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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Measurable Space

Given a set X , let 2X be the power set

A ⊆ 2X is called a σ-algebra if

1 A contains X
2 A is closed under complements
3 A is closed under countable unions

Hence, A is closed under countable intersections

Examples

X = {a, b, c , d}, and A = {∅, {a, b}, {c , d}, {a, b, c , d}}
X = R, and A is open intervals in R

Tuple (X ,A) is called a measurable space

One can define a measure µ on a measurable space
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Measurable Space (Contd.)

Measurable function

Function between two measurable spaces
Consider two spaces (X ,A) and (Y ,B)
f : X 7→ Y is measurable if ∀b ∈ B, f −1(b) ∈ A

Example

Random variables are measurable functions
For real-valued random variables, Y = R

A measure is a function µ : A 7→ [0,∞] such that

µ(∅) = 0, and
For a countable sequence of pairwise disjoint sets E1,E2, . . .

µ (∪∞i=1Ei ) =
∞∑
i=1

µ(Ei )

A probability measure satisfies P(X ) = 1

(X ,A,P) is called a probability space
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Distribution Over Distributions

How to define random probability measures P over (X ,A)

Consider any sequence of sets A1, . . . ,Am(Ai ∈ A)

Define joint distribution (P(A1), . . . ,P(Am))

Show ∃ P on ([0, 1]A,FA)

P yields the distributions P
[0, 1]A is the space of all functions P from A 7→ [0, 1]
With P(X ) = 1 these functions are probability distributions

Goal: To construct such a P over probability distributions

Parametric vs non-parametric Bayes
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Constructing P

It is convenient to work with a partition of X

For any k, (B1, . . . ,Bk) is a partition if

Bi ∈ A,∀i ; Bi ∩ Bj = ∅,∀i 6= j ; ∪k
i=1Bi = X

Define random probability P as follows:

Define joint distribution (P(B1), . . . ,P(Bk))
Use this to define joint distribution (P(A1), . . . ,P(Am))

For arbitrary sets A1, . . . ,Am, with γj = 0 or 1, define

Bγ1,··· ,γm = ∩m
j=1A

γj

j

Then {Bγ1,··· ,γm} is a valid partition of X
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Constructing P (Contd.)

We have a valid partition {Bγ1,··· ,γm}

Now, define a joint distribution over partitions

{P(Bγ1,··· ,γm); γj = 0 or 1, j = 1, . . . ,m}

The joint distribution over (P(A1), . . . ,P(Am))

P(Ai ) =
∑

(γ1,··· ,γm)
γi=1

P(Bγ1,··· ,γm)
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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

A Consistency Requirement

There is one consistency requirement we need for
P(B1, · · · ,Bk)

Consider two partitions B ′ = (B ′
1, · · · ,B ′

k ′) and
B = (B1, · · · ,Bk)

Let B ′ be a refinement of B, i.e.,

B1 = ∪r1
1 B ′

i ,B2 = ∪r2
r1+1B

′
i , · · · ,Bk = ∪k ′

rk−1+1B
′
i

Then the distribution of (P(B1), · · · ,P(Bk)) is identical to
that of  r1∑

1

P(B ′
i ),

r2∑
r1+1

P(B ′
i ), · · · ,

k ′∑
rk−1+1

P(B ′
i )
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A Key Lemma

Lemma: If the joint distribution (P(B1), · · · ,P(Bk)) satisfies
the consistency condition, and, if for arbitrary sets
(A1, . . . ,Am), the joint distribution is constructed as outlined
earlier, then there exists P which yields these distribution.

Samples P from P are distributions on (X ,A)

We will focus on a specific P: Dirichlet processes

Based on the above construction

Sufficient to focus on partitions, rather than arbitrary sets
Can maintain distribution over distributions (non-parametric
Bayes)
So far, we have only seen distribution over parameters

Can inference be tractably done over such models?
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Dirichlet Distribution

Distribution over finite discrete distributions

The density function is given by

D(α1, . . . , αk) = f (x1, . . . , xk |α1, . . . , αk) =
Γ
(∑k

i=1 αi

)
∏k

i=1 Γ(αi )

k∏
i=1

xαi−1
i

Well defined on the unit simplex
∑k

i=1 xi = 1
Key Property: If (X1, . . . ,Xk) ∼ D(α1, . . . , αk), and r1, . . . , r`
are integers such that 0 < r1 < · · · < r` then r1∑

1

Xi ,

r2∑
r1+1

Xi , · · · ,
k∑

r`−1+1

Xi

 ∼ D

 r1∑
1

αi ,

r2∑
r1+1

αi , · · · ,
k∑

r`+1

αi


In particular, the marginal distribution of
Xj ∼ B(αj ,

∑k
1 αi − αj) where

B(α, β) = f (x |α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1
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Gamma and Dirichlet

Gamma distribution, with x > 0, α, θ > 0, is

Γ(α, θ) = f (x |α, θ) =
exp(−x/θ)

θαΓ(α)
xα−1

Key property: If Xi ∼ Γ(αi , θ), i = 1, . . . , k, then

k∑
i=1

Xi ∼ Γ

(
k∑

i=1

αi , θ

)

Let Zi = XiP
i=1 Xi

, then

(Z1, . . . ,Zk) ∼ D(α1, . . . , αk)
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Gamma, Exponential, Geometric

Recall Gamma distribution

Γ(α, θ) =
exp(−x/θ)

θαΓ(α)
xα−1

With α = 1, θ = 1/λ, we get exponential distribution

f (x |λ) = G (1, 1/λ) = λ exp(−λx)

Discrete version of exponential is the geometric distribution

f (k|q) = (1− q)k−1q
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Properties of Dirichlet Distribution

(X1, . . . ,Xk) ∼ D(α1, · · · , αk), α =
∑k

i=1 αi

Expectation E [Xi ] = αi

α

Variance E [X 2
i ] = αi (α−αi )

α2(α+1)

Covariance E [XiXj ] =
−αiαj

α2(α+1) , i 6= j

X1 is independent of X2/(1− X1), · · · ,Xk/(1− X1)
Similarly for each Xi

If prior distribution is D(α1, · · · , αk), then posterior

P(X1, . . . ,Xk |X = j) = D(α
(j)
1 , · · · , α

(j)
k )

where

α
(j)
i =

{
αi if i 6= j

αj + 1 if i = j
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Dirichlet Processes

Definition: Let α be a non-negative finite measure on (X ,A).
Then P is a Dirichlet Process on (X ,A) with parameter α if
for every k = 1, 2, · · · , and a partition (B1, · · · ,Bk) of X , the
distribution of (P(B1), · · · ,P(Bk)) is Dirichlet
D(α(B1), · · · , α(B2)).

For any A ∈ A, E [P(A)] = α(A)
α(X )

Let Q be a fixed probability measure on (X ,A) with Q � α.
Then for any m, and any A1, . . . ,Am, and ε > 0,

P{|P(Ai )− Q(Ai )| < ε, i = 1, . . . ,m} > 0



Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Dirichlet Processes

Definition: Let α be a non-negative finite measure on (X ,A).
Then P is a Dirichlet Process on (X ,A) with parameter α if
for every k = 1, 2, · · · , and a partition (B1, · · · ,Bk) of X , the
distribution of (P(B1), · · · ,P(Bk)) is Dirichlet
D(α(B1), · · · , α(B2)).

For any A ∈ A, E [P(A)] = α(A)
α(X )

Let Q be a fixed probability measure on (X ,A) with Q � α.
Then for any m, and any A1, . . . ,Am, and ε > 0,

P{|P(Ai )− Q(Ai )| < ε, i = 1, . . . ,m} > 0



Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Dirichlet Processes

Definition: Let α be a non-negative finite measure on (X ,A).
Then P is a Dirichlet Process on (X ,A) with parameter α if
for every k = 1, 2, · · · , and a partition (B1, · · · ,Bk) of X , the
distribution of (P(B1), · · · ,P(Bk)) is Dirichlet
D(α(B1), · · · , α(B2)).

For any A ∈ A, E [P(A)] = α(A)
α(X )

Let Q be a fixed probability measure on (X ,A) with Q � α.
Then for any m, and any A1, . . . ,Am, and ε > 0,

P{|P(Ai )− Q(Ai )| < ε, i = 1, . . . ,m} > 0



Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Properties of Dirichlet Processes

Three main properties for DPs

Prop 1: DP is a probability measure on ([0, 1]A,FA)

Samples from a DP are distributions P on (X ,A)
Here P acts as the “parameter,” DP is the prior

Prop 2: DP gives probability 1 to discrete measures on (X ,A)

Easy to show using a constructive definition of DP

Prop 3: The posterior distribution given X is the DP with
parameter α + δX

Posterior given X1, . . . ,Xn is the DP with parameter
α +

∑n
i=1 δXi
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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Stick Breaking Construction

A constructive definition of DP

Let α be a finite measure on (X ,A)

Let N = {1, 2, . . .} and F = 2N

Construct a probability space (Ω,S,Q)

Random variables (π,Y , I ) = ((πj ,Yj), j = 1, 2, . . . , I )
Taking values in (([0, 1]×X )∞ × N, (B ×A)∞)
Recall that a r.v. is a measurable function

The distribution of the r.v. is defined as follows

(π1, π2, . . .) are i.i.d. with distribution B(1, α(X ))
(Y1,Y2, . . .) are i.i.d. with distribution β(A) = α(A)/α(X )
Q(I = n|(π,Y )) = pn = πn

∏
1≤m≤(n−1)(1− πm) so that∑

1≤m≤n

pn = 1−
∏

1≤m≤n

(1− πm) → 1 w .p. 1
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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Stick Breaking Construction (Contd.)

Now, we have a probability space (Ω,S,Q)

For any A ∈ A, define

P(θ,Y )(A) =
∞∑

n=1

pnδYn(A)

P is a random measure over (X ,A), due to (θ, Y )

P is a sample from a Dirichlet process with parameter α

By construction, clearly P can only be discrete
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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

Dirichlet Process Mixtures

(X ,A) is the space on which DP was defined

Based on a fixed measure α on A
Consider a probability space (U,B,H)

Define a transition measure α(u,A) on U ×A
For any A1, . . . ,Am ∈ A, we have

(P(A1), . . . ,P(Am)) ∼
∫

u
D(α(u,A1), . . . ,D(u,Am))dH(u)

In “practice” DPM is a infinite mixture model
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Probability Dirichlet Distribution Dirichlet Processes DP Mixtures

DPM (Contd.)

Mike Jordan’s NIPS’05 Tutorial
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