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Jensen’s Inequality Expectation Maximization Alternate Maximization

Convex Functions

Let f : S 7→ R, where S ⊆ R

f is said to be convex on S if

f (λx1+(1−λ)x2) ≤ λf (x1)+(1−λ)f (x2) ∀x1, x2 ∈ S , λ ∈ [0, 1]

If f is twice differentiable, and f ′′(x) ≥ 0,∀x ∈ S , then f is
convex on S

f is concave if −f is convex

log x is a concave function
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Jensen’s Inequality

Let f be a convex function on S

Let X be a random variable on S

Jensen’s inequality states

f (E [X ]) ≤ E [f (X )]

For the discrete case, can be proved by induction

For the general case, proof is even simpler
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Proof of Jensen’s Inequality

f is convex if ∀x0 ∃ a linear map `(x) = ax + b s.t.

`(x0) = f (x0)
∀x ∈ R, `(x) ≤ f (x)

Let ` be the linear map at x0 = E [X ]

Then
f (E [X ]) = `(E [X ]) = E [`(X )] ≤ E [f (X )]

Uses linearity and monotonicity of expectation
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Example

Let λi , [i ]
n
1 be a discrete distribution over xi , [i ]

n
1

From Jensen’s inequality
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λi log xi

Can be applied to prove the AM-GM inequality
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ML Parameter Estimation

The goal is to maximize the log-likelihood of the observations

L(θ) = log p(x |θ)

EM is an iterative procedure for maximizing L(θ)

Applicable to a variety of settings (with missing variables)

Our focus will be primarily on mixture models

If θn is nth iterate, want to maximize

L(θ)− L(θn) = log p(x |θ)− log p(x |θn)

If z denotes the latent variable, then p(X |θ) =
∑

z p(x , z |θ)
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A Lower Bound

Now

L(θ)− L(θn) = log

(∑
z

p(x , z |θ)

)
− log p(x |θn)

= log

(∑
z

p(z |x , θn)
p(x , z |θ)
p(z |x , θn)

)
− log p(x |θn)

≥
∑
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)
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)
= ∆(θ, θn)
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A Lower Bound (Contd.)

Hence, we have a lower bound

L(θ) ≥ Q(θ, θn) = L(θn) + ∆(θ, θn)

Further, at θ = θn,

L(θ) = Q(θ, θn)

Q(θ, θn) is an auxliary function

Goal: Find θ such that Q(θ, θn) is maximized



Jensen’s Inequality Expectation Maximization Alternate Maximization

A Lower Bound (Contd.)

Hence, we have a lower bound

L(θ) ≥ Q(θ, θn) = L(θn) + ∆(θ, θn)

Further, at θ = θn,

L(θ) = Q(θ, θn)

Q(θ, θn) is an auxliary function

Goal: Find θ such that Q(θ, θn) is maximized



Jensen’s Inequality Expectation Maximization Alternate Maximization

A Lower Bound (Contd.)

Hence, we have a lower bound

L(θ) ≥ Q(θ, θn) = L(θn) + ∆(θ, θn)

Further, at θ = θn,

L(θ) = Q(θ, θn)

Q(θ, θn) is an auxliary function

Goal: Find θ such that Q(θ, θn) is maximized



Jensen’s Inequality Expectation Maximization Alternate Maximization

A Lower Bound (Contd.)

Hence, we have a lower bound

L(θ) ≥ Q(θ, θn) = L(θn) + ∆(θ, θn)

Further, at θ = θn,

L(θ) = Q(θ, θn)

Q(θ, θn) is an auxliary function

Goal: Find θ such that Q(θ, θn) is maximized



Jensen’s Inequality Expectation Maximization Alternate Maximization

Maximizing the lower bound

Note that

θn+1 = argmaxθ Q(θ, θn)

= argmaxθ

{∑
z

p(z |x , θn) log p(x , z |θ)

}
= argmaxθ Ez|x ,θn

[log p(x , z |θ)]

Same as maximizing the expected complete log-likelihood

Exact update will depend on the distribution/family
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Optimizing the lower bound (Contd)

There are two steps in the EM update

E-step: Determines the expectation Ez|x ,θn
[log p(x , z |θ)]

M-step: Maximize the expectation w.r.t. θ

Determining p(z |x , θn) often forms the core of the E-step

For FMMs, it can be computed using Bayes rule

p(z |x , θn) =
p(z |θn)p(x |z , θn)∑
z ′ p(z ′|θn)p(x |z ′, θn)
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Lower Bounding Function

Both E- and M-steps solve a maximization problem

Consider the function

F (p̃, θ) = Ep̃[log p(x , z |θ)] + H(p̃)

H(p̃) = Ep̃[− log p̃(z)] is the Shannon entropy

Both steps can be seen as alternately maximizing F (p̃, θ)

Can be viewed in terms of KL-divergence between
pθ = p(z |x , θ) and p̃

F (p̃, θ) = L(θ)− KL(pθ||p̃)
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Optimizing w.r.t. p̃

For a fixed θ, there is a unique distribution, pθ, that
maximizes F (p̃, θ)

The maximizer pθ(z) = p(z |x , θ)

Follows from the KL-divergence based expression for F (p̃, θ)

Alternatively, can be derived using direct optimization

pθ varies continuously with θ
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Optimizing w.r.t. p̃ (Contd.)

If p̃(z) = p(z |x , θ), then F (p̃, θ) = log p(x |θ) = L(θ)

For p̃(z) = p(z |x , θ),

F (p̃, θ) = Ep̃[log p(x , z |θ)] + H(p̃)

= Ep̃[log p(x , z |θ)]− Ep̃[log p(z |x , θ)]

= Ep̃[log p(x , z |θ)− log p(z |x , θ)]

= Ep̃[log p(x |θ)]
= log p(x |θ)
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EM as Alternate Maximization

EM can be viewed as an alternate maximization algorithm

E-step: Set p̃n+1 to the maximizer of F (p̃, θn)

M-step: Set θn+1 to the maximizer of F (p̃n+1, θ)

The iterations are equivalent to the ones discussed earlier
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