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Jensen's Inequality

Convex Functions

Let f:S+— R, where SCR

f is said to be convex on S if

FOX(1-A)x0) < M (x1)+H(1-N)F(x) ¥xi,x € S, A € [0,1]

o If f is twice differentiable, and f”(x) > 0,Vx € S, then f is
convex on S

f is concave if —f is convex

log x is a concave function
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Jensen’s Inequality

Let f be a convex function on S

Let X be a random variable on §

Jensen's inequality states

FEIX]) < E[F(X)]

For the discrete case, can be proved by induction

For the general case, proof is even simpler
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Proof of Jensen's Inequality

f is convex if Vxp 3 a linear map ¢(x) = ax + b s.t.

] E(Xo) = f(Xo)
o Vx € R, 4(x) < f(x)

Let ¢ be the linear map at xg = E[X]
Then

F(ELX]) = (ELX]) = E[(X)] < E[f(X)]

@ Uses linearity and monotonicity of expectation
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Jensen's Inequality

Example

o Let A, [/]] be a discrete distribution over x;, [i]{

@ From Jensen's inequality
n n
Iog (Z A/X,‘) > Z /\,' Iog X
i=1 i=1

@ Can be applied to prove the AM-GM inequality

1 — "1 1 n
log (n Z&') > E - log x; = . log (H x,->
i=1 i=1

i=1

1 n n 1/n
. Z Xj = (H X/)
i=1 i=1
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Expectation Maximization

ML Parameter Estimation

@ The goal is to maximize the log-likelihood of the observations

L(6) = log p(x|0)

EM is an iterative procedure for maximizing L(0)
Applicable to a variety of settings (with missing variables)

Our focus will be primarily on mixture models

If 6, is nt" iterate, want to maximize

L(0) — L(0s) = log p(x|0) — log p(x|6n)

If z denotes the latent variable, then p(X|0) = >, p(x, z|0)



A Lower Bound

L(0) — L(6n) = log (Z P(X»ZW)) — log p(x|6n)

= log (Zp z|x,0,) X|XZ|90))> — log p(x|6n)
)

p(x, z|0
gp(zyx.ﬁn) Iog( (2Ix.0 )> — log p(x]6n)
B Jx 0 o [ PX:210)
= Sotemonis (J7500)

= A(6,60,)

v
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Expectation Maximization

A Lower Bound (Contd.)

@ Hence, we have a lower bound

L(0) > Q(6,0,) = L(6,) + A(0,6,)

o Further, at 8 = 6,,

L(0) = Q(0,06,)

Q(60,0,) is an auxliary function
Goal: Find 6 such that Q(0,6,) is maximized
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Expectation Maximization

Maximizing the lower bound

o Note that
Ont1 = argmaxy Q(0,0,)

= argmaxy {Z p(z|x, 6,) log p(x, 20)}

z

= argmaxy EZ|X79n[Iog p(x, z|0)]

@ Same as maximizing the expected complete log-likelihood

@ Exact update will depend on the distribution/family



Expectation Maximization

Optimizing the lower bound (Contd)

@ There are two steps in the EM update



Expectation Maximization

Optimizing the lower bound (Contd)

@ There are two steps in the EM update
o E-step: Determines the expectation E,, 4, [log p(x, z|0))]



Expectation Maximization

Optimizing the lower bound (Contd)

@ There are two steps in the EM update
o E-step: Determines the expectation E,, 4, [log p(x, z|0))]

@ M-step: Maximize the expectation w.r.t. 6



Expectation Maximization

Optimizing the lower bound (Contd)

There are two steps in the EM update
E-step: Determines the expectation E,|, g, [log p(x, z|0)]
M-step: Maximize the expectation w.r.t. 0

Determining p(z|x, 6,) often forms the core of the E-step



Expectation Maximization

Optimizing the lower bound (Contd)

There are two steps in the EM update

E-step: Determines the expectation E,|, g, [log p(x, z|0)]
M-step: Maximize the expectation w.r.t. 0

Determining p(z|x, 6,) often forms the core of the E-step

For FMMs, it can be computed using Bayes rule

_ p(2l0n)p(x]2, 0r)
Plzx0n) = S~ 0.V p(x12, )
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Alternate Maximization

Lower Bounding Function

Both E- and M-steps solve a maximization problem

Consider the function

F(p,0) = Esllog p(x, 219)] + H(p)

H(p) = Ep[— log p(z)] is the Shannon entropy

Both steps can be seen as alternately maximizing F(p, 6)
Can be viewed in terms of KL-divergence between
po = p(z|x,0) and p

F(p,0) = L(0) — KL(pol[P)
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Alternate Maximization

Optimizing w.r.t. p

For a fixed 6, there is a unique distribution, py, that
maximizes F(p,0)

The maximizer pyg(z) = p(z|x, 6)

Follows from the KL-divergence based expression for F(p, 6)

Alternatively, can be derived using direct optimization

pg varies continuously with 6
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Optimizing w.r.t. p (Contd.)

o If p(z) = p(z|x,0), then F(p,0) = log p(x|0) = L(6)
e For p(z) = p(z|x,0),

F(B,0)

Esllog p(x, 210)] + H(p)

Egllog p(x, z|0)] — Ep[log p(z|x, 0)]
Ep[log p(x, z|0) — log p(z|x, 0)]
E[log p(x[6)]

log p(x|6)
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Alternate Maximization

EM as Alternate Maximization

EM can be viewed as an alternate maximization algorithm
E-step: Set p,41 to the maximizer of F(p,6),)
M-step: Set 0,41 to the maximizer of F(Pp+1,6)

The iterations are equivalent to the ones discussed earlier
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