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Variants

Incremental EM

Since z; are independent, optimal p(Z) = [[; p(zi)

Sufficient to work with such p in F(p, )
Then F(p,0) = > . Fi(pi,0) where

Fi(Bi,0) = Ep,[log p(xi, zi|0)] + H(p:)

Incremental algorithm that works one point at a time
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Incremental EM (Contd.)

@ Basic Incremental EM
o E-step: Choose a data item / to be updated
Set p") = p\" "V for j # i
Set ﬁft) = p(zi|x;,0)
o M-step: Set 6(!) to argmax, Egw [log p(x, z|0)]

@ M-step needs to look at all components of p

Can be simplified by using sufficient statistics

For a distribution p(x|€), s(x) is a sufficient statistic if

p(x|s(x).6) = p(x|s(x)) = p(x|6) = h(x)a(s(x)I6)
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Incremental EM with Sufficient Statistics

e EM with sufficient statistics
o E-step: Set 3(Y) = E5[s(x, z)] where p(z) = p(z|x, 0(t~1)
o M-step: Set 0(Y) to 6, the max likelihood given 5(t)
@ Incremental EM with sufficient statistics
o E-step: Choose a data item i to be updated
Set 59 =3V for j £ i
Set 59 = E; [si(x;, z7)], where Bi(z) = p(zi|x;, 6¢~)
Set 50 = 5(t=1) _ 571 4 &)

o M-step: Set 6(Y) to 6, the max likelihood given 3(*)
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Example

@ Consider a mixture of 2 univariate Gaussians
e Parameter set 0 = (v, j11, 01, f12,02)

o Sufficient statistics

si(xi,zi) = [zi (1 — zi) zixi (1 — z;)x; z,-x,-2 (1- z,-)x,-z]

e Given s(x,z) =), s(xi,z) = (n, no, mi, m2, q1, q2)

2
ny ,u*mh 027% mp
h=— - - | =
n+ny’ np L nh

o =
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Variants

Consider a mixture model with many components
Most p(z|x, ) will be negligibly small
Computation can be saved by freezing these

Only a small set of component posteriors need to be updated

(t) :
~(t) _Ja if z& S
P) {ery) fzes

S; = set of plausible values
o Can be determined by a reasonable hueristic



Variants

Other Variants

@ Generalized EM



Variants

Other Variants

o Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments
o Winner-take-all variant of EM



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments

o Winner-take-all variant of EM
e Assign 1 to one component, zero to all others



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments
o Winner-take-all variant of EM
e Assign 1 to one component, zero to all others
e Hard clustering, equivalent to kmeans



Variants

Other Variants

@ Generalized EM
o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments

Winner-take-all variant of EM

Assign 1 to one component, zero to all others
Hard clustering, equivalent to kmeans

Does not directly optimize L(6)



Variants

Other Variants

@ Generalized EM

o M-step finds 0(t) = argmax, Ej[log p(x, z|6)]
o Instead find 6() such that

Esllog p(x, z|0')] > Egllog p(x, 2|8~ D)]

@ Hard assignments

Winner-take-all variant of EM

Assign 1 to one component, zero to all others
Hard clustering, equivalent to kmeans

Does not directly optimize L(6)

But optimizes a lower bound on L(6)
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Auxiliary Functions

o Consider the problem of minimizing F(x)
e G(x,x') is an auxiliary function to F(x) if

G(x,x") > F(x) G(x,x) = F(x)

F is non-decreasing under the following updates

xt = argmin, G(x,x(t71)

@ By definition
F(x') < G(x, xU1) < G (x(1 X7 = F(x(71)
@ The sequence is guaranteed to converge to a local minima

The argument reverses for maximization problems
EM updates are a special case of the general technique
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Mixture of Gaussians

For multi-variate Gaussians, each component

1 1 .
pn(x|tn, Xp) = W exp (‘2(X - Mh)TZhl(X - Hh))

@ The Mixture of Gaussians (MoG) model

k

p(x|a, ©) = Z anph(X|th, Xn)
h=1

One of the most widely used mixture models

Recent years have seen progress on non-EM algorithm



Mixture of Gaussians

EM for Mixture of Gaussians: E-step

@ E-step is a direct application of Bayes rule

apph(X|pih, Tp)
Zﬁ/zl ap P (X[ tw, Tp)

p(h|x,a,©) =



Mixture of Gaussians

EM for Mixture of Gaussians: E-step

@ E-step is a direct application of Bayes rule

apph(X|pih, Tp)

p(h|x,a,©) =
Sy ap pr (X s Za)

@ Use current parameter values on the r.h.s.



Mixture of Gaussians

EM for Mixture of Gaussians: E-step

@ E-step is a direct application of Bayes rule

apph(X|pih, Tp)

p(h|x,a,©) =
Sy ap pr (X s Za)

@ Use current parameter values on the r.h.s.

@ Incremental and sparse variants can be applied in practice
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EM for Mixture of Gaussians: M-step

@ The auxiliary function

Q6,00 D) Zng an)p(hlxi[0¢ D)
+ Z > " log pa(x|ptn, Tn)p(hlx;, 0 1)
i h
Optimize over (ap, iup, Zp), [h]%

« is a discrete distribution, forms additional constraint

Focus on first term for ay, true for all mixtures

Focus on second term for (up, £p)
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EM for Mixture of Gaussians: M-step (Contd.)

@ For any finite mixture model
N
=N Z (hlxi, 0

@ For Mixture of Gaussians

S xip(hlx;, 0¢~1)

E,‘P(h‘X,‘,Q(tfl))

S, p(hli, 00) 5 — )i = 1)
Z,’P(h|X,./ n)

Hp =

2
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Exponential Family Distributions

@ Multi-variate parametric distributions of the form

pulx16) = exp(xT8 — 1(8))po(x)

x is the sufficient statistic
0 is the natural parameter
¥(+) is the cumulant or log-partition function

Expectation parameter

p= E[X] = Vi(0)

Examples: Gaussian, Bernoulli, Poisson, Multinomial, Dirichlet
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Exponential Family

The Cumulant Function

@ The Laplace transform viewpoint

L(0) = exp(1(0)) = /exp(xTQ)po(x) dx = Ep[exp(x6)]

@ Holder's inequality implies: For 1 < p,q < o0,1/p+1/q =1,
E[IXIPIVPE] Y9 > E[IXY]
@ Hence
Ap(61) + (1 — A)p(62)
— log ( Epy[exp(xT01)]* Epy [exp(xT62)] ')
> log ( Eplexp(x” (M1 + (1 — 1)62))])
= (A1 + (1 — N)bo)

@ The cumulant ¢(0) is a convex function
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Maximum Likelihood Estimation, Conjugate

Let s = s(x) be the sufficient statistic for a set of points x

@ Then maximizing log-likelihood is

¢(s) = max (76 —(9))

Has a unique maximizer since 1(f) is convex

The conjugate of ¢ is

o(s) = sup (s"6 —(9))

0

¢ is a convex function of s

Technically, 1, ¢ are “Legendre” functions
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Mixtures of Exponential Family Distributions

@ A finite mixture model

p(x|a, ©) Zahpw x|6p)

1) determines the family
All mixture components are of the same family

0 determines the distribution in the family

Each component has different parameters
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Mixtures of Exponential Family Distributions (Contd.)

E-step: Exactly same as before

N
1
. p(t—1)
ah = 2_1 p(h|x;, 0 )

M-step: Taking gradient w.r.t. 8y

, _ >ixip(hlxi, 0¢1)
VL/J(Gh) - Z,‘ p(h’X,', H(t_l))

V1) is monotonic increasing, inverse is well defined

Recall the expression for up for Gaussian mixtures



Bayes Net
Mixture Models as a Bayes Net

e
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