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Incremental EM

Since zi are independent, optimal p̃(Z ) =
∏

i p̃(zi )

Sufficient to work with such p̃ in F (p̃, θ)

Then F (p̃, θ) =
∑

i Fi (p̃i , θ) where

Fi (p̃i , θ) = Ep̃i [log p(xi , zi |θ)] + H(p̃i )

Incremental algorithm that works one point at a time
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Incremental EM (Contd.)

Basic Incremental EM

E-step: Choose a data item i to be updated

Set p̃
(t)
j = p̃

(t−1)
j for j 6= i

Set p̃
(t)
i = p(zi |xi , θ

(t))
M-step: Set θ(t) to argmaxθ Ep̃(t) [log p(x , z |θ)]

M-step needs to look at all components of p̃

Can be simplified by using sufficient statistics

For a distribution p(x |θ), s(x) is a sufficient statistic if

p(x |s(x), θ) = p(x |s(x)) =⇒ p(x |θ) = h(x)q(s(x)|θ)
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Incremental EM with Sufficient Statistics

EM with sufficient statistics

E-step: Set s̃(t) = Ep̃[s(x , z)] where p̃(z) = p(z |x , θ(t−1))
M-step: Set θ(t) to θ, the max likelihood given s̃(t)

Incremental EM with sufficient statistics

E-step: Choose a data item i to be updated

Set s̃
(t)
j = s̃

(t−1)
j , for j 6= i

Set s̃
(t)
i = Ep̃i [si (xi , zi )], where p̃i (zi ) = p(zi |xi , θ

(t−1))

Set s̃(t) = s̃(t−1) − s̃
(t−1)
i + s̃

(t)
i

M-step: Set θ(t) to θ, the max likelihood given s̃(t)
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Example

Consider a mixture of 2 univariate Gaussians

Parameter set θ = (α, µ1, σ1, µ2, σ2)

Sufficient statistics

si (xi , zi ) = [zi (1− zi ) zixi (1− zi )xi zix
2
i (1− zi )x

2
i ]

Given s(x , z) =
∑

i s(xi , zi ) = (n1, n2,m1,m2, q1, q2)

α =
n1

n1 + n2
, µh =

mh

nh
, σ2

h =
qh

nh
−

(
mh

nh

)2
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Sparse EM

Consider a mixture model with many components

Most p(z |x , θ) will be negligibly small

Computation can be saved by freezing these

Only a small set of component posteriors need to be updated

p̃(t)(z) =

{
q

(t)
z , if z 6∈ St

Q(t)r
(t)
z if z ∈ St

St = set of plausible values

Can be determined by a reasonable hueristic
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Other Variants

Generalized EM

M-step finds θ(t) = argmaxθ Ep̃[log p(x , z |θ)]
Instead find θ(t) such that

Ep̃[log p(x , z |θ(t))] ≥ Ep̃[log p(x , z |θ(t−1))]

Hard assignments

Winner-take-all variant of EM
Assign 1 to one component, zero to all others
Hard clustering, equivalent to kmeans
Does not directly optimize L(θ)
But optimizes a lower bound on L(θ)
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Auxiliary Functions

Consider the problem of minimizing F (x)

G (x , x ′) is an auxiliary function to F (x) if

G (x , x ′) ≥ F (x) G (x , x) = F (x)

F is non-decreasing under the following updates

x t = argminx G (x , x (t−1))

By definition

F (x t) ≤ G (x t , x (t−1)) ≤ G (x (t−1), x (t−1)) = F (x (t−1))

The sequence is guaranteed to converge to a local minima

The argument reverses for maximization problems

EM updates are a special case of the general technique
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Mixture of Gaussians

For multi-variate Gaussians, each component

ph(x |µh,Σh) =
1

(2π)d/2|Σh|1/2
exp

(
−1

2
(x − µh)

TΣ−1
h (x − µh)

)

The Mixture of Gaussians (MoG) model

p(x |α,Θ) =
k∑

h=1

αhph(x |µh,Σh)

One of the most widely used mixture models

Recent years have seen progress on non-EM algorithm
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EM for Mixture of Gaussians: E-step

E-step is a direct application of Bayes rule

p(h|x , α,Θ) =
αhph(x |µh,Σh)∑k

h′=1 αh′ph′(x |µh′ ,Σh′)

Use current parameter values on the r.h.s.

Incremental and sparse variants can be applied in practice
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EM for Mixture of Gaussians: M-step

The auxiliary function

Q(θ, θ(t−1)) =
∑

i

∑
h

log(αh)p(h|xi |θ(t−1))

+
∑

i

∑
h

log ph(x |µh,Σh)p(h|xi , θ
(t−1))

Optimize over (αh, µh,Σh), [h]k1
α is a discrete distribution, forms additional constraint

Focus on first term for αh, true for all mixtures

Focus on second term for (µh,Σh)
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EM for Mixture of Gaussians: M-step (Contd.)

For any finite mixture model

αh =
1

N

N∑
i=1

p(h|xi , θ
(t−1))

For Mixture of Gaussians

µh =

∑
i xip(h|xi , θ

(t−1))∑
i p(h|xi , θ(t−1))

Σh =

∑
i p(h|xi , θn)(xi − µh)(xi − µh)

T∑
i p(h|xi , θn)
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Exponential Family Distributions

Multi-variate parametric distributions of the form

pψ(x |θ) = exp(xT θ − ψ(θ))p0(x)

x is the sufficient statistic

θ is the natural parameter

ψ(·) is the cumulant or log-partition function

Expectation parameter

µ = E [X ] = ∇ψ(θ)

Examples: Gaussian, Bernoulli, Poisson, Multinomial, Dirichlet
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The Cumulant Function

The Laplace transform viewpoint

L(θ) = exp(ψ(θ)) =

∫
x
exp(xT θ)p0(x) dx = Ep0 [exp(xT θ)]

Holder’s inequality implies: For 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1,

E [|X |p]1/pE [|Y |q]1/q ≥ E [|XY |]
Hence

λψ(θ1) + (1− λ)ψ(θ2)

= log
(
Ep0 [exp(xT θ1)]

λEp0 [exp(xT θ2)]
1−λ

)
≥ log

(
Ep0 [exp(xT (λθ1 + (1− λ)θ2))]

)
= ψ(λθ1 + (1− λ)θ2)

The cumulant ψ(θ) is a convex function
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Maximum Likelihood Estimation, Conjugate

Let s = s(x) be the sufficient statistic for a set of points x

Then maximizing log-likelihood is

φ(s) = max
θ

(sT θ − ψ(θ))

Has a unique maximizer since ψ(θ) is convex

The conjugate of ψ is

φ(s) = sup
θ

(sT θ − ψ(θ))

φ is a convex function of s

Technically, ψ, φ are “Legendre” functions
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Mixtures of Exponential Family Distributions

A finite mixture model

p(x |α,Θ) =
k∑

h=1

αhpψ(x |θh)

ψ determines the family

All mixture components are of the same family

θ determines the distribution in the family

Each component has different parameters



Variants Auxiliary Functions Mixture of Gaussians Exponential Family Mixtures of Exponential Families Bayes Net

Mixtures of Exponential Family Distributions

A finite mixture model

p(x |α,Θ) =
k∑

h=1

αhpψ(x |θh)

ψ determines the family

All mixture components are of the same family

θ determines the distribution in the family

Each component has different parameters



Variants Auxiliary Functions Mixture of Gaussians Exponential Family Mixtures of Exponential Families Bayes Net

Mixtures of Exponential Family Distributions

A finite mixture model

p(x |α,Θ) =
k∑

h=1

αhpψ(x |θh)

ψ determines the family

All mixture components are of the same family

θ determines the distribution in the family

Each component has different parameters



Variants Auxiliary Functions Mixture of Gaussians Exponential Family Mixtures of Exponential Families Bayes Net

Mixtures of Exponential Family Distributions

A finite mixture model

p(x |α,Θ) =
k∑

h=1

αhpψ(x |θh)

ψ determines the family

All mixture components are of the same family

θ determines the distribution in the family

Each component has different parameters



Variants Auxiliary Functions Mixture of Gaussians Exponential Family Mixtures of Exponential Families Bayes Net

Mixtures of Exponential Family Distributions

A finite mixture model

p(x |α,Θ) =
k∑

h=1

αhpψ(x |θh)

ψ determines the family

All mixture components are of the same family

θ determines the distribution in the family

Each component has different parameters



Variants Auxiliary Functions Mixture of Gaussians Exponential Family Mixtures of Exponential Families Bayes Net

Mixtures of Exponential Family Distributions (Contd.)

E-step: Exactly same as before

αh =
1

N

N∑
i=1

p(h|xi , θ
(t−1))

M-step: Taking gradient w.r.t. θh

∇ψ(θh) =

∑
i xip(h|xi , θ

(t−1))∑
i p(h|xi , θ(t−1))

∇ψ is monotonic increasing, inverse is well defined

Recall the expression for µh for Gaussian mixtures
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Mixture Models as a Bayes Net
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