \prod_{l=1}^{k-1} (1 \beta_l)$
- We can also easily see that $\sum_{k=1}^{\infty} \pi_k = 1 \pmod{(\mathrm{wp1})}$:

$$1 - \sum_{k=1}^{K} \pi_{k} = 1 - \beta_{1} - \beta_{2}(1 - \beta_{1}) - \beta_{3}(1 - \beta_{1})(1 - \beta_{2}) - \cdots$$
$$= (1 - \beta_{1})(1 - \beta_{2} - \beta_{3}(1 - \beta_{2}) - \cdots)$$
$$= \prod_{k=1}^{K} (1 - \beta_{k})$$
$$\to 0 \qquad (\text{wp1 as } K \to \infty)$$

• So now $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ has a clean definition as a random measure

Graphical Model Representation

The Posterior Dirichlet Process

- Suppose that we sample G from a Dirichlet process and then sample θ_1 from G. What is the posterior process?
- For a fixed partition, we get a standard Dirichlet update (for the cell that contains θ_1 the exponent increases by one; stays the same for all other cells)
 - this is true for even the tiniest cell
 - suggests that the posterior is a Dirichlet process in which the base measure has an atom at θ_1
- Indeed, we have (for a proof, see, e.g., Schervish, 1995):

 $G \mid \theta_1 \sim \mathrm{DP}(\alpha_0 G_0 + \delta_{\theta_1})$

• Iterating the posterior update yields:

$$G \mid \theta_1, \dots, \theta_n \sim \mathrm{DP}(\alpha_0 G_0 + \sum_{i=1}^n \delta_{\theta_i})$$

Relationship to Stick-Breaking

• Recalling the formula for the expectation of a Dirichlet random variable, for any set $A \subseteq \Omega$, we have:

$$\mathbb{E}[G(A) \mid \theta_1, \dots, \theta_n] = \frac{\alpha_0 G_0(A) + \sum_{i=1}^n \delta_{\theta_i}(A)}{\alpha_0 + n} \to \sum_{k=1}^\infty \pi_k \delta_{\phi_k}(A)$$

where ϕ_k are the unique values of the θ_i , where $\pi_k = \lim_{n \to \infty} n_k/n$, and where n_k is the number of repeats of ϕ_k in the sequence $(\theta_1, \ldots, \theta_n)$

- assuming that the posterior concentrates, this suggests that the random measures $G \sim DP(\alpha_0 G_0)$ are discrete (wp1)
- Is there an infinite sum of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ that obeys the definition of the Dirichlet process?
 - yes, the stick-breaking random measure!
 - this important result is not hard to prove; it follows from elementary facts about the Dirichlet distribution (Sethuraman, 1994)

Dirichlet Process Mixture Models

 $G \sim DP(\alpha_0 G_0)$ $\theta_i \mid G \sim G \qquad i \in 1, \dots, n$ $x_i \mid \theta_i \sim F(x_i \mid \theta_i) \qquad i \in 1, \dots, n$

Marginal Probabilities

• To obtain the marginal probability of the parameters $\theta_1, \theta_2, \ldots$, we need to integrate out G

Marginal Probabilities (cont)

• Recall the formula

$$\mathbb{E}[G(A) \mid \theta_1, \dots, \theta_n] = \frac{\alpha_0 G_0(A) + \sum_{k=1}^K n_k \delta_{\phi_k}(A)}{\alpha_0 + n}$$

- Let A be a singleton set equal to one of the ϕ_k . The formula says that the marginal probability of observing ϕ_k again is proportional to n_k .
- And the marginal probability of observing a new ϕ vector is proportional to α_0 .
- This is just the Pólya urn scheme!
- I.e., integrating over the random measure G, where $G \sim \mathrm{DP}(\alpha_0 G_0)$, yields the Pólya urn

Chinese Restaurant Process (CRP)

- \bullet A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - mth subsequent customer sits at a table drawn from the following distribution:

$$\begin{array}{ll}
P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) & \propto & n_i \\
P(\text{the next unoccupied table} \mid \mathcal{F}_{m-1}) & \propto & \alpha_0
\end{array} \tag{1}$$

where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after m-1 customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from the prior

• So we now have a distribution—or can obtain one—for any quantity that we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

 $\begin{array}{lll} \phi_k &=& (\mu_k, \Sigma_k) \sim N(a,b) \otimes IW(\alpha,\beta) \\ x_i &\sim& N(\phi_k) & \mbox{ for a data point } i \mbox{ sitting at table } k \end{array}$