CSci 8980: Advanced Topics in Graphical Models Mixture Models, EM

Instructor: Arindam Banerjee

September 6, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Convex Functions

• Let $f: S \mapsto \mathbb{R}$, where $S \subseteq \mathbb{R}$

Convex Functions

- Let $f: S \mapsto \mathbb{R}$, where $S \subseteq \mathbb{R}$
- f is said to be convex on S if

 $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \quad \forall x_1, x_2 \in S, \lambda \in [0,1]$

Convex Functions

- Let $f: S \mapsto \mathbb{R}$, where $S \subseteq \mathbb{R}$
- f is said to be convex on S if

 $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \quad \forall x_1, x_2 \in S, \lambda \in [0,1]$

• If f is twice differentiable, and $f''(x) \ge 0, \forall x \in S$, then f is convex on S

Convex Functions

- Let $f: S \mapsto \mathbb{R}$, where $S \subseteq \mathbb{R}$
- f is said to be convex on S if

 $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \quad \forall x_1, x_2 \in S, \lambda \in [0,1]$

- If f is twice differentiable, and $f''(x) \ge 0, \forall x \in S$, then f is convex on S
- f is concave if -f is convex

Convex Functions

- Let $f: S \mapsto \mathbb{R}$, where $S \subseteq \mathbb{R}$
- f is said to be convex on S if

 $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \quad \forall x_1, x_2 \in S, \lambda \in [0,1]$

- If f is twice differentiable, and $f''(x) \ge 0, \forall x \in S$, then f is convex on S
- f is concave if -f is convex
- log x is a concave function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jensen's Inequality

• Let f be a convex function on S

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jensen's Inequality

- Let f be a convex function on S
- Let X be a random variable on S

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jensen's Inequality

- Let f be a convex function on S
- Let X be a random variable on S
- Jensen's inequality states

 $f(E[X]) \leq E[f(X)]$

Jensen's Inequality

- Let f be a convex function on S
- Let X be a random variable on S
- Jensen's inequality states

 $f(E[X]) \leq E[f(X)]$

• For the discrete case, can be proved by induction

Jensen's Inequality

- Let f be a convex function on S
- Let X be a random variable on S
- Jensen's inequality states

 $f(E[X]) \leq E[f(X)]$

- For the discrete case, can be proved by induction
- For the general case, proof is even simpler

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Jensen's Inequality

• f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Jensen's Inequality

- f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.
 - $\ell(x_0) = f(x_0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Jensen's Inequality

• f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.

•
$$\ell(x_0) = f(x_0)$$

•
$$\forall x \in \mathbb{R}, \ \ell(x) \leq f(x)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof of Jensen's Inequality

- f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.
 - $\ell(x_0) = f(x_0)$
 - $\forall x \in \mathbb{R}, \ \ell(x) \leq f(x)$
- Let ℓ be the linear map at $x_0 = E[X]$

Proof of Jensen's Inequality

- f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.
 - $\ell(x_0) = f(x_0)$
 - $\forall x \in \mathbb{R}, \ \ell(x) \leq f(x)$
- Let ℓ be the linear map at $x_0 = E[X]$
- Then

 $f(E[X]) = \ell(E[X]) = E[\ell(X)] \le E[f(X)]$

Proof of Jensen's Inequality

- f is convex if $\forall x_0 \exists$ a linear map $\ell(x) = ax + b$ s.t.
 - $\ell(x_0) = f(x_0)$
 - $\forall x \in \mathbb{R}, \ \ell(x) \leq f(x)$
- Let ℓ be the linear map at $x_0 = E[X]$
- Then

 $f(E[X]) = \ell(E[X]) = E[\ell(X)] \le E[f(X)]$

• Uses linearity and monotonicity of expectation

Example

• Let $\lambda_i, [i]_1^n$ be a discrete distribution over $x_i, [i]_1^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

- Let $\lambda_i, [i]_1^n$ be a discrete distribution over $x_i, [i]_1^n$
- From Jensen's inequality

$$\log\left(\sum_{i=1}^n \lambda_i x_i\right) \geq \sum_{i=1}^n \lambda_i \log x_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

- Let $\lambda_i, [i]_1^n$ be a discrete distribution over $x_i, [i]_1^n$
- From Jensen's inequality

$$\log\left(\sum_{i=1}^n \lambda_i x_i\right) \geq \sum_{i=1}^n \lambda_i \log x_i$$

• Can be applied to prove the AM-GM inequality

$$\log\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \geq \sum_{i=1}^{n}\frac{1}{n}\log x_{i} = \frac{1}{n}\log\left(\prod_{i=1}^{n}x_{i}\right)$$
$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \geq \left(\prod_{i=1}^{n}x_{i}\right)^{1/n}$$

・ロト・日本・モート モー うへぐ

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

• EM is an iterative procedure for maximizing $L(\theta)$

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

- EM is an iterative procedure for maximizing $L(\theta)$
- Applicable to a variety of settings (with missing variables)

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

- EM is an iterative procedure for maximizing $L(\theta)$
- Applicable to a variety of settings (with missing variables)
- Our focus will be primarily on mixture models

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

- EM is an iterative procedure for maximizing $L(\theta)$
- Applicable to a variety of settings (with missing variables)
- Our focus will be primarily on mixture models
- If θ_n is n^{th} iterate, want to maximize

 $L(\theta) - L(\theta_n) = \log p(x|\theta) - \log p(x|\theta_n)$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

ML Parameter Estimation

• The goal is to maximize the log-likelihood of the observations

 $L(\theta) = \log p(x|\theta)$

- EM is an iterative procedure for maximizing $L(\theta)$
- Applicable to a variety of settings (with missing variables)
- Our focus will be primarily on mixture models
- If θ_n is n^{th} iterate, want to maximize

 $L(\theta) - L(\theta_n) = \log p(x|\theta) - \log p(x|\theta_n)$

• If z denotes the latent variable, then $p(X|\theta) = \sum_{z} p(x, z|\theta)$

(ロ)、(型)、(E)、(E)、 E) の(の)

A Lower Bound

Now

$$L(\theta) - L(\theta_n) = \log\left(\sum_{z} p(x, z|\theta)\right) - \log p(x|\theta_n)$$

= $\log\left(\sum_{z} p(z|x, \theta_n) \frac{p(x, z|\theta)}{p(z|x, \theta_n)}\right) - \log p(x|\theta_n)$
 $\geq \sum_{z} p(z|x, \theta_n) \log\left(\frac{p(x, z|\theta)}{p(z|x, \theta_n)}\right) - \log p(x|\theta_n)$
= $\sum_{z} p(z|x, \theta_n) \log\left(\frac{p(x, z|\theta)}{p(x, z|\theta_n)}\right)$
= $\Delta(\theta, \theta_n)$

A Lower Bound (Contd.)

• Hence, we have a lower bound

 $L(\theta) \geq Q(\theta, \theta_n) = L(\theta_n) + \Delta(\theta, \theta_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Lower Bound (Contd.)

• Hence, we have a lower bound

$$L(\theta) \geq Q(\theta, \theta_n) = L(\theta_n) + \Delta(\theta, \theta_n)$$

• Further, at
$$\theta = \theta_n$$
,

 $L(\theta) = Q(\theta, \theta_n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Lower Bound (Contd.)

• Hence, we have a lower bound

$$L(\theta) \geq Q(\theta, \theta_n) = L(\theta_n) + \Delta(\theta, \theta_n)$$

• Further, at
$$\theta = \theta_n$$
,

 $L(\theta) = Q(\theta, \theta_n)$

• $Q(\theta, \theta_n)$ is an *auxliary function*

A Lower Bound (Contd.)

• Hence, we have a lower bound

$$L(\theta) \geq Q(\theta, \theta_n) = L(\theta_n) + \Delta(\theta, \theta_n)$$

• Further, at
$$\theta = \theta_n$$
,

 $L(\theta) = Q(\theta, \theta_n)$

- $Q(\theta, \theta_n)$ is an *auxliary function*
- Goal: Find θ such that $Q(\theta, \theta_n)$ is maximized

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Maximizing the lower bound

Note that

$$\begin{aligned} \theta_{n+1} &= \arg \max_{\theta} Q(\theta, \theta_n) \\ &= \arg \max_{\theta} \left\{ \sum_{z} p(z|x, \theta_n) \log p(x, z|\theta) \right\} \\ &= \arg \max_{\theta} E_{z|x, \theta_n} [\log p(x, z|\theta)] \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Maximizing the lower bound

Note that

$$\begin{aligned} \theta_{n+1} &= \operatorname{argmax}_{\theta} Q(\theta, \theta_n) \\ &= \operatorname{argmax}_{\theta} \left\{ \sum_{z} p(z|x, \theta_n) \log p(x, z|\theta) \right\} \\ &= \operatorname{argmax}_{\theta} E_{z|x, \theta_n} [\log p(x, z|\theta)] \end{aligned}$$

• Same as maximizing the expected complete log-likelihood

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Maximizing the lower bound

Note that

$$\begin{aligned} \theta_{n+1} &= \arg \max_{\theta} Q(\theta, \theta_n) \\ &= \arg \max_{\theta} \left\{ \sum_{z} p(z|x, \theta_n) \log p(x, z|\theta) \right\} \\ &= \arg \max_{\theta} E_{z|x, \theta_n} [\log p(x, z|\theta)] \end{aligned}$$

- Same as maximizing the expected complete log-likelihood
- Exact update will depend on the distribution/family

(ロ)、(型)、(E)、(E)、 E) の(の)

Optimizing the lower bound (Contd)

• There are two steps in the EM update

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- There are two steps in the EM update
- E-step: Determines the expectation $E_{z|x,\theta_n}[\log p(x, z|\theta)]$

- There are two steps in the EM update
- E-step: Determines the expectation $E_{z|x,\theta_n}[\log p(x,z|\theta)]$
- M-step: Maximize the expectation w.r.t. θ

- There are two steps in the EM update
- E-step: Determines the expectation $E_{z|x,\theta_n}[\log p(x,z|\theta)]$
- M-step: Maximize the expectation w.r.t. θ
- Determining $p(z|x, \theta_n)$ often forms the core of the E-step

- There are two steps in the EM update
- E-step: Determines the expectation $E_{z|x,\theta_n}[\log p(x, z|\theta)]$
- M-step: Maximize the expectation w.r.t. θ
- Determining $p(z|x, \theta_n)$ often forms the core of the E-step
- For FMMs, it can be computed using Bayes rule

$$p(z|x,\theta_n) = \frac{p(z|\theta_n)p(x|z,\theta_n)}{\sum_{z'} p(z'|\theta_n)p(x|z',\theta_n)}$$

Lower Bounding Function

• Both E- and M-steps solve a maximization problem

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lower Bounding Function

- Both E- and M-steps solve a maximization problem
- Consider the function

 $F(\tilde{p}, \theta) = E_{\tilde{p}}[\log p(x, z|\theta)] + H(\tilde{p})$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lower Bounding Function

- Both E- and M-steps solve a maximization problem
- Consider the function

 $F(\tilde{p}, \theta) = E_{\tilde{p}}[\log p(x, z|\theta)] + H(\tilde{p})$

Lower Bounding Function

- Both E- and M-steps solve a maximization problem
- Consider the function

$$F(\tilde{p}, \theta) = E_{\tilde{p}}[\log p(x, z|\theta)] + H(\tilde{p})$$

- $H(\tilde{p}) = E_{\tilde{p}}[-\log \tilde{p}(z)]$ is the Shannon entropy
- Both steps can be seen as alternately maximizing $F(\tilde{p}, \theta)$

Lower Bounding Function

- Both E- and M-steps solve a maximization problem
- Consider the function

$$F(\tilde{p}, \theta) = E_{\tilde{p}}[\log p(x, z|\theta)] + H(\tilde{p})$$

- $H(\tilde{p}) = E_{\tilde{p}}[-\log \tilde{p}(z)]$ is the Shannon entropy
- Both steps can be seen as alternately maximizing $F(\tilde{p}, \theta)$
- Can be viewed in terms of KL-divergence between $p_{\theta} = p(z|x, \theta)$ and \tilde{p}

$$F(\tilde{p}, \theta) = L(\theta) - KL(p_{\theta}||\tilde{p})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Optimizing w.r.t. \tilde{p}

For a fixed θ, there is a unique distribution, p_θ, that maximizes F(p̃, θ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizing w.r.t. \tilde{p}

- For a fixed θ, there is a unique distribution, p_θ, that maximizes F(p̃, θ)
- The maximizer $p_{ heta}(z) = p(z|x, heta)$

Optimizing w.r.t. *p*

- For a fixed θ, there is a unique distribution, p_θ, that maximizes F(p̃, θ)
- The maximizer $p_{\theta}(z) = p(z|x, \theta)$
- Follows from the KL-divergence based expression for $F(\tilde{p}, \theta)$

Optimizing w.r.t. *p*

- For a fixed θ, there is a unique distribution, p_θ, that maximizes F(p̃, θ)
- The maximizer $p_{\theta}(z) = p(z|x, \theta)$
- Follows from the KL-divergence based expression for $F(\tilde{p}, \theta)$
- Alternatively, can be derived using direct optimization

Optimizing w.r.t. *p*

- For a fixed θ, there is a unique distribution, p_θ, that maximizes F(p̃, θ)
- The maximizer $p_{\theta}(z) = p(z|x, \theta)$
- Follows from the KL-divergence based expression for $F(\tilde{p}, \theta)$
- Alternatively, can be derived using direct optimization
- p_{θ} varies continuously with θ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Optimizing w.r.t. \tilde{p} (Contd.)

• If $\tilde{p}(z) = p(z|x,\theta)$, then $F(\tilde{p},\theta) = \log p(x|\theta) = L(\theta)$

Optimizing w.r.t. \tilde{p} (Contd.)

- If $\tilde{p}(z) = p(z|x,\theta)$, then $F(\tilde{p},\theta) = \log p(x|\theta) = L(\theta)$ • For $\tilde{p}(z) = p(z|x,\theta)$,
 - $F(\tilde{p},\theta) = E_{\tilde{p}}[\log p(x,z|\theta)] + H(\tilde{p})$
 - $= E_{\tilde{p}}[\log p(x, z|\theta)] E_{\tilde{p}}[\log p(z|x, \theta)]$
 - $= E_{\tilde{p}}[\log p(x, z|\theta) \log p(z|x, \theta)]$
 - $= E_{\tilde{p}}[\log p(x|\theta)]$
 - $= \log p(x|\theta)$

EM as Alternate Maximization

• EM can be viewed as an alternate maximization algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

EM as Alternate Maximization

- EM can be viewed as an alternate maximization algorithm
- E-step: Set \tilde{p}_{n+1} to the maximizer of $F(\tilde{p}, \theta_n)$

EM as Alternate Maximization

- EM can be viewed as an alternate maximization algorithm
- E-step: Set \tilde{p}_{n+1} to the maximizer of $F(\tilde{p}, \theta_n)$
- M-step: Set θ_{n+1} to the maximizer of $F(\tilde{p}_{n+1}, \theta)$

EM as Alternate Maximization

- EM can be viewed as an alternate maximization algorithm
- E-step: Set \tilde{p}_{n+1} to the maximizer of $F(\tilde{p}, \theta_n)$
- M-step: Set θ_{n+1} to the maximizer of $F(\tilde{p}_{n+1}, \theta)$
- The iterations are equivalent to the ones discussed earlier