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Maximum likelihood, parametric model

Supervised parametric learning:

• data: x, y
• model: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w, Mi) ∝
∏

c

exp(− 1
2 (yc − fw(xc))

2/σ2
noise).

Maximize the likelihood:

wML = argmax
w

p(y|x, w, Mi).

Make predictions, by plugging in the ML estimate:

p(y∗|x∗, wML, Mi)
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Bayesian Inference, parametric model

Supervised parametric learning:

• data: x, y
• model: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w, Mi) ∝
∏

c

exp(− 1
2 (yc − fw(xc))

2/σ2
noise).

Parameter prior:
p(w|Mi)

Posterior parameter distribution by Bayes rule p(a|b) = p(b|a)p(a)/p(b):

p(w|x, y, Mi) =
p(w|Mi)p(y|x, w, Mi)

p(y|x, Mi)
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Bayesian Inference, parametric model, cont.

Making predictions:

p(y∗|x∗, x, y, Mi) =

∫
p(y∗|w, x∗, Mi)p(w|x, y, Mi)dw

Marginal likelihood:

p(y|x, Mi) =

∫
p(w|Mi)p(y|x, w, Mi)dw.

Model probability:

p(Mi|x, y) =
p(Mi)p(y|x, Mi)

p(y|x)

Problem: integrals are intractable for most interesting models!
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Bayesian Linear Regression

Bayesian Linear Regression (2)

Likelihood of parameters is:

P(y|X ,w) = N (X>w, σ2I ).

Assume a Gaussian prior over parameters:

P(w) = N (0,Σp).

Apply Bayes’ theorem to obtain posterior:

P(w|y,X ) ∝ P(y|X ,w)P(w).

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression



Bayesian Linear Regression

Bayesian Linear Regression (3)

Posterior distribution over w is:

P(w|y,X ) = N (
1

σ2
A−1Xy,A−1) where A = Σ−1

p +
1

σ2
XX>.

Predictive distribution is:

P(f ?|x?,X , y) =

∫
f (x?|w)P(w|X , y)dw

= N (
1

σ2
x?>A−1Xy, x?>A−1x?).

Hanna M. Wallach hmw26@cam.ac.uk

Introduction to Gaussian Process Regression



Non-parametric Gaussian process models

In our non-parametric model, the “parameters” is the function itself!

Gaussian likelihood:
y|x, f (x), Mi ∼ N(f, σ2

noiseI)

(Zero mean) Gaussian process prior:

f (x)|Mi ∼ GP
(
m(x) ≡ 0, k(x, x ′)

)
Leads to a Gaussian process posterior

f (x)|x, y, Mi ∼ GP
(
mpost(x) = k(x, x)[K(x, x) + σ2

noiseI]
−1y,

kpost(x, x ′) = k(x, x ′) − k(x, x)[K(x, x) + σ2
noiseI]

−1k(x, x ′)
)
.

And a Gaussian predictive distribution:

y∗|x∗, x, y, Mi ∼ N
(
k(x∗, x)>[K + σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K + σ2

noiseI]
−1k(x∗, x)

)
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The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ, Σ) = N(µ, Σ) = (2π)−D/2|Σ|−1/2 exp
(

− 1
2 (x − µ)>Σ−1(x − µ)

)
where µ is the mean vector and Σ the covariance matrix.
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Conditionals and Marginals of a Gaussian

 

 

joint Gaussian
conditional

 

 

joint Gaussian
marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.

Informally: infinitely long vector ' function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. �

A Gaussian distribution is fully specified by a mean vector, µ, and covariance
matrix Σ:

f = (f1, . . . , fn)
> ∼ N(µ, Σ), indexes i = 1, . . . , n

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x, x ′):

f (x) ∼ GP
(
m(x), k(x, x ′)

)
, indexes: x
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. . .

. . . luckily we are saved by the marginalization property:

Recall:

p(x) =

∫
p(x, y)dy.

For Gaussians:

p(x, y) = N
([ a

b

]
,

[ A B
B> C

])
=⇒ p(x) = N(a, A)
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f (x)) ∼ GP
(
m(x) = 0, k(x, x ′) = exp(− 1

2 (x − x ′)2)
)
.

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f (x1), f (x2), . . . , f (xn))

>, for which

f ∼ N(0, Σ),

where Σij = k(xi, xj).

Then plot the coordinates of f as a function of the corresponding x values.
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Some values of the random function
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Prior and Posterior
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Predictive distribution:

p(y∗|x∗, x, y) ∼ N
(
k(x∗, x)>[K + σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K + σ2

noiseI]
−1k(x∗, x)

)
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Graphical model for Gaussian Process
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Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗m, f ∗m, y∗m
does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!
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Some interpretation

Recall our main result:

f∗|X∗, X, y ∼ N
(
K(X∗, X)[K(X, X) + σ2

nI]−1y,

K(X∗, X∗) − K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗)

)
.

The mean is linear in two ways:

µ(x∗) = k(x∗, X)[K(X, X) + σ2
n]

−1y =

n∑
c=1

βcy(c) =

n∑
c=1

αck(x∗, x(c)).

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:

V(x∗) = k(x∗, x∗) − k(x∗, X)[K(X, X) + σ2
nI]−1k(X, x∗),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data X has explained. Note, that the variance is
independent of the observed outputs y.
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The marginal likelihood

Log marginal likelihood:

log p(y|x, Mi) = −
1
2

y>K−1y −
1
2

log |K| −
n
2

log(2π)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.

Learning in Gaussian process models involves finding

• the form of the covariance function, and
• any unknown (hyper-) parameters θ.

This can be done by optimizing the marginal likelihood:

∂ log p(y|x, θ, Mi)

∂θj
=

1
2

y>K−1 ∂K
∂θj

K−1y −
1
2

trace(K−1 ∂K
∂θj

)
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Example: Fitting the length scale parameter

Parameterized covariance function: k(x, x ′) = v2 exp
(

−
(x − x ′)2

2`2

)
+ σ2

nδxx′ .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5
observations
too short
good length scale
too long

The mean posterior predictive function is plotted for 3 different length scales (the
green curve corresponds to optimizing the marginal likelihood). Notice, that an
almost exact fit to the data can be achieved by reducing the length scale – but the
marginal likelihood does not favour this!

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 24 / 55



Why, in principle, does Bayesian Inference work?
Occam’s Razor

too simple

too complex

"just right"

All possible data sets

P
(Y

|M
i)

Y
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An illustrative analogous example

Imagine the simple task of fitting the variance, σ2, of a zero-mean Gaussian to a
set of n scalar observations.

The log likelihood is log p(y|µ, σ2) = − 1
2

∑
(yi − µ)2/σ2− n

2 log(σ2) − n
2 log(2π)
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From random functions to covariance functions

Consider the class of linear functions:

f (x) = ax + b, where a ∼ N(0, α), and b ∼ N(0, β).

We can compute the mean function:

µ(x) = E[f (x)] =

∫∫
f (x)p(a)p(b)dadb =

∫
axp(a)da +

∫
bp(b)db = 0,

and covariance function:

k(x, x ′) = E[(f (x) − 0)(f (x ′) − 0)] =

∫∫
(ax + b)(ax ′ + b)p(a)p(b)dadb

=

∫
a2xx ′p(a)da +

∫
b2p(b)db + (x + x ′)

∫
abp(a)p(b)dadb = αxx ′ + β.
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From random functions to covariance functions II

Consider the class of functions (sums of squared exponentials):

f (x) = lim
n→∞ 1

n

∑
i

γi exp(−(x − i/n)2), where γi ∼ N(0, 1), ∀i

=

∫∞
−∞γ(u) exp(−(x − u)2)du, where γ(u) ∼ N(0, 1), ∀u.

The mean function is:

µ(x) = E[f (x)] =

∫∞
−∞ exp(−(x − u)2)

∫∞
−∞γp(γ)dγdu = 0,

and the covariance function:

E[f (x)f (x ′)] =

∫
exp

(
− (x − u)2 − (x ′ − u)2)du

=

∫
exp

(
− 2(u −

x + x ′

2
)2 +

(x + x ′)2

2
− x2 − x ′2

)
)du ∝ exp

(
−

(x − x ′)2

2

)
.

Thus, the squared exponential covariance function is equivalent to regression
using infinitely many Gaussian shaped basis functions placed everywhere, not just
at your training points!
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Model Selection in Practise; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function.
We use a hierarchical model using hyperparameters. Eg, in ARD:

k(x, x ′) = v2
0 exp

(
−

D∑
d=1

(xd − x ′d)
2

2v2
d

)
, hyperparameters θ = (v0, v1, . . . , vd, σ2

n).
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Binary Gaussian Process Classification
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The class probability is related to the latent function, f , through:

p(y = 1|f (x)) = π(x) = Φ
(
f (x)

)
,

where Φ is a sigmoid function, such as the logistic or cumulative Gaussian.
Observations are independent given f , so the likelihood is

p(y|f) =

n∏
i=1

p(yi|fi) =

n∏
i=1

Φ(yifi).
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Prior and Posterior for Classification

We use a Gaussian process prior for the latent function:

f|X, θ ∼ N(0, K)

The posterior becomes:

p(f|D, θ) =
p(y|f) p(f|X, θ)

p(D|θ)
=

N(f|0, K)

p(D|θ)

m∏
i=1

Φ(yifi),

which is non-Gaussian.

The latent value at the test point, f (x∗) is

p(f∗|D, θ, x∗) =

∫
p(f∗|f, X, θ, x∗)p(f|D, θ)df,

and the predictive class probability becomes

p(y∗|D, θ, x∗) =

∫
p(y∗|f∗)p(f∗|D, θ, x∗)df∗,

both of which are intractable to compute.
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Gaussian Approximation to the Posterior

We approximate the non-Gaussian posterior by a Gaussian:

p(f|D, θ) ' q(f|D, θ) = N(m, A)

then q(f∗|D, θ, x∗) = N(f∗|µ∗, σ2
∗), where

µ∗ = k>∗ K−1m

σ2
∗ = k(x∗, x∗)−k>∗ (K−1 − K−1AK−1)k∗.

Using this approximation with the cumulative Gaussian likelihood

q(y∗ = 1|D, θ, x∗) =

∫
Φ(f∗) N(f∗|µ∗, σ2

∗)df∗ = Φ
( µ∗√

1 + σ2
∗

)

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 42 / 55



Laplace’s method and Expectation Propagation

How do we find a good Gaussian approximation N(m, A) to the posterior?

Laplace’s method: Find the Maximum A Posteriori (MAP) lantent values fMAP,
and use a local expansion (Gaussian) around this point as suggested by Williams
and Barber [10].

Variational bounds: bound the likelihood by some tractable expression
A local variational bound for each likelihood term was given by Gibbs and
MacKay [1]. A lower bound based on Jensen’s inequality by Opper and Seeger
[7].

Expectation Propagation: use an approximation of the likelihood, such that the
moments of the marginals of the approximate posterior match the (approximate)
moment of the posterior, Minka [6].

Laplace’s method and EP were compared by Kuss and Rasmussen [3].
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Conclusions

Complex non-linear inference problems can be solved by manipulating plain old
Gaussian distributions

• Bayesian inference is tractable for GP regression and
• Approximations exist for classification
• predictions are probabilistic
• compare different models (via the marginal likelihood)

GPs are a simple and intuitive means of specifying prior information, and
explaining data, and equivalent to other models: RVM’s, splines, closely related
to SVMs.

Outlook:

• new interesting covariance functions
• application to structured data
• better understanding of sparse methods
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