CSci 8980: Advanced Topics in Graphical Models

Instructor: Arindam Banerjee

September 11, 2007

Incremental EM

- Since z_{i} are independent, optimal $\tilde{p}(Z)=\prod_{i} \tilde{p}\left(z_{i}\right)$

Incremental EM

- Since z_{i} are independent, optimal $\tilde{p}(Z)=\prod_{i} \tilde{p}\left(z_{i}\right)$
- Sufficient to work with such \tilde{p} in $F(\tilde{p}, \theta)$

Incremental EM

- Since z_{i} are independent, optimal $\tilde{p}(Z)=\prod_{i} \tilde{p}\left(z_{i}\right)$
- Sufficient to work with such \tilde{p} in $F(\tilde{p}, \theta)$
- Then $F(\tilde{p}, \theta)=\sum_{i} F_{i}\left(\tilde{p}_{i}, \theta\right)$ where

$$
F_{i}\left(\tilde{p}_{i}, \theta\right)=E_{\tilde{p}_{i}}\left[\log p\left(x_{i}, z_{i} \mid \theta\right)\right]+H\left(\tilde{p}_{i}\right)
$$

Incremental EM

- Since z_{i} are independent, optimal $\tilde{p}(Z)=\prod_{i} \tilde{p}\left(z_{i}\right)$
- Sufficient to work with such \tilde{p} in $F(\tilde{p}, \theta)$
- Then $F(\tilde{p}, \theta)=\sum_{i} F_{i}\left(\tilde{p}_{i}, \theta\right)$ where

$$
F_{i}\left(\tilde{p}_{i}, \theta\right)=E_{\tilde{p}_{i}}\left[\log p\left(x_{i}, z_{i} \mid \theta\right)\right]+H\left(\tilde{p}_{i}\right)
$$

- Incremental algorithm that works one point at a time

Incremental EM (Contd.)

- Basic Incremental EM

Incremental EM (Contd.)

- Basic Incremental EM
- E-step: Choose a data item i to be updated Set $\tilde{p}_{j}^{(t)}=\tilde{p}_{j}^{(t-1)}$ for $j \neq i$
Set $\tilde{p}_{i}^{(t)}=p\left(z_{i} \mid x_{i}, \theta^{(t)}\right)$

Incremental EM (Contd.)

- Basic Incremental EM
- E-step: Choose a data item i to be updated Set $\tilde{p}_{j}^{(t)}=\tilde{p}_{j}^{(t-1)}$ for $j \neq i$
Set $\tilde{p}_{i}^{(t)}=p\left(z_{i} \mid x_{i}, \theta^{(t)}\right)$
- M-step: Set $\theta^{(t)}$ to $\operatorname{argmax}_{\theta} E_{\tilde{\rho}^{(t)}}[\log p(x, z \mid \theta)]$

Incremental EM (Contd.)

- Basic Incremental EM
- E-step: Choose a data item i to be updated Set $\tilde{p}_{j}^{(t)}=\tilde{p}_{j}^{(t-1)}$ for $j \neq i$
Set $\tilde{p}_{i}^{(t)}=p\left(z_{i} \mid x_{i}, \theta^{(t)}\right)$
- M-step: Set $\theta^{(t)}$ to $\operatorname{argmax}_{\theta} E_{\tilde{p}^{(t)}}[\log p(x, z \mid \theta)]$
- M-step needs to look at all components of \tilde{p}

Incremental EM (Contd.)

- Basic Incremental EM
- E-step: Choose a data item i to be updated Set $\tilde{p}_{j}^{(t)}=\tilde{p}_{j}^{(t-1)}$ for $j \neq i$
Set $\tilde{p}_{i}^{(t)}=p\left(z_{i} \mid x_{i}, \theta^{(t)}\right)$
- M-step: Set $\theta^{(t)}$ to $\operatorname{argmax}_{\theta} E_{\tilde{p}^{(t)}}[\log p(x, z \mid \theta)]$
- M-step needs to look at all components of \tilde{p}
- Can be simplified by using sufficient statistics

Incremental EM (Contd.)

- Basic Incremental EM
- E-step: Choose a data item i to be updated Set $\tilde{p}_{j}^{(t)}=\tilde{p}_{j}^{(t-1)}$ for $j \neq i$ Set $\tilde{p}_{i}^{(t)}=p\left(z_{i} \mid x_{i}, \theta^{(t)}\right)$
- M-step: Set $\theta^{(t)}$ to $\operatorname{argmax}_{\theta} E_{\tilde{p}^{(t)}}[\log p(x, z \mid \theta)]$
- M-step needs to look at all components of \tilde{p}
- Can be simplified by using sufficient statistics
- For a distribution $p(x \mid \theta), s(x)$ is a sufficient statistic if

$$
p(x \mid s(x), \theta)=p(x \mid s(x)) \Longrightarrow p(x \mid \theta)=h(x) q(s(x) \mid \theta)
$$

Incremental EM with Sufficient Statistics

- EM with sufficient statistics

Incremental EM with Sufficient Statistics

- EM with sufficient statistics
- E-step: Set $\tilde{\boldsymbol{s}}^{(t)}=E_{\tilde{\rho}}[s(x, z)]$ where $\tilde{p}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$

Incremental EM with Sufficient Statistics

- EM with sufficient statistics
- E-step: Set $\tilde{s}^{(t)}=E_{\tilde{\rho}}[s(x, z)]$ where $\tilde{p}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$
- M-step: Set $\theta^{(t)}$ to θ, the max likelihood given $\tilde{s}^{(t)}$

Incremental EM with Sufficient Statistics

- EM with sufficient statistics
- E-step: Set $\tilde{s}^{(t)}=E_{\tilde{\rho}}[s(x, z)]$ where $\tilde{p}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$
- M-step: Set $\theta^{(t)}$ to θ, the max likelihood given $\tilde{s}^{(t)}$
- Incremental EM with sufficient statistics

Incremental EM with Sufficient Statistics

- EM with sufficient statistics
- E-step: Set $\tilde{s}^{(t)}=E_{\tilde{p}}[s(x, z)]$ where $\tilde{p}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$
- M-step: Set $\theta^{(t)}$ to θ, the max likelihood given $\tilde{s}^{(t)}$
- Incremental EM with sufficient statistics
- E-step: Choose a data item i to be updated Set $\tilde{s}_{j}^{(t)}=\tilde{s}_{j}^{(t-1)}$, for $j \neq i$
Set $\tilde{s}_{i}^{(t)}=E_{\tilde{p}_{i}}\left[s_{i}\left(x_{i}, z_{i}\right)\right]$, where $\tilde{p}_{i}\left(z_{i}\right)=p\left(z_{i} \mid x_{i}, \theta^{(t-1)}\right)$ Set $\tilde{s}^{(t)}=\tilde{s}^{(t-1)}-\tilde{s}_{i}^{(t-1)}+\tilde{s}_{i}^{(t)}$

Incremental EM with Sufficient Statistics

- EM with sufficient statistics
- E-step: Set $\tilde{s}^{(t)}=E_{\tilde{p}}[s(x, z)]$ where $\tilde{p}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$
- M-step: Set $\theta^{(t)}$ to θ, the max likelihood given $\tilde{s}^{(t)}$
- Incremental EM with sufficient statistics
- E-step: Choose a data item i to be updated Set $\tilde{s}_{j}^{(t)}=\tilde{s}_{j}^{(t-1)}$, for $j \neq i$
Set $\tilde{s}_{i}^{(t)}=E_{\tilde{p}_{i}}\left[s_{i}\left(x_{i}, z_{i}\right)\right]$, where $\tilde{p}_{i}\left(z_{i}\right)=p\left(z_{i} \mid x_{i}, \theta^{(t-1)}\right)$
Set $\tilde{s}^{(t)}=\tilde{s}^{(t-1)}-\tilde{s}_{i}^{(t-1)}+\tilde{s}_{i}^{(t)}$
- M-step: Set $\theta^{(t)}$ to θ, the max likelihood given $\tilde{s}^{(t)}$

Example

- Consider a mixture of 2 univariate Gaussians

Example

- Consider a mixture of 2 univariate Gaussians
- Parameter set $\theta=\left(\alpha, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)$

Example

- Consider a mixture of 2 univariate Gaussians
- Parameter set $\theta=\left(\alpha, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)$
- Sufficient statistics

$$
s_{i}\left(x_{i}, z_{i}\right)=\left[z_{i}\left(1-z_{i}\right) z_{i} x_{i}\left(1-z_{i}\right) x_{i} z_{i} x_{i}^{2}\left(1-z_{i}\right) x_{i}^{2}\right]
$$

Example

- Consider a mixture of 2 univariate Gaussians
- Parameter set $\theta=\left(\alpha, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)$
- Sufficient statistics

$$
s_{i}\left(x_{i}, z_{i}\right)=\left[z_{i}\left(1-z_{i}\right) z_{i} x_{i}\left(1-z_{i}\right) x_{i} z_{i} x_{i}^{2}\left(1-z_{i}\right) x_{i}^{2}\right]
$$

- Given $s(x, z)=\sum_{i} s\left(x_{i}, z_{i}\right)=\left(n_{1}, n_{2}, m_{1}, m_{2}, q_{1}, q_{2}\right)$

$$
\alpha=\frac{n_{1}}{n_{1}+n_{2}}, \quad \mu_{h}=\frac{m_{h}}{n_{h}}, \quad \sigma_{h}^{2}=\frac{q_{h}}{n_{h}}-\left(\frac{m_{h}}{n_{h}}\right)^{2}
$$

Sparse EM

- Consider a mixture model with many components

Sparse EM

- Consider a mixture model with many components
- Most $p(z \mid x, \theta)$ will be negligibly small

Sparse EM

- Consider a mixture model with many components
- Most $p(z \mid x, \theta)$ will be negligibly small
- Computation can be saved by freezing these

Sparse EM

- Consider a mixture model with many components
- Most $p(z \mid x, \theta)$ will be negligibly small
- Computation can be saved by freezing these
- Only a small set of component posteriors need to be updated

$$
\tilde{p}^{(t)}(z)= \begin{cases}q_{z}^{(t)}, & \text { if } z \notin S_{t} \\ Q^{(t)} r_{z}^{(t)} & \text { if } z \in S_{t}\end{cases}
$$

Sparse EM

- Consider a mixture model with many components
- Most $p(z \mid x, \theta)$ will be negligibly small
- Computation can be saved by freezing these
- Only a small set of component posteriors need to be updated

$$
\tilde{p}^{(t)}(z)= \begin{cases}q_{z}^{(t)}, & \text { if } z \notin S_{t} \\ Q^{(t)} r_{z}^{(t)} & \text { if } z \in S_{t}\end{cases}
$$

- $S_{t}=$ set of plausible values

Sparse EM

- Consider a mixture model with many components
- Most $p(z \mid x, \theta)$ will be negligibly small
- Computation can be saved by freezing these
- Only a small set of component posteriors need to be updated

$$
\tilde{p}^{(t)}(z)= \begin{cases}q_{z}^{(t)}, & \text { if } z \notin S_{t} \\ Q^{(t)} r_{z}^{(t)} & \text { if } z \in S_{t}\end{cases}
$$

- $S_{t}=$ set of plausible values
- Can be determined by a reasonable hueristic

Other Variants

- Generalized EM

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments
- Winner-take-all variant of EM

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments
- Winner-take-all variant of EM
- Assign 1 to one component, zero to all others

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{\rho}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments
- Winner-take-all variant of EM
- Assign 1 to one component, zero to all others
- Hard clustering, equivalent to kmeans

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{p}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments
- Winner-take-all variant of EM
- Assign 1 to one component, zero to all others
- Hard clustering, equivalent to kmeans
- Does not directly optimize $L(\theta)$

Other Variants

- Generalized EM
- M-step finds $\theta^{(t)}=\operatorname{argmax}_{\theta} E_{\tilde{p}}[\log p(x, z \mid \theta)]$
- Instead find $\theta^{(t)}$ such that

$$
E_{\tilde{\rho}}\left[\log p\left(x, z \mid \theta^{(t)}\right)\right] \geq E_{\tilde{p}}\left[\log p\left(x, z \mid \theta^{(t-1)}\right)\right]
$$

- Hard assignments
- Winner-take-all variant of EM
- Assign 1 to one component, zero to all others
- Hard clustering, equivalent to kmeans
- Does not directly optimize $L(\theta)$
- But optimizes a lower bound on $L(\theta)$

Auxiliary Functions

- Consider the problem of minimizing $F(x)$

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

- F is non-decreasing under the following updates

$$
x^{t}=\operatorname{argmin}_{x} G\left(x, x^{(t-1)}\right)
$$

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

- F is non-decreasing under the following updates

$$
x^{t}=\operatorname{argmin}_{x} G\left(x, x^{(t-1)}\right)
$$

- By definition

$$
F\left(x^{t}\right) \leq G\left(x^{t}, x^{(t-1)}\right) \leq G\left(x^{(t-1)}, x^{(t-1)}\right)=F\left(x^{(t-1)}\right)
$$

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

- F is non-decreasing under the following updates

$$
x^{t}=\operatorname{argmin}_{x} G\left(x, x^{(t-1)}\right)
$$

- By definition

$$
F\left(x^{t}\right) \leq G\left(x^{t}, x^{(t-1)}\right) \leq G\left(x^{(t-1)}, x^{(t-1)}\right)=F\left(x^{(t-1)}\right)
$$

- The sequence is guaranteed to converge to a local minima

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

- F is non-decreasing under the following updates

$$
x^{t}=\operatorname{argmin}_{x} G\left(x, x^{(t-1)}\right)
$$

- By definition

$$
F\left(x^{t}\right) \leq G\left(x^{t}, x^{(t-1)}\right) \leq G\left(x^{(t-1)}, x^{(t-1)}\right)=F\left(x^{(t-1)}\right)
$$

- The sequence is guaranteed to converge to a local minima
- The argument reverses for maximization problems

Auxiliary Functions

- Consider the problem of minimizing $F(x)$
- $G\left(x, x^{\prime}\right)$ is an auxiliary function to $F(x)$ if

$$
G\left(x, x^{\prime}\right) \geq F(x) \quad G(x, x)=F(x)
$$

- F is non-decreasing under the following updates

$$
x^{t}=\operatorname{argmin}_{x} G\left(x, x^{(t-1)}\right)
$$

- By definition

$$
F\left(x^{t}\right) \leq G\left(x^{t}, x^{(t-1)}\right) \leq G\left(x^{(t-1)}, x^{(t-1)}\right)=F\left(x^{(t-1)}\right)
$$

- The sequence is guaranteed to converge to a local minima
- The argument reverses for maximization problems
- EM updates are a special case of the general technique

Mixture of Gaussians

- For multi-variate Gaussians, each component

$$
p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{h}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{h}\right)^{T} \Sigma_{h}^{-1}\left(x-\mu_{h}\right)\right)
$$

Mixture of Gaussians

- For multi-variate Gaussians, each component

$$
p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{h}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{h}\right)^{T} \Sigma_{h}^{-1}\left(x-\mu_{h}\right)\right)
$$

- The Mixture of Gaussians (MoG) model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)
$$

Mixture of Gaussians

- For multi-variate Gaussians, each component

$$
p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{h}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{h}\right)^{T} \Sigma_{h}^{-1}\left(x-\mu_{h}\right)\right)
$$

- The Mixture of Gaussians (MoG) model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)
$$

- One of the most widely used mixture models

Mixture of Gaussians

- For multi-variate Gaussians, each component

$$
p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{h}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{h}\right)^{T} \Sigma_{h}^{-1}\left(x-\mu_{h}\right)\right)
$$

- The Mixture of Gaussians (MoG) model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)
$$

- One of the most widely used mixture models
- Recent years have seen progress on non-EM algorithm

EM for Mixture of Gaussians: E-step

- E-step is a direct application of Bayes rule

$$
p(h \mid x, \alpha, \Theta)=\frac{\alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)}{\sum_{h^{\prime}=1}^{k} \alpha_{h^{\prime}} p_{h^{\prime}}\left(x \mid \mu_{h^{\prime}}, \Sigma_{h^{\prime}}\right)}
$$

EM for Mixture of Gaussians: E-step

- E-step is a direct application of Bayes rule

$$
p(h \mid x, \alpha, \Theta)=\frac{\alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)}{\sum_{h^{\prime}=1}^{k} \alpha_{h^{\prime}} p_{h^{\prime}}\left(x \mid \mu_{h^{\prime}}, \Sigma_{h^{\prime}}\right)}
$$

- Use current parameter values on the r.h.s.

EM for Mixture of Gaussians: E-step

- E-step is a direct application of Bayes rule

$$
p(h \mid x, \alpha, \Theta)=\frac{\alpha_{h} p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right)}{\sum_{h^{\prime}=1}^{k} \alpha_{h^{\prime}} p_{h^{\prime}}\left(x \mid \mu_{h^{\prime}}, \Sigma_{h^{\prime}}\right)}
$$

- Use current parameter values on the r.h.s.
- Incremental and sparse variants can be applied in practice

EM for Mixture of Gaussians: M-step

- The auxiliary function

$$
\begin{aligned}
Q\left(\theta, \theta^{(t-1)}\right)= & \sum_{i} \sum_{h} \log \left(\alpha_{h}\right) p\left(h\left|x_{i}\right| \theta^{(t-1)}\right) \\
& +\sum_{i} \sum_{h} \log p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right) p\left(h \mid x_{i}, \theta^{(t-1)}\right)
\end{aligned}
$$

EM for Mixture of Gaussians: M-step

- The auxiliary function

$$
\begin{aligned}
Q\left(\theta, \theta^{(t-1)}\right)= & \sum_{i} \sum_{h} \log \left(\alpha_{h}\right) p\left(h\left|x_{i}\right| \theta^{(t-1)}\right) \\
& +\sum_{i} \sum_{h} \log p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right) p\left(h \mid x_{i}, \theta^{(t-1)}\right)
\end{aligned}
$$

- Optimize over $\left(\alpha_{h}, \mu_{h}, \Sigma_{h}\right),[h]_{1}^{k}$

EM for Mixture of Gaussians: M-step

- The auxiliary function

$$
\begin{aligned}
Q\left(\theta, \theta^{(t-1)}\right)= & \sum_{i} \sum_{h} \log \left(\alpha_{h}\right) p\left(h\left|x_{i}\right| \theta^{(t-1)}\right) \\
& +\sum_{i} \sum_{h} \log p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right) p\left(h \mid x_{i}, \theta^{(t-1)}\right)
\end{aligned}
$$

- Optimize over $\left(\alpha_{h}, \mu_{h}, \Sigma_{h}\right),[h]_{1}^{k}$
- α is a discrete distribution, forms additional constraint

EM for Mixture of Gaussians: M-step

- The auxiliary function

$$
\begin{aligned}
Q\left(\theta, \theta^{(t-1)}\right)= & \sum_{i} \sum_{h} \log \left(\alpha_{h}\right) p\left(h\left|x_{i}\right| \theta^{(t-1)}\right) \\
& +\sum_{i} \sum_{h} \log p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right) p\left(h \mid x_{i}, \theta^{(t-1)}\right)
\end{aligned}
$$

- Optimize over $\left(\alpha_{h}, \mu_{h}, \Sigma_{h}\right),[h]_{1}^{k}$
- α is a discrete distribution, forms additional constraint
- Focus on first term for α_{h}, true for all mixtures

EM for Mixture of Gaussians: M-step

- The auxiliary function

$$
\begin{aligned}
Q\left(\theta, \theta^{(t-1)}\right)= & \sum_{i} \sum_{h} \log \left(\alpha_{h}\right) p\left(h\left|x_{i}\right| \theta^{(t-1)}\right) \\
& +\sum_{i} \sum_{h} \log p_{h}\left(x \mid \mu_{h}, \Sigma_{h}\right) p\left(h \mid x_{i}, \theta^{(t-1)}\right)
\end{aligned}
$$

- Optimize over $\left(\alpha_{h}, \mu_{h}, \Sigma_{h}\right),[h]_{1}^{k}$
- α is a discrete distribution, forms additional constraint
- Focus on first term for α_{h}, true for all mixtures
- Focus on second term for $\left(\mu_{h}, \Sigma_{h}\right)$

EM for Mixture of Gaussians: M-step (Contd.)

- For any finite mixture model

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

EM for Mixture of Gaussians: M-step (Contd.)

- For any finite mixture model

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

- For Mixture of Gaussians

$$
\begin{aligned}
\mu_{h} & =\frac{\sum_{i} x_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}{\sum_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)} \\
\Sigma_{h} & =\frac{\sum_{i} p\left(h \mid x_{i}, \theta_{n}\right)\left(x_{i}-\mu_{h}\right)\left(x_{i}-\mu_{h}\right)^{T}}{\sum_{i} p\left(h \mid x_{i}, \theta_{n}\right)}
\end{aligned}
$$

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{T} \theta-\psi(\theta)\right) p_{0}(x)
$$

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{T} \theta-\psi(\theta)\right) p_{0}(x)
$$

- x is the sufficient statistic

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{T} \theta-\psi(\theta)\right) p_{0}(x)
$$

- x is the sufficient statistic
- θ is the natural parameter

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{\top} \theta-\psi(\theta)\right) p_{0}(x)
$$

- x is the sufficient statistic
- θ is the natural parameter
- $\psi(\cdot)$ is the cumulant or log-partition function

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{T} \theta-\psi(\theta)\right) p_{0}(x)
$$

- x is the sufficient statistic
- θ is the natural parameter
- $\psi(\cdot)$ is the cumulant or log-partition function
- Expectation parameter

$$
\mu=E[X]=\nabla \psi(\theta)
$$

Exponential Family Distributions

- Multi-variate parametric distributions of the form

$$
p_{\psi}(x \mid \theta)=\exp \left(x^{T} \theta-\psi(\theta)\right) p_{0}(x)
$$

- x is the sufficient statistic
- θ is the natural parameter
- $\psi(\cdot)$ is the cumulant or log-partition function
- Expectation parameter

$$
\mu=E[X]=\nabla \psi(\theta)
$$

- Examples: Gaussian, Bernoulli, Poisson, Multinomial, Dirichlet

The Cumulant Function

- The Laplace transform viewpoint

$$
L(\theta)=\exp (\psi(\theta))=\int_{x} \exp \left(\mathbf{x}^{T} \theta\right) p_{0}(x) d x=E_{p_{0}}\left[\exp \left(\mathbf{x}^{T} \theta\right)\right]
$$

The Cumulant Function

- The Laplace transform viewpoint

$$
L(\theta)=\exp (\psi(\theta))=\int_{x} \exp \left(\mathbf{x}^{T} \theta\right) p_{0}(x) d x=E_{p_{0}}\left[\exp \left(\mathbf{x}^{T} \theta\right)\right]
$$

- Holder's inequality implies: For $1 \leq p, q \leq \infty, 1 / p+1 / q=1$,

$$
E\left[|X|^{p}\right]^{1 / p} E\left[|Y|^{q}\right]^{1 / q} \geq E[|X Y|]
$$

The Cumulant Function

- The Laplace transform viewpoint

$$
L(\theta)=\exp (\psi(\theta))=\int_{x} \exp \left(\mathbf{x}^{\top} \theta\right) p_{0}(x) d x=E_{p_{0}}\left[\exp \left(\mathbf{x}^{\top} \theta\right)\right]
$$

- Holder's inequality implies: For $1 \leq p, q \leq \infty, 1 / p+1 / q=1$,

$$
E\left[|X|^{p}\right]^{1 / p} E\left[|Y|^{q}\right]^{1 / q} \geq E[|X Y|]
$$

- Hence

$$
\begin{aligned}
& \lambda \psi\left(\theta_{1}\right)+(1-\lambda) \psi\left(\theta_{2}\right) \\
& \quad=\log \left(E_{p_{0}}\left[\exp \left(x^{T} \theta_{1}\right)\right]^{\lambda} E_{p_{0}}\left[\exp \left(x^{T} \theta_{2}\right)\right]^{1-\lambda}\right) \\
& \quad \geq \log \left(E_{p_{0}}\left[\exp \left(x^{T}\left(\lambda \theta_{1}+(1-\lambda) \theta_{2}\right)\right)\right]\right) \\
& \quad=\psi\left(\lambda \theta_{1}+(1-\lambda) \theta_{2}\right)
\end{aligned}
$$

The Cumulant Function

- The Laplace transform viewpoint

$$
L(\theta)=\exp (\psi(\theta))=\int_{x} \exp \left(\mathbf{x}^{\top} \theta\right) p_{0}(x) d x=E_{p_{0}}\left[\exp \left(\mathbf{x}^{\top} \theta\right)\right]
$$

- Holder's inequality implies: For $1 \leq p, q \leq \infty, 1 / p+1 / q=1$,

$$
E\left[|X|^{p}\right]^{1 / p} E\left[|Y|^{q}\right]^{1 / q} \geq E[|X Y|]
$$

- Hence

$$
\begin{aligned}
& \lambda \psi\left(\theta_{1}\right)+(1-\lambda) \psi\left(\theta_{2}\right) \\
& \quad=\log \left(E_{p_{0}}\left[\exp \left(x^{T} \theta_{1}\right)\right]^{\lambda} E_{p_{0}}\left[\exp \left(x^{T} \theta_{2}\right)\right]^{1-\lambda}\right) \\
& \quad \geq \log \left(E_{p_{0}}\left[\exp \left(x^{T}\left(\lambda \theta_{1}+(1-\lambda) \theta_{2}\right)\right)\right]\right) \\
& \quad=\psi\left(\lambda \theta_{1}+(1-\lambda) \theta_{2}\right)
\end{aligned}
$$

- The cumulant $\psi(\theta)$ is a convex function

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x
- Then maximizing log-likelihood is

$$
\phi(s)=\max _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x
- Then maximizing log-likelihood is

$$
\phi(s)=\max _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

- Has a unique maximizer since $\psi(\theta)$ is convex

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x
- Then maximizing log-likelihood is

$$
\phi(s)=\max _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

- Has a unique maximizer since $\psi(\theta)$ is convex
- The conjugate of ψ is

$$
\phi(s)=\sup _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x
- Then maximizing log-likelihood is

$$
\phi(s)=\max _{\theta}\left(s^{\top} \theta-\psi(\theta)\right)
$$

- Has a unique maximizer since $\psi(\theta)$ is convex
- The conjugate of ψ is

$$
\phi(s)=\sup _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

- ϕ is a convex function of s

Maximum Likelihood Estimation, Conjugate

- Let $s=s(x)$ be the sufficient statistic for a set of points x
- Then maximizing log-likelihood is

$$
\phi(s)=\max _{\theta}\left(s^{\top} \theta-\psi(\theta)\right)
$$

- Has a unique maximizer since $\psi(\theta)$ is convex
- The conjugate of ψ is

$$
\phi(s)=\sup _{\theta}\left(s^{T} \theta-\psi(\theta)\right)
$$

- ϕ is a convex function of s
- Technically, ψ, ϕ are "Legendre" functions

Mixtures of Exponential Family Distributions

- A finite mixture model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{\psi}\left(x \mid \theta_{h}\right)
$$

Mixtures of Exponential Family Distributions

- A finite mixture model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{\psi}\left(x \mid \theta_{h}\right)
$$

- ψ determines the family

Mixtures of Exponential Family Distributions

- A finite mixture model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{\psi}\left(x \mid \theta_{h}\right)
$$

- ψ determines the family
- All mixture components are of the same family

Mixtures of Exponential Family Distributions

- A finite mixture model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{\psi}\left(x \mid \theta_{h}\right)
$$

- ψ determines the family
- All mixture components are of the same family
- θ determines the distribution in the family

Mixtures of Exponential Family Distributions

- A finite mixture model

$$
p(x \mid \alpha, \Theta)=\sum_{h=1}^{k} \alpha_{h} p_{\psi}\left(x \mid \theta_{h}\right)
$$

- ψ determines the family
- All mixture components are of the same family
- θ determines the distribution in the family
- Each component has different parameters

Mixtures of Exponential Family Distributions (Contd.)

- E-step: Exactly same as before

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

Mixtures of Exponential Family Distributions (Contd.)

- E-step: Exactly same as before

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

- M-step: Taking gradient w.r.t. θ_{h}

$$
\nabla \psi\left(\theta_{h}\right)=\frac{\sum_{i} x_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}{\sum_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}
$$

Mixtures of Exponential Family Distributions (Contd.)

- E-step: Exactly same as before

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

- M-step: Taking gradient w.r.t. θ_{h}

$$
\nabla \psi\left(\theta_{h}\right)=\frac{\sum_{i} x_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}{\sum_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}
$$

- $\nabla \psi$ is monotonic increasing, inverse is well defined

Mixtures of Exponential Family Distributions (Contd.)

- E-step: Exactly same as before

$$
\alpha_{h}=\frac{1}{N} \sum_{i=1}^{N} p\left(h \mid x_{i}, \theta^{(t-1)}\right)
$$

- M-step: Taking gradient w.r.t. θ_{h}

$$
\nabla \psi\left(\theta_{h}\right)=\frac{\sum_{i} x_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}{\sum_{i} p\left(h \mid x_{i}, \theta^{(t-1)}\right)}
$$

- $\nabla \psi$ is monotonic increasing, inverse is well defined
- Recall the expression for μ_{h} for Gaussian mixtures

Mixture Models as a Bayes Net

