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Given a set X, let 2X be the power set
o A C 2X s called a o-algebra if

@ A contains X
@ A is closed under complements
@ A is closed under countable unions

Hence, A is closed under countable intersections

Examples
o X ={a,b,c,d} and A= {0,{a, b}, {c,d},{a, b,c,d}}
o X =R, and A is open intervals in R

Tuple (X, .A) is called a measurable space

One can define a measure ;v on a measurable space
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@ Measurable function

e Function between two measurable spaces
o Consider two spaces (X,.4) and (Y, B)
o f: X Y is measurable if Vb € B,f~1(b) € A

@ Example

o Random variables are measurable functions
o For real-valued random variables, Y = R

@ A measure is a function u : A +— [0, 00] such that

o 1(0)=0, and
e For a countable sequence of pairwise disjoint sets Ei, By, . ..

I lE Z:“

@ A probability measure satisfies P(X) =1
e (X, A, P) is called a probability space
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Distribution Over Distributions

How to define random probability measures P over (X, .A)
Consider any sequence of sets Ay, ..., An(A; € A)
Define joint distribution (P(A1), ..., P(Am))
Show 3 P on ([0, 1]4, FA)
e P yields the distributions P

o [0,1]4 is the space of all functions P from A+ [0, 1]
e With P(X) =1 these functions are probability distributions

Goal: To construct such a P over probability distributions

Parametric vs non-parametric Bayes
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It is convenient to work with a partition of X

For any k, (Bi,..., Bx) is a partition if

o B A Vi; B,‘ﬂBj:@,VI‘#J‘; Uf(le,':X
Define random probability P as follows:

o Define joint distribution (P(Bi),. .., P(Bk))

o Use this to define joint distribution (P(A1),..., P(An))

For arbitrary sets Ay, ..., An, with 4; = 0 or 1, define

_Am i
By om = (L1 A;

Ym

Then {B,, ... 5, } is a valid partition of X



Probability

Constructing P (Contd.)

e We have a valid partition {B, ... 5.}



Probability

Constructing P (Contd.)

e We have a valid partition {B, ... 5.}

@ Now, define a joint distribution over partitions

{P(By;, - ym)ivj=00r1l,j=1,...,m}



Probability

Constructing P (Contd.)

e We have a valid partition {B, ... 5.}

@ Now, define a joint distribution over partitions

{P(By;, - ym)ivj=00r1l,j=1,...,m}

@ The joint distribution over (P(A1),...,P(An))

P(A;) = Z P(B"/h'“:”/m)

(v1,5ym)
~i=1
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@ There is one consistency requirement we need for
’D(Bh'" 7Bk)

o Consider two partitions B’ = (By,--- , B},) and
B = (B, -, Bk)

o Let B’ be a refinement of B, i.e.,

o np/ ) / K /
B]_ — U]_ B“ B2 - Ur1+1Bi7 e “Bk - Urk,1+1Bl'
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A Consistency Requirement

@ There is one consistency requirement we need for
P(Bi,--- ,By)

e Consider two partitions B’ = (Bj,--- , B},) and
B=(Bi,---,Bx)

o Let B’ be a refinement of B, i.e.,

np! r / k' !
B = UllBiu By = Uri-HBi7 o Be= Urk71+1Bi

@ Then the distribution of (P(Bi),- -, P(Bx)) is identical to
that of

n r k'
1

rn+1 re_1+1
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A Key Lemma

Lemma: If the joint distribution (P(B1),--- , P(Bk)) satisfies
the consistency condition, and, if for arbitrary sets
(A1,...,Am), the joint distribution is constructed as outlined
earlier, then there exists P which yields these distribution.
Samples P from P are distributions on (X,.A)

We will focus on a specific P: Dirichlet processes

Based on the above construction
o Sufficient to focus on partitions, rather than arbitrary sets
o Can maintain distribution over distributions (non-parametric
Bayes)
e So far, we have only seen distribution over parameters

Can inference be tractably done over such models?
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@ Distribution over finite discrete distributions

@ The density function is given by

r (Zf( 1O )

H, ' i=1

@ Well defined on the unit simplex Zf-;l xi =1

e Key Property: If (X1,...,Xk) ~ D(au,...,ax), and rn,...,r
are integers such that 0 < rp < --- < ry then

S0 SPARED ) LY 0 9T S it

n+1 rp_1+1 n+1 re+1

D(ag,...,ak) = f(x1,.. ., xklaa, ..., ax) =
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@ Distribution over finite discrete distributions
@ The density function is given by
r (Zf( 1O ) k
it

H/ 1 =1
@ Well defined on the unit simplex Zf-;l xi =1
e Key Property: If (X1,...,Xk) ~ D(au,...,ax), and rn,...,r

are integers such that 0 < rp < --- < ry then

D(ag,...,ak) = f(x1,.. ., xklaa, ..., ax) =

k k
g X;, E Xi, , E Xi| ~D E «;, E «;, ,g a;
rn—+1 rp_1+1 rn—+1 re+1

@ In partlcular, the marginal distribution of
X; ~ B(aj, Y ¥ o — aj) where
r(O[ + AB) a—1

B(a, B) = f(x|a, B) = WX 11— X)ﬁfl
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Gamma and Dirichlet

@ Gamma distribution, with x > 0,«,6 > 0, is

exp(—x/@) onfl

Mo, 0) =f(x|a,0) = 9o (o)

o Key property: If X; ~ T («aj,0),i =1,...,k, then

ZX ~T (Za;,@)

i=1

o Let Z = then

z X
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Gamma, Exponential, Geometric

@ Recall Gamma distribution

Ma,0) = Wxal

e With a = 1,0 = 1/), we get exponential distribution

F(xIA) = G(1,1/A) = Aexp(—Ax)

@ Discrete version of exponential is the geometric distribution

f(klg)=(1-q)*'q
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Properties of Dirichlet Distribution

o (Xl,...,Xk) ~ D(Oél,“' ,Oék),Oé = Ell'(:la"
o Expectation E[X|] = %
o Variance E[X?] = %
o Covariance E[X;Xj] = a?(iijl i#Jj
e Xi is independent of X5/(1 — X1),---, Xk/(1 — X1)
e Similarly for each X;

e If prior distribution is D(«1, - - , ), then posterior

where
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Dirichlet Processes

@ Definition: Let a be a non-negative finite measure on (X, A).
Then P is a Dirichlet Process on (X,.A) with parameter « if
for every k =1,2,---, and a partition (Bi,--- , Bx) of X, the
distribution of (P(Bi),- -, P(Bk)) is Dirichlet
D(a(B1),- - ,a(Br)).

o Forany A€ A, E[P(A)] = 25

o Let Q be a fixed probability measure on (X, A) with Q < «.
Then for any m, and any Aj,...,An, and € > 0,

P{|P(Ai)) — Q(A))| <ei=1,...,m} >0
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Properties of Dirichlet Processes

@ Three main properties for DPs

@ Prop 1: DP is a probability measure on ([0, 1]4, F4)
e Samples from a DP are distributions P on (X, .A)
e Here P acts as the “parameter,” DP is the prior

@ Prop 2: DP gives probability 1 to discrete measures on (X,.4)
e Easy to show using a constructive definition of DP

@ Prop 3: The posterior distribution given X is the DP with
parameter o + dx

e Posterior given Xi,..., X, is the DP with parameter
a+ Z;’:l 6Xi
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Stick Breaking Construction

@ A constructive definition of DP

@ Let « be a finite measure on (X, .A)

o Let N={1,2,...} and F =2V

e Construct a probability space (2, S, Q)

e Random variables (7, Y, 1) = ((7, Y;),j =
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Dirichlet Processes

Stick Breaking Construction

A constructive definition of DP
Let a be a finite measure on (X, .A)
Let N ={1,2,...} and F =2V
Construct a probability space (€2, S, Q)
e Random variables (7, Y,!) = ((7j, Y;),j =1,2,...,1)
o Taking values in (([0,1] x X)*> x N, (B x A)>)
o Recall that a r.v. is a measurable function
@ The distribution of the r.v. is defined as follows
o (my,m2,...) are i.i.d. with distribution B(1, «(X))
o (Y1,Ys,...) are i.i.d. with distribution S(A) = a(A)/a(X)
o QU =nl|(m,Y)) =pn=mn]li<me(n-1)(1 — Tm) so that

Z pn=1-— H l—7mm)—1 wpl

1<m<n 1<m<n
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Dirichlet Processes

Stick Breaking Construction (Contd.)

Now, we have a probability space (22, S, Q)
For any A € A, define

Pio,v)(A) = pndy,(A)
n=1

P is a random measure over (X,.A), due to (6, Y)

P is a sample from a Dirichlet process with parameter «

By construction, clearly P can only be discrete
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Dirichlet Process Mixtures

(X,.A) is the space on which DP was defined
Based on a fixed measure o on A

Consider a probability space (U, B, H)

Define a transition measure a(u, A) on U x A

For any A;1,...,An € A, we have

(P(Al),...,P(Am))N/D(a(u,Al),...,D(u,Am))dH(u)

u

In “practice” DPM is a infinite mixture model



DP Mixtures

DPM (Contd.)

@ Mike Jordan’s NIPS'05 Tutorial



Model-Based Clustering

e A generative approach to clustering:

— pick one of K clusters from a distribution m = (wy, w2, ... 7x)
— generate a data point from a cluster-specific probability distribution

e This yields a finite mixture model:

£C|§b, Zﬂ-kpx|¢k

where m and ¢ = (¢1,¢2,...¢K) are the parameters, and where we've
assumed the same parameterized family for each cluster (for simplicity)

e Data {z;}I' , are assumed to be generated conditionally IID from this
mixture
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Finite Mixture Models (cont)

e Another way to express this: define an underlying measure

K
G = Zﬂk (5¢k
k=1

where 04, Is an atom at ¢,

e And define the process of obtaining a sample from a finite mixture model
as follows. For:=1,..., n:

0, ~ G
r; ~ p(-]0;)

e Note that each 6; is equal to one of the underlying ¢

— indeed, the subset of {6;} that maps to ¢y, is exactly the kth cluster
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Finite Mixture Models (cont)

o
I
[
S
s

i ~ p(-]0;)
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Bayesian Finite Mixture Models
(e.g., Lo; Ferguson; Escobar & West; Robert; Green & Richardson; Neal; Ishawaran &

Zarepour)

e Need to place priors on the parameters ¢ and 7

e The choice of prior for ¢ is model-specific; e.g., we might use conjugate
normal/inverse-gamma priors for a Gaussian mixture model
— let's denote this prior as G

e Place a symmetric Dirichlet prior, Dir(ag/K,...,ap/K), on the mixing
proportions 7

— the symmetry accords with the (usual) assumption that we could scramble
the labels of the mixture components and not change the model

— the scaling (ag/K) gives ag the semantics of a concentration parameter;
the prior mean of ¢y is equal to 1/K

30



Bayesian Finite Mixture Models (cont)

.\

G
. ~ Dir(ag/K,...,a0/K) G — ) G ‘ ‘ ‘
K
G = Zﬂk 5¢k
(97; ~ G
Ly p(' | 973) . /\

e Note that (G is now a random measure



Going Nonparametric—A First Perspective
(e.g., Kingman; Waterson; Patil & Taillie; Liu; Ishwaran & Zarepour)

e Define a countably infinite mixture model by taking K to infinity and hoping
that "G = .-, m; dp," means something, where

o~ Go
mr ~ Dir(ag/K,...,a0/K) as K — o0

e Several mathematical hurdles to overcome:

— What is the distribution of any given 7, as K — oo? Does it stabilize at
some fixed distribution?

— Is >77 , M = 1 under some suitable notion of convergence?

— Do we get a few large mixing proportions, or are they all of similar “size”?

— Do we get any “clustering” at all?

e This seems hard; let’'s approach the problem from a different point of view
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A Second Perspective—Stick-Breaking

(e.g., Connor & Mosimann; Doksum; Freedman; Kingman; Pitman; Sethuraman)
e Define an infinite sequence of Beta random variables:

B ~ Beta(1, ap) k=1,2,...

e And then define an infinite sequence of mixing proportions as:
T = B

k—1
Ty = ﬁkH(l—ﬁz) k=23,...
=1
e This can be viewed as breaking off portions of a stick:

B By (1-B1)
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Stick-Breaking (cont)

e \We now have an explicit formula for each mi: (& Hé:ll(l — B1)

e We can also easily see that > ;- m, =1 (wpl):

1_Z7Tk: = 1-01—B2(1—p1) = Bs(1 = B1)(1 = Pa) — -+

= (1-p61)1—B2—B3(1—p2) —--)

K

= JIa -5
k=1
— 0 (wpl as K — o0)

e Sonow G =) - mds, has a clean definition as a random measure
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Graphical Model Representation

N

=
=

3

G ---‘I |‘ ‘| ‘| coe

:
I
wﬂﬁe :
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The Posterior Dirichlet Process

e Suppose that we sample GG from a Dirichlet process and then sample 6
from G. What is the posterior process?

e For a fixed partition, we get a standard Dirichlet update (for the cell that
contains 6 the exponent increases by one; stays the same for all other cells)

— this is true for even the tiniest cell
— suggests that the posterior is a Dirichlet process in which the base measure
has an atom at 6,

e Indeed, we have (for a proof, see, e.g., Schervish, 1995):

G ‘ 01 ~ DP((XQGO + 591)

e lterating the posterior update yields:

G\Hl,. ..,Hn ~ DP(CMOGO +Z(59z)

1=1
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Relationship to Stick-Breaking

e Recalling the formula for the expectation of a Dirichlet random variable, for
any set A C (), we have:

E[G(A) |64, ...,00] _ 0Go(A) + 3y 9 Zwk@,k

Qo+ N

where ¢ are the unique values of the 6;, where mp = lim,, ., ng/n, and
where ny is the number of repeats of ¢ in the sequence (04,...,6,)

— assuming that the posterior concentrates, this suggests that the random
measures G ~ DP(agGy) are discrete (wpl)

e Is there an infinite sum of the form G = > md,, that obeys the
definition of the Dirichlet process?

— vyes, the stick-breaking random measure!
— this important result is not hard to prove; it follows from elementary facts
about the Dirichlet distribution (Sethuraman, 1994)
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Dirichlet Process Mixture Models

o N\

o G ..-‘I |‘ ‘|‘|...

SRV

G ~ DP(OéoGo)
6)@|G ~ G rel,....n
ZCZ|(97, ~ F(ZCZ|(97,) rel,....n
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Marginal Probabilities

e To obtain the marginal probability of the parameters 64,605, ..., we need to
integrate out G

%o G ‘I|“|‘|

Gy
\
'
— %o _’f 0,
0
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Marginal Probabilities (cont)

Recall the formula

aoGo(A) + 51 ngdy, (A
E[G(A) |6y, ..., 0,] = 220G %Zf;l 0, (A)

Let A be a singleton set equal to one of the ¢,. The formula says that the
marginal probability of observing ¢ again is proportional to ny.

And the marginal probability of observing a new ¢ vector is proportional to
Q.

This is just the Pdlya urn scheme!

|.e., integrating over the random measure G, where G ~ DP(aoGy), yields
the Pdlya urn
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Chinese Restaurant Process (CRP)

e A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

— first customer sits at the first table
— mth subsequent customer sits at a table drawn from the following
distribution:

P(previously occupied table i | F,,—1) o n; (1)
P(the next unoccupied table | F,,, 1) o ag

where n; is the number of customers currently at table : and where F,,,_1
denotes the state of the restaurant after m — 1 customers have been

seated

Q0O ODC
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The CRP and Clustering

e Data points are customers; tables are clusters

— the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

e This prior can be completed with:

— a likelihood—e.g., associate a parameterized probability distribution with

each table
— a prior for the parameters—the first customer to sit at table £ chooses

the parameter vector for that table (¢y) from the prior
| | - | .
|
|
| " " u
e So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting
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CRP Prior, Gaussian Likelihood, Conjugate Prior

o = (kk, Xk) ~ N(a,b) ® IW(a, B)
r; ~ N(opg) for a data point ¢ sitting at table £

12



	Probability
	Dirichlet Distribution
	Dirichlet Processes
	DP Mixtures

