CSci 8980: Advanced Topics in Graphical Models

Instructor: Arindam Banerjee

October 4, 2007

Measurable Space

- Given a set X, let 2^{X} be the power set

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
- $X=\{a, b, c, d\}$, and $\mathcal{A}=\{\emptyset,\{a, b\},\{c, d\},\{a, b, c, d\}\}$

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
- $X=\{a, b, c, d\}$, and $\mathcal{A}=\{\emptyset,\{a, b\},\{c, d\},\{a, b, c, d\}\}$
- $X=\mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
- $X=\{a, b, c, d\}$, and $\mathcal{A}=\{\emptyset,\{a, b\},\{c, d\},\{a, b, c, d\}\}$
- $X=\mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
- Tuple (X, \mathcal{A}) is called a measurable space

Measurable Space

- Given a set X, let 2^{X} be the power set
- $\mathcal{A} \subseteq 2^{X}$ is called a σ-algebra if
(1) \mathcal{A} contains X
(2) \mathcal{A} is closed under complements
(3) \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
- $X=\{a, b, c, d\}$, and $\mathcal{A}=\{\emptyset,\{a, b\},\{c, d\},\{a, b, c, d\}\}$
- $X=\mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
- Tuple (X, \mathcal{A}) is called a measurable space
- One can define a measure μ on a measurable space

Measurable Space (Contd.)

- Measurable function

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$
- A measure is a function $\mu: \mathcal{A} \mapsto[0, \infty]$ such that

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$
- A measure is a function $\mu: \mathcal{A} \mapsto[0, \infty]$ such that
- $\mu(\emptyset)=0$, and

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$
- A measure is a function $\mu: \mathcal{A} \mapsto[0, \infty]$ such that
- $\mu(\emptyset)=0$, and
- For a countable sequence of pairwise disjoint sets E_{1}, E_{2}, \ldots

$$
\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$
- A measure is a function $\mu: \mathcal{A} \mapsto[0, \infty]$ such that
- $\mu(\emptyset)=0$, and
- For a countable sequence of pairwise disjoint sets E_{1}, E_{2}, \ldots

$$
\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

- A probability measure satisfies $P(X)=1$

Measurable Space (Contd.)

- Measurable function
- Function between two measurable spaces
- Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
- $f: X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in A$
- Example
- Random variables are measurable functions
- For real-valued random variables, $Y=\mathbb{R}$
- A measure is a function $\mu: \mathcal{A} \mapsto[0, \infty]$ such that
- $\mu(\emptyset)=0$, and
- For a countable sequence of pairwise disjoint sets E_{1}, E_{2}, \ldots

$$
\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

- A probability measure satisfies $P(X)=1$
- (X, \mathcal{A}, P) is called a probability space

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- \mathcal{P} yields the distributions P

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- \mathcal{P} yields the distributions P
- $[0,1]^{\mathcal{A}}$ is the space of all functions P from $\mathcal{A} \mapsto[0,1]$

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- \mathcal{P} yields the distributions P
- $[0,1]^{\mathcal{A}}$ is the space of all functions P from $\mathcal{A} \mapsto[0,1]$
- With $P(X)=1$ these functions are probability distributions

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- \mathcal{P} yields the distributions P
- $[0,1]^{\mathcal{A}}$ is the space of all functions P from $\mathcal{A} \mapsto[0,1]$
- With $P(X)=1$ these functions are probability distributions
- Goal: To construct such a \mathcal{P} over probability distributions

Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_{1}, \ldots, A_{m}\left(A_{i} \in \mathcal{A}\right)$
- Define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- Show $\exists \mathcal{P}$ on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- \mathcal{P} yields the distributions P
- $[0,1]^{\mathcal{A}}$ is the space of all functions P from $\mathcal{A} \mapsto[0,1]$
- With $P(X)=1$ these functions are probability distributions
- Goal: To construct such a \mathcal{P} over probability distributions
- Parametric vs non-parametric Bayes

Constructing \mathcal{P}

- It is convenient to work with a partition of X

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$
- Define random probability P as follows:

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$
- Define random probability P as follows:
- Define joint distribution $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$
- Define random probability P as follows:
- Define joint distribution $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$
- Use this to define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$
- Define random probability P as follows:
- Define joint distribution $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$
- Use this to define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- For arbitrary sets A_{1}, \ldots, A_{m}, with $\gamma_{j}=0$ or 1 , define

$$
B_{\gamma_{1}, \cdots, \gamma_{m}}=\cap_{j=1}^{m} A_{j}^{\gamma_{j}}
$$

Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any $k,\left(B_{1}, \ldots, B_{k}\right)$ is a partition if
- $B_{i} \in \mathcal{A}, \forall i ; \quad B_{i} \cap B_{j}=\emptyset, \forall i \neq j ; \quad \cup_{i=1}^{k} B_{i}=X$
- Define random probability P as follows:
- Define joint distribution $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$
- Use this to define joint distribution $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$
- For arbitrary sets A_{1}, \ldots, A_{m}, with $\gamma_{j}=0$ or 1 , define

$$
B_{\gamma_{1}, \cdots, \gamma_{m}}=\cap_{j=1}^{m} A_{j}^{\gamma_{j}}
$$

- Then $\left\{B_{\gamma_{1}, \cdots, \gamma_{m}}\right\}$ is a valid partition of X

Constructing \mathcal{P} (Contd.)

- We have a valid partition $\left\{B_{\gamma_{1}, \cdots, \gamma_{m}}\right\}$

Constructing \mathcal{P} (Contd.)

- We have a valid partition $\left\{B_{\gamma_{1}, \cdots, \gamma_{m}}\right\}$
- Now, define a joint distribution over partitions

$$
\left\{P\left(B_{\gamma_{1}, \cdots, \gamma_{m}}\right) ; \gamma_{j}=0 \text { or } 1, j=1, \ldots, m\right\}
$$

Constructing \mathcal{P} (Contd.)

- We have a valid partition $\left\{B_{\gamma_{1}, \cdots, \gamma_{m}}\right\}$
- Now, define a joint distribution over partitions

$$
\left\{P\left(B_{\gamma_{1}, \cdots, \gamma_{m}}\right) ; \gamma_{j}=0 \text { or } 1, j=1, \ldots, m\right\}
$$

- The joint distribution over $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$

$$
P\left(A_{i}\right)=\sum_{\substack{\left(\gamma_{1}, \cdots, \gamma_{m}\right) \\ \gamma_{i}=1}} P\left(B_{\left.\gamma_{1}, \cdots, \gamma_{m}\right)}\right)
$$

A Consistency Requirement

- There is one consistency requirement we need for $P\left(B_{1}, \cdots, B_{k}\right)$

A Consistency Requirement

- There is one consistency requirement we need for $P\left(B_{1}, \cdots, B_{k}\right)$
- Consider two partitions $B^{\prime}=\left(B_{1}^{\prime}, \cdots, B_{k^{\prime}}^{\prime}\right)$ and $B=\left(B_{1}, \cdots, B_{k}\right)$

A Consistency Requirement

- There is one consistency requirement we need for $P\left(B_{1}, \cdots, B_{k}\right)$
- Consider two partitions $B^{\prime}=\left(B_{1}^{\prime}, \cdots, B_{k^{\prime}}^{\prime}\right)$ and $B=\left(B_{1}, \cdots, B_{k}\right)$
- Let B^{\prime} be a refinement of B, i.e.,

$$
B_{1}=\cup_{1}^{r_{1}} B_{i}^{\prime}, B_{2}=\cup_{r_{1}+1}^{r_{2}} B_{i}^{\prime}, \cdots, B_{k}=\cup_{r_{k-1}+1}^{k^{\prime}} B_{i}^{\prime}
$$

A Consistency Requirement

- There is one consistency requirement we need for $P\left(B_{1}, \cdots, B_{k}\right)$
- Consider two partitions $B^{\prime}=\left(B_{1}^{\prime}, \cdots, B_{k^{\prime}}^{\prime}\right)$ and $B=\left(B_{1}, \cdots, B_{k}\right)$
- Let B^{\prime} be a refinement of B, i.e.,

$$
B_{1}=\cup_{1}^{r_{1}} B_{i}^{\prime}, B_{2}=\cup_{r_{1}+1}^{r_{2}} B_{i}^{\prime}, \cdots, B_{k}=\cup_{r_{k-1}+1}^{k^{\prime}} B_{i}^{\prime}
$$

- Then the distribution of $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ is identical to that of

$$
\left(\sum_{1}^{r_{1}} P\left(B_{i}^{\prime}\right), \sum_{r_{1}+1}^{r_{2}} P\left(B_{i}^{\prime}\right), \cdots, \sum_{r_{k-1}+1}^{k^{\prime}} P\left(B_{i}^{\prime}\right)\right)
$$

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
- Sufficient to focus on partitions, rather than arbitrary sets

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
- Sufficient to focus on partitions, rather than arbitrary sets
- Can maintain distribution over distributions (non-parametric Bayes)

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
- Sufficient to focus on partitions, rather than arbitrary sets
- Can maintain distribution over distributions (non-parametric Bayes)
- So far, we have only seen distribution over parameters

A Key Lemma

- Lemma: If the joint distribution $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ satisfies the consistency condition, and, if for arbitrary sets $\left(A_{1}, \ldots, A_{m}\right)$, the joint distribution is constructed as outlined earlier, then there exists \mathcal{P} which yields these distribution.
- Samples P from \mathcal{P} are distributions on (X, \mathcal{A})
- We will focus on a specific \mathcal{P} : Dirichlet processes
- Based on the above construction
- Sufficient to focus on partitions, rather than arbitrary sets
- Can maintain distribution over distributions (non-parametric Bayes)
- So far, we have only seen distribution over parameters
- Can inference be tractably done over such models?

Dirichlet Distribution

- Distribution over finite discrete distributions

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$
D\left(\alpha_{1}, \ldots, \alpha_{k}\right)=f\left(x_{1}, \ldots, x_{k} \mid \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$
D\left(\alpha_{1}, \ldots, \alpha_{k}\right)=f\left(x_{1}, \ldots, x_{k} \mid \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

- Well defined on the unit simplex $\sum_{i=1}^{k} x_{i}=1$

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$
D\left(\alpha_{1}, \ldots, \alpha_{k}\right)=f\left(x_{1}, \ldots, x_{k} \mid \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

- Well defined on the unit simplex $\sum_{i=1}^{k} x_{i}=1$
- Key Property: If $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, and r_{1}, \ldots, r_{ℓ} are integers such that $0<r_{1}<\cdots<r_{\ell}$ then

$$
\left(\sum_{1}^{r_{1}} X_{i}, \sum_{r_{1}+1}^{r_{2}} X_{i}, \cdots, \sum_{r_{\ell-1}+1}^{k} X_{i}\right) \sim D\left(\sum_{1}^{r_{1}} \alpha_{i}, \sum_{r_{1}+1}^{r_{2}} \alpha_{i}, \cdots, \sum_{r_{\ell}+1}^{k} \alpha_{i}\right)
$$

Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

$$
D\left(\alpha_{1}, \ldots, \alpha_{k}\right)=f\left(x_{1}, \ldots, x_{k} \mid \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

- Well defined on the unit simplex $\sum_{i=1}^{k} x_{i}=1$
- Key Property: If $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, and r_{1}, \ldots, r_{ℓ} are integers such that $0<r_{1}<\cdots<r_{\ell}$ then

$$
\left(\sum_{1}^{r_{1}} X_{i}, \sum_{r_{1}+1}^{r_{2}} X_{i}, \cdots, \sum_{r_{l-1}+1}^{k} X_{i}\right) \sim D\left(\sum_{1}^{r_{1}} \alpha_{i}, \sum_{r_{1}+1}^{r_{2}} \alpha_{i}, \cdots, \sum_{r_{l}+1}^{k} \alpha_{i}\right)
$$

- In particular, the marginal distribution of $X_{j} \sim B\left(\alpha_{j}, \sum_{1}^{k} \alpha_{i}-\alpha_{j}\right)$ where

$$
B(\alpha, \beta)=f(x \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Gamma and Dirichlet

- Gamma distribution, with $x>0, \alpha, \theta>0$, is

$$
\Gamma(\alpha, \theta)=f(x \mid \alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

Gamma and Dirichlet

- Gamma distribution, with $x>0, \alpha, \theta>0$, is

$$
\Gamma(\alpha, \theta)=f(x \mid \alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

- Key property: If $X_{i} \sim \Gamma\left(\alpha_{i}, \theta\right), i=1, \ldots, k$, then

$$
\sum_{i=1}^{k} X_{i} \sim \Gamma\left(\sum_{i=1}^{k} \alpha_{i}, \theta\right)
$$

Gamma and Dirichlet

- Gamma distribution, with $x>0, \alpha, \theta>0$, is

$$
\Gamma(\alpha, \theta)=f(x \mid \alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

- Key property: If $X_{i} \sim \Gamma\left(\alpha_{i}, \theta\right), i=1, \ldots, k$, then

$$
\sum_{i=1}^{k} X_{i} \sim \Gamma\left(\sum_{i=1}^{k} \alpha_{i}, \theta\right)
$$

- Let $Z_{i}=\frac{X_{i}}{\sum_{i=1} X_{i}}$, then

$$
\left(Z_{1}, \ldots, Z_{k}\right) \sim D\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

Gamma, Exponential, Geometric

- Recall Gamma distribution

$$
\Gamma(\alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

Gamma, Exponential, Geometric

- Recall Gamma distribution

$$
\Gamma(\alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

- With $\alpha=1, \theta=1 / \lambda$, we get exponential distribution

$$
f(x \mid \lambda)=G(1,1 / \lambda)=\lambda \exp (-\lambda x)
$$

Gamma, Exponential, Geometric

- Recall Gamma distribution

$$
\Gamma(\alpha, \theta)=\frac{\exp (-x / \theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
$$

- With $\alpha=1, \theta=1 / \lambda$, we get exponential distribution

$$
f(x \mid \lambda)=G(1,1 / \lambda)=\lambda \exp (-\lambda x)
$$

- Discrete version of exponential is the geometric distribution

$$
f(k \mid q)=(1-q)^{k-1} q
$$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$
- Variance $E\left[X_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha-\alpha_{i}\right)}{\alpha^{2}(\alpha+1)}$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$
- Variance $E\left[X_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha-\alpha_{i}\right)}{\alpha^{2}(\alpha+1)}$
- Covariance $E\left[X_{i} X_{j}\right]=\frac{-\alpha_{i} \alpha_{j}}{\alpha^{2}(\alpha+1)}, i \neq j$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$
- Variance $E\left[X_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha-\alpha_{i}\right)}{\alpha^{2}(\alpha+1)}$
- Covariance $E\left[X_{i} X_{j}\right]=\frac{-\alpha_{i} \alpha_{j}}{\alpha^{2}(\alpha+1)}, i \neq j$
- X_{1} is independent of $X_{2} /\left(1-X_{1}\right), \cdots, X_{k} /\left(1-X_{1}\right)$

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$
- Variance $E\left[X_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha-\alpha_{i}\right)}{\alpha^{2}(\alpha+1)}$
- Covariance $E\left[X_{i} X_{j}\right]=\frac{-\alpha_{i} \alpha_{j}}{\alpha^{2}(\alpha+1)}, i \neq j$
- X_{1} is independent of $X_{2} /\left(1-X_{1}\right), \cdots, X_{k} /\left(1-X_{1}\right)$
- Similarly for each X_{i}

Properties of Dirichlet Distribution

- $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(\alpha_{1}, \cdots, \alpha_{k}\right), \alpha=\sum_{i=1}^{k} \alpha_{i}$
- Expectation $E\left[X_{i}\right]=\frac{\alpha_{i}}{\alpha}$
- Variance $E\left[X_{i}^{2}\right]=\frac{\alpha_{i}\left(\alpha-\alpha_{i}\right)}{\alpha^{2}(\alpha+1)}$
- Covariance $E\left[X_{i} X_{j}\right]=\frac{-\alpha_{i} \alpha_{j}}{\alpha^{2}(\alpha+1)}, i \neq j$
- X_{1} is independent of $X_{2} /\left(1-X_{1}\right), \cdots, X_{k} /\left(1-X_{1}\right)$
- Similarly for each X_{i}
- If prior distribution is $D\left(\alpha_{1}, \cdots, \alpha_{k}\right)$, then posterior

$$
P\left(X_{1}, \ldots, X_{k} \mid X=j\right)=D\left(\alpha_{1}^{(j)}, \cdots, \alpha_{k}^{(j)}\right)
$$

where

$$
\alpha_{i}^{(j)}= \begin{cases}\alpha_{i} & \text { if } i \neq j \\ \alpha_{j}+1 & \text { if } i=j\end{cases}
$$

Dirichlet Processes

- Definition: Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k=1,2, \cdots$, and a partition $\left(B_{1}, \cdots, B_{k}\right)$ of X, the distribution of $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ is Dirichlet $D\left(\alpha\left(B_{1}\right), \cdots, \alpha\left(B_{2}\right)\right)$.

Dirichlet Processes

- Definition: Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k=1,2, \cdots$, and a partition $\left(B_{1}, \cdots, B_{k}\right)$ of X, the distribution of $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ is Dirichlet $D\left(\alpha\left(B_{1}\right), \cdots, \alpha\left(B_{2}\right)\right)$.
- For any $A \in \mathcal{A}, E[P(A)]=\frac{\alpha(A)}{\alpha(X)}$

Dirichlet Processes

- Definition: Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k=1,2, \cdots$, and a partition $\left(B_{1}, \cdots, B_{k}\right)$ of X, the distribution of $\left(P\left(B_{1}\right), \cdots, P\left(B_{k}\right)\right)$ is Dirichlet $D\left(\alpha\left(B_{1}\right), \cdots, \alpha\left(B_{2}\right)\right)$.
- For any $A \in \mathcal{A}, E[P(A)]=\frac{\alpha(A)}{\alpha(X)}$
- Let Q be a fixed probability measure on (X, A) with $Q \ll \alpha$. Then for any m, and any A_{1}, \ldots, A_{m}, and $\epsilon>0$,

$$
\mathcal{P}\left\{\left|P\left(A_{i}\right)-Q\left(A_{i}\right)\right|<\epsilon, i=1, \ldots, m\right\}>0
$$

Properties of Dirichlet Processes

- Three main properties for DPs

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})
- Here P acts as the "parameter," DP is the prior

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})
- Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, \mathcal{A})

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})
- Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, \mathcal{A})
- Easy to show using a constructive definition of DP

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})
- Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, \mathcal{A})
- Easy to show using a constructive definition of DP
- Prop 3: The posterior distribution given X is the DP with parameter $\alpha+\delta_{X}$

Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on $\left([0,1]^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}}\right)$
- Samples from a DP are distributions P on (X, \mathcal{A})
- Here P acts as the "parameter," DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on (X, \mathcal{A})
- Easy to show using a constructive definition of DP
- Prop 3: The posterior distribution given X is the DP with parameter $\alpha+\delta_{X}$
- Posterior given X_{1}, \ldots, X_{n} is the DP with parameter

$$
\alpha+\sum_{i=1}^{n} \delta_{X_{i}}
$$

Stick Breaking Construction

- A constructive definition of DP

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$
- Recall that a r.v. is a measurable function

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$
- Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$
- Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
- $\left(\pi_{1}, \pi_{2}, \ldots\right)$ are i.i.d. with distribution $B(1, \alpha(X))$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$
- Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
- $\left(\pi_{1}, \pi_{2}, \ldots\right)$ are i.i.d. with distribution $B(1, \alpha(X))$
- $\left(Y_{1}, Y_{2}, \ldots\right)$ are i.i.d. with distribution $\beta(A)=\alpha(A) / \alpha(X)$

Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N=\{1,2, \ldots\}$ and $\mathcal{F}=2^{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
- Random variables $(\pi, Y, I)=\left(\left(\pi_{j}, Y_{j}\right), j=1,2, \ldots, I\right)$
- Taking values in $\left(([0,1] \times \mathcal{X})^{\infty} \times N,(\mathcal{B} \times \mathcal{A})^{\infty}\right)$
- Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
- $\left(\pi_{1}, \pi_{2}, \ldots\right)$ are i.i.d. with distribution $B(1, \alpha(X))$
- $\left(Y_{1}, Y_{2}, \ldots\right)$ are i.i.d. with distribution $\beta(A)=\alpha(A) / \alpha(X)$
- $Q(I=n \mid(\pi, Y))=p_{n}=\pi_{n} \prod_{1 \leq m \leq(n-1)}\left(1-\pi_{m}\right)$ so that

$$
\sum_{1 \leq m \leq n} p_{n}=1-\prod_{1 \leq m \leq n}\left(1-\pi_{m}\right) \rightarrow 1 \quad \text { w.p. } 1
$$

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$
P_{(\theta, Y)}(A)=\sum_{n=1}^{\infty} p_{n} \delta_{Y_{n}}(A)
$$

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$
P_{(\theta, Y)}(A)=\sum_{n=1}^{\infty} p_{n} \delta_{Y_{n}}(A)
$$

- P is a random measure over (X, \mathcal{A}), due to (θ, Y)

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$
P_{(\theta, Y)}(A)=\sum_{n=1}^{\infty} p_{n} \delta_{Y_{n}}(A)
$$

- P is a random measure over (X, \mathcal{A}), due to (θ, Y)
- P is a sample from a Dirichlet process with parameter α

Stick Breaking Construction (Contd.)

- Now, we have a probability space (Ω, \mathcal{S}, Q)
- For any $A \in \mathcal{A}$, define

$$
P_{(\theta, Y)}(A)=\sum_{n=1}^{\infty} p_{n} \delta_{Y_{n}}(A)
$$

- P is a random measure over (X, \mathcal{A}), due to (θ, Y)
- P is a sample from a Dirichlet process with parameter α
- By construction, clearly P can only be discrete

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
- Consider a probability space (U, \mathcal{B}, H)

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U \times \mathcal{A}$

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U \times \mathcal{A}$
- For any $A_{1}, \ldots, A_{m} \in \mathcal{A}$, we have

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right) \sim \int_{u} D\left(\alpha\left(u, A_{1}\right), \ldots, D\left(u, A_{m}\right)\right) d H(u)
$$

Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U \times \mathcal{A}$
- For any $A_{1}, \ldots, A_{m} \in \mathcal{A}$, we have

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right) \sim \int_{u} D\left(\alpha\left(u, A_{1}\right), \ldots, D\left(u, A_{m}\right)\right) d H(u)
$$

- In "practice" DPM is a infinite mixture model

DPM (Contd.)

- Mike Jordan's NIPS'05 Tutorial

Model-Based Clustering

- A generative approach to clustering:
- pick one of K clusters from a distribution $\pi=\left(\pi_{1}, \pi_{2}, \ldots \pi_{K}\right)$
- generate a data point from a cluster-specific probability distribution
- This yields a finite mixture model:

$$
p(x \mid \phi, \pi)=\sum_{k=1}^{K} \pi_{k} p\left(x \mid \phi_{k}\right)
$$

where π and $\phi=\left(\phi_{1}, \phi_{2}, \ldots \phi_{K}\right)$ are the parameters, and where we've assumed the same parameterized family for each cluster (for simplicity)

- Data $\left\{x_{i}\right\}_{i=1}^{n}$ are assumed to be generated conditionally IID from this mixture

Finite Mixture Models (cont)

- Another way to express this: define an underlying measure

$$
G=\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}}
$$

where $\delta_{\phi_{k}}$ is an atom at ϕ_{k}

- And define the process of obtaining a sample from a finite mixture model as follows. For $i=1, \ldots, n$:

$$
\begin{aligned}
\theta_{i} & \sim G \\
x_{i} & \sim p\left(\cdot \mid \theta_{i}\right)
\end{aligned}
$$

- Note that each θ_{i} is equal to one of the underlying ϕ_{k}
- indeed, the subset of $\left\{\theta_{i}\right\}$ that maps to ϕ_{k} is exactly the k th cluster

Finite Mixture Models (cont)

$$
\begin{aligned}
G & =\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}} \\
\theta_{i} & \sim G \\
x_{i} & \sim p\left(\cdot \mid \theta_{i}\right)
\end{aligned}
$$

Bayesian Finite Mixture Models

(e.g., Lo; Ferguson; Escobar \& West; Robert; Green \& Richardson; Neal; Ishawaran \& Zarepour)

- Need to place priors on the parameters ϕ and π
- The choice of prior for ϕ is model-specific; e.g., we might use conjugate normal/inverse-gamma priors for a Gaussian mixture model
- let's denote this prior as G_{0}
- Place a symmetric Dirichlet prior, $\operatorname{Dir}\left(\alpha_{0} / K, \ldots, \alpha_{0} / K\right)$, on the mixing proportions π
- the symmetry accords with the (usual) assumption that we could scramble the labels of the mixture components and not change the model
- the scaling $\left(\alpha_{0} / K\right)$ gives α_{0} the semantics of a concentration parameter; the prior mean of ϕ_{k} is equal to $1 / K$

Bayesian Finite Mixture Models (cont)

$$
\begin{aligned}
\phi_{k} & \sim G_{0} \\
\pi_{k} & \sim \operatorname{Dir}\left(\alpha_{0} / K, \ldots, \alpha_{0} / K\right) \\
G & =\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}} \\
\theta_{i} & \sim G \\
x_{i} & \sim p\left(\cdot \mid \theta_{i}\right)
\end{aligned}
$$

- Note that G is now a random measure

Going Nonparametric-A First Perspective

(e.g., Kingman; Waterson; Patil \& Taillie; Liu; Ishwaran \& Zarepour)

- Define a countably infinite mixture model by taking K to infinity and hoping that " $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ " means something, where

$$
\begin{aligned}
\phi_{k} & \sim G_{0} \\
\pi_{k} & \sim \operatorname{Dir}\left(\alpha_{0} / K, \ldots, \alpha_{0} / K\right) \text { as } K \rightarrow \infty
\end{aligned}
$$

- Several mathematical hurdles to overcome:
- What is the distribution of any given π_{k} as $K \rightarrow \infty$? Does it stabilize at some fixed distribution?
- Is $\sum_{k=1}^{\infty} \pi_{k}=1$ under some suitable notion of convergence?
- Do we get a few large mixing proportions, or are they all of similar "size"?
- Do we get any "clustering" at all?
- This seems hard; let's approach the problem from a different point of view

A Second Perspective—Stick-Breaking

(e.g., Connor \& Mosimann; Doksum; Freedman; Kingman; Pitman; Sethuraman)

- Define an infinite sequence of Beta random variables:

$$
\beta_{k} \sim \operatorname{Beta}\left(1, \alpha_{0}\right) \quad k=1,2, \ldots
$$

- And then define an infinite sequence of mixing proportions as:

$$
\begin{aligned}
& \pi_{1}=\beta_{1} \\
& \pi_{k}=\beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right) \quad k=2,3, \ldots
\end{aligned}
$$

- This can be viewed as breaking off portions of a stick:

Stick-Breaking (cont)

- We now have an explicit formula for each $\pi_{k}: \quad \beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right)$
- We can also easily see that $\sum_{k=1}^{\infty} \pi_{k}=1$ (wp1):

$$
\begin{aligned}
1-\sum_{k=1}^{K} \pi_{k} & =1-\beta_{1}-\beta_{2}\left(1-\beta_{1}\right)-\beta_{3}\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)-\cdots \\
& =\left(1-\beta_{1}\right)\left(1-\beta_{2}-\beta_{3}\left(1-\beta_{2}\right)-\cdots\right) \\
& =\prod_{k=1}^{K}\left(1-\beta_{k}\right) \\
& \rightarrow 0 \quad(w p 1 \text { as } K \rightarrow \infty)
\end{aligned}
$$

- So now $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ has a clean definition as a random measure

Graphical Model Representation

The Posterior Dirichlet Process

- Suppose that we sample G from a Dirichlet process and then sample θ_{1} from G. What is the posterior process?
- For a fixed partition, we get a standard Dirichlet update (for the cell that contains θ_{1} the exponent increases by one; stays the same for all other cells)
- this is true for even the tiniest cell
- suggests that the posterior is a Dirichlet process in which the base measure has an atom at θ_{1}
- Indeed, we have (for a proof, see, e.g., Schervish, 1995):

$$
G \mid \theta_{1} \sim \operatorname{DP}\left(\alpha_{0} G_{0}+\delta_{\theta_{1}}\right)
$$

- Iterating the posterior update yields:

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim \operatorname{DP}\left(\alpha_{0} G_{0}+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

Relationship to Stick-Breaking

- Recalling the formula for the expectation of a Dirichlet random variable, for any set $A \subseteq \Omega$, we have:

$$
\mathbb{E}\left[G(A) \mid \theta_{1}, \ldots, \theta_{n}\right]=\frac{\alpha_{0} G_{0}(A)+\sum_{i=1}^{n} \delta_{\theta_{i}}(A)}{\alpha_{0}+n} \rightarrow \sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}(A)
$$

where ϕ_{k} are the unique values of the θ_{i}, where $\pi_{k}=\lim _{n \rightarrow \infty} n_{k} / n$, and where n_{k} is the number of repeats of ϕ_{k} in the sequence $\left(\theta_{1}, \ldots, \theta_{n}\right)$

- assuming that the posterior concentrates, this suggests that the random measures $G \sim \mathrm{DP}\left(\alpha_{0} G_{0}\right)$ are discrete (wp1)
- Is there an infinite sum of the form $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ that obeys the definition of the Dirichlet process?
- yes, the stick-breaking random measure!
- this important result is not hard to prove; it follows from elementary facts about the Dirichlet distribution (Sethuraman, 1994)

Dirichlet Process Mixture Models

$$
\begin{array}{rlrl}
G & \sim \mathrm{DP}\left(\alpha_{0} G_{0}\right) & & \\
\theta_{i} \mid G & \sim G & i \in 1, \ldots, n \\
x_{i} \mid \theta_{i} & \sim F\left(x_{i} \mid \theta_{i}\right) & & i \in 1, \ldots, n
\end{array}
$$

Marginal Probabilities

- To obtain the marginal probability of the parameters $\theta_{1}, \theta_{2}, \ldots$, we need to integrate out G

Marginal Probabilities (cont)

- Recall the formula

$$
\mathbb{E}\left[G(A) \mid \theta_{1}, \ldots, \theta_{n}\right]=\frac{\alpha_{0} G_{0}(A)+\sum_{k=1}^{K} n_{k} \delta_{\phi_{k}}(A)}{\alpha_{0}+n}
$$

- Let A be a singleton set equal to one of the ϕ_{k}. The formula says that the marginal probability of observing ϕ_{k} again is proportional to n_{k}.
- And the marginal probability of observing a new ϕ vector is proportional to α_{0}.
- This is just the Pólya urn scheme!
- I.e., integrating over the random measure G, where $G \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right)$, yields the Pólya urn

Chinese Restaurant Process (CRP)

- A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
- first customer sits at the first table
- mth subsequent customer sits at a table drawn from the following distribution:

$$
\begin{array}{rll}
P\left(\text { previously occupied table } i \mid \mathcal{F}_{m-1}\right) & \propto n_{i} \tag{1}\\
P\left(\text { the next unoccupied table } \mid \mathcal{F}_{m-1}\right) & \propto & \alpha_{0}
\end{array}
$$

where n_{i} is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after $m-1$ customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
- the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
- a likelihood-e.g., associate a parameterized probability distribution with each table
- a prior for the parameters-the first customer to sit at table k chooses the parameter vector for that table $\left(\phi_{k}\right)$ from the prior

- So we now have a distribution-or can obtain one-for any quantity that we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

$\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right) \sim N(a, b) \otimes I W(\alpha, \beta)$
$x_{i} \sim N\left(\phi_{k}\right) \quad$ for a data point i sitting at table k

