CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

Instructor: Arindam Banerjee

November 15, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Outline

• Outline

• Parametric Bayesian Regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

• Parametric Bayesian Regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Parameters to Functions

Outline

• Parametric Bayesian Regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Parameters to Functions
- GP Regression

Outline

• Parametric Bayesian Regression

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Parameters to Functions
- GP Regression
- GP Classification

Outline

• Parametric Bayesian Regression

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Parameters to Functions
- GP Regression
- GP Classification
- We will use

Outline

- Parametric Bayesian Regression
- Parameters to Functions
- GP Regression
- GP Classification
- We will use
 - Primary: Carl Rasmussen's GP tutorial slides (NIPS'06)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

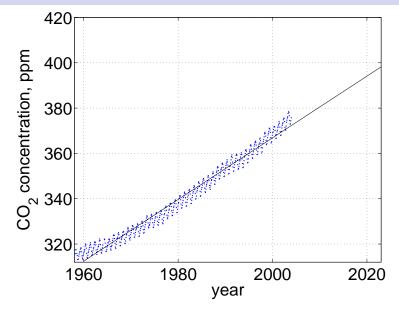
Outline

- Parametric Bayesian Regression
- Parameters to Functions
- GP Regression
- GP Classification
- We will use
 - Primary: Carl Rasmussen's GP tutorial slides (NIPS'06)

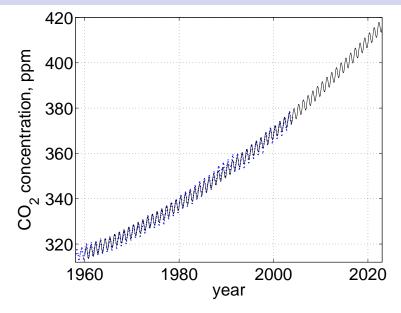
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Secondary: Hanna Wallach's slides on regression

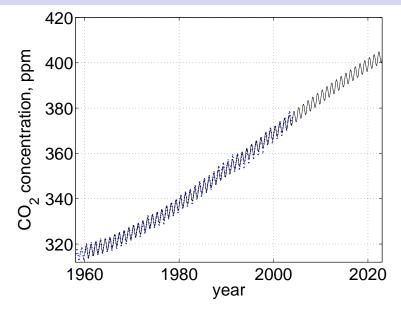
The Prediction Problem



The Prediction Problem



The Prediction Problem



Maximum likelihood, parametric model

Supervised parametric learning:

- data: x, y
- model: $y = f_w(x) + \varepsilon$

Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M_i) \propto \prod_c \exp(-\frac{1}{2}(y_c - f_{\mathbf{w}}(\mathbf{x}_c))^2 / \sigma_{\text{noise}}^2).$$

Maximize the likelihood:

$$\mathbf{w}_{\mathrm{ML}} = \operatorname*{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M_i).$$

Make predictions, by plugging in the ML estimate:

 $p(y^*|x^*, \mathbf{w}_{\mathrm{ML}}, M_i)$

Rasmussen (MPI for Biological Cybernetics)

Bayesian Inference, parametric model

Supervised parametric learning:

- data: x, y
- model: $y = f_{\mathbf{w}}(x) + \varepsilon$

Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M_i) \propto \prod_c \exp(-\frac{1}{2}(y_c - f_{\mathbf{w}}(\mathbf{x}_c))^2 / \sigma_{\text{noise}}^2)$$

Parameter prior:

 $p(\mathbf{w}|M_i)$

Posterior parameter distribution by Bayes rule p(a|b) = p(b|a)p(a)/p(b):

$$p(\mathbf{w}|\mathbf{x}, \mathbf{y}, M_i) = \frac{p(\mathbf{w}|M_i)p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M_i)}{p(\mathbf{y}|\mathbf{x}, M_i)}$$

Bayesian Inference, parametric model, cont.

Making predictions:

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{x}, \mathbf{y}, M_i) = \int p(\mathbf{y}^*|\mathbf{w}, \mathbf{x}^*, M_i) p(\mathbf{w}|\mathbf{x}, \mathbf{y}, M_i) d\mathbf{w}$$

Marginal likelihood:

$$p(\mathbf{y}|\mathbf{x}, M_i) = \int p(\mathbf{w}|M_i) p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M_i) d\mathbf{w}.$$

Model probability:

$$p(M_i | \mathbf{x}, \mathbf{y}) = \frac{p(M_i) p(\mathbf{y} | \mathbf{x}, M_i)}{p(\mathbf{y} | \mathbf{x})}$$

Problem: integrals are intractable for most interesting models!

Bayesian Linear Regression (2)

• Likelihood of parameters is:

$$P(\mathbf{y}|X,\mathbf{w}) = \mathcal{N}(X^{\top}\mathbf{w},\sigma^2 I).$$

• Assume a Gaussian prior over parameters:

$$P(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \Sigma_p).$$

• Apply Bayes' theorem to obtain posterior:

$$P(\mathbf{w}|\mathbf{y}, X) \propto P(\mathbf{y}|X, \mathbf{w})P(\mathbf{w}).$$

Hanna M. Wallach

Introduction to Gaussian Process Regression

Bayesian Linear Regression (3)

• Posterior distribution over **w** is:

$$P(\mathbf{w}|\mathbf{y}, X) = \mathcal{N}(\frac{1}{\sigma^2}A^{-1}X\mathbf{y}, A^{-1}) \text{ where } A = \Sigma_p^{-1} + \frac{1}{\sigma^2}XX^{\top}.$$

• Predictive distribution is:

$$P(f^{\star}|\mathbf{x}^{\star}, X, \mathbf{y}) = \int f(\mathbf{x}^{\star}|\mathbf{w}) P(\mathbf{w}|X, \mathbf{y}) d\mathbf{w}$$
$$= \mathcal{N}(\frac{1}{\sigma^2} \mathbf{x}^{\star \top} A^{-1} X \mathbf{y}, \mathbf{x}^{\star \top} A^{-1} \mathbf{x}^{\star}).$$

Hanna M. Wallach Introduction to Gaussian Process Regression

Non-parametric Gaussian process models

In our non-parametric model, the "parameters" is the function itself!

Gaussian likelihood:

 $\mathbf{y}|\mathbf{x}, f(\mathbf{x}), M_i \sim \mathcal{N}(\mathbf{f}, \sigma_{\text{noise}}^2 I)$

(Zero mean) Gaussian process prior:

 $f(x)|M_i \sim \Im \mathcal{P}(m(x) \equiv 0, \ k(x, x'))$

Leads to a Gaussian process posterior

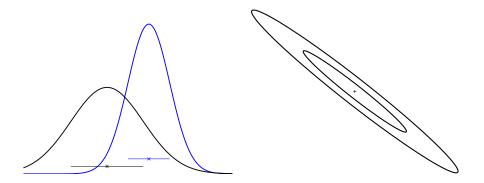
$$f(\mathbf{x})|\mathbf{x}, \mathbf{y}, M_i \sim \mathcal{GP}(m_{\text{post}}(\mathbf{x}) = k(\mathbf{x}, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}\mathbf{y},$$

$$k_{\text{post}}(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - k(\mathbf{x}, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}k(\mathbf{x}, \mathbf{x}')).$$

And a Gaussian predictive distribution:

$$y^* | x^*, \mathbf{x}, \mathbf{y}, M_i \sim \mathcal{N} \left(\mathbf{k}(x^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{y}, \\ k(x^*, x^*) + \sigma_{\text{noise}}^2 - \mathbf{k}(x^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{k}(x^*, \mathbf{x}) \right)$$

The Gaussian Distribution



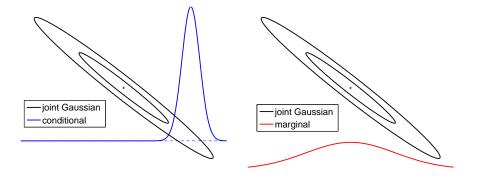
The Gaussian distribution is given by

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) \;=\; \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \;=\; (2\pi)^{-D/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where μ is the mean vector and Σ the covariance matrix.

Rasmussen (MPI for Biological Cybernetics)

Conditionals and Marginals of a Gaussian



Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

What is a Gaussian Process?

A *Gaussian process* is a generalization of a multivariate Gaussian distribution to infinitely many variables.

Informally: infinitely long vector \simeq function

Definition: *a Gaussian process is a collection of random variables, any finite number of which have (consistent) Gaussian distributions.*

A Gaussian distribution is fully specified by a mean vector, μ , and covariance matrix Σ :

$$\mathbf{f} = (f_1, \dots, f_n)^\top \sim \mathcal{N}(\mu, \Sigma), \text{ indexes } i = 1, \dots, n$$

A Gaussian process is fully specified by a mean function m(x) and covariance function k(x, x'):

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$
, indexes: x

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector and an infinite by infinite covariance matrix may seem impractical...

... luckily we are saved by the *marginalization property*:

Recall:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$

For Gaussians:

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix}\right) \implies p(\mathbf{x}) = \mathcal{N}(\mathbf{a}, A)$$

Example one dimensional Gaussian process:

$$p(f(x)) \sim \mathcal{GP}(m(x) = 0, k(x, x') = \exp(-\frac{1}{2}(x - x')^2)).$$

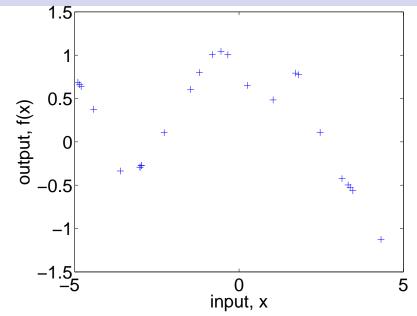
To get an indication of what this distribution over functions looks like, focus on a finite subset of function values $\mathbf{f} = (f(x_1), f(x_2), \dots, f(x_n))^\top$, for which

$$\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$$
 ,

where $\Sigma_{ij} = k(x_i, x_j)$.

Then plot the coordinates of f as a function of the corresponding x values.

Some values of the random function



Non-parametric Gaussian process models

In our non-parametric model, the "parameters" is the function itself!

Gaussian likelihood:

 $\mathbf{y}|\mathbf{x}, f(\mathbf{x}), M_i \sim \mathcal{N}(\mathbf{f}, \sigma_{\text{noise}}^2 I)$

(Zero mean) Gaussian process prior:

 $f(x)|M_i \sim \Im \mathcal{P}(m(x) \equiv 0, \ k(x, x'))$

Leads to a Gaussian process posterior

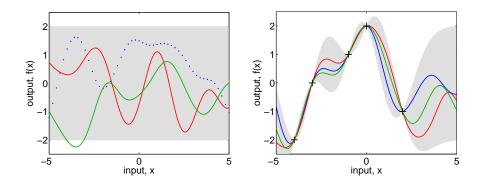
$$f(\mathbf{x})|\mathbf{x}, \mathbf{y}, M_i \sim \mathcal{GP}(m_{\text{post}}(\mathbf{x}) = k(\mathbf{x}, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}\mathbf{y},$$

$$k_{\text{post}}(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - k(\mathbf{x}, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}k(\mathbf{x}, \mathbf{x}')).$$

And a Gaussian predictive distribution:

$$y^* | x^*, \mathbf{x}, \mathbf{y}, M_i \sim \mathcal{N} \left(\mathbf{k}(x^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{y}, \\ k(x^*, x^*) + \sigma_{\text{noise}}^2 - \mathbf{k}(x^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{k}(x^*, \mathbf{x}) \right)$$

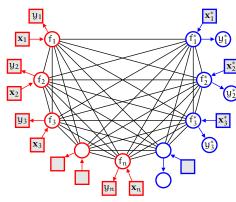
Prior and Posterior



Predictive distribution:

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{x}, \mathbf{y}) \sim \mathcal{N} \big(\mathbf{k}(\mathbf{x}^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{y}, \\ k(\mathbf{x}^*, \mathbf{x}^*) + \sigma_{\text{noise}}^2 - \mathbf{k}(\mathbf{x}^*, \mathbf{x})^\top [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{k}(\mathbf{x}^*, \mathbf{x}) \big)$$

Graphical model for Gaussian Process



Square nodes are observed (clamped), round nodes stochastic (free).

All pairs of latent variables are con x_2 nected.

^(b) Predictions y^* depend only on the corresponding single latent f^* .

Notice, that adding a triplet x_m^*, f_m^*, y_m^* does not influence the distribution. This is guaranteed by the marginalization property of the GP.

This explains why we can make inference using a finite amount of computation!

Some interpretation

Recall our main result:

$$\begin{split} \mathbf{f}_* | X_*, X, \mathbf{y} &\sim \mathcal{N} \big(K(X_*, X) [K(X, X) + \sigma_n^2 I]^{-1} \mathbf{y}, \\ & K(X_*, X_*) - K(X_*, X) [K(X, X) + \sigma_n^2 I]^{-1} K(X, X_*) \big). \end{split}$$

The mean is linear in two ways:

$$\mu(\mathbf{x}_{*}) = k(\mathbf{x}_{*}, X)[K(X, X) + \sigma_{n}^{2}]^{-1}\mathbf{y} = \sum_{c=1}^{n} \beta_{c} \mathbf{y}^{(c)} = \sum_{c=1}^{n} \alpha_{c} k(\mathbf{x}_{*}, \mathbf{x}^{(c)}).$$

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:

$$V(\mathbf{x}_{*}) = k(\mathbf{x}_{*}, \mathbf{x}_{*}) - \mathbf{k}(\mathbf{x}_{*}, X)[K(X, X) + \sigma_{n}^{2}I]^{-1}\mathbf{k}(X, \mathbf{x}_{*}),$$

the first term is the *prior variance*, from which we subtract a (positive) term, telling how much the data X has explained. Note, that the variance is independent of the observed outputs y.

Rasmussen (MPI for Biological Cybernetics)

The marginal likelihood

Log marginal likelihood:

$$\log p(\mathbf{y}|\mathbf{x}, M_i) = -\frac{1}{2}\mathbf{y}^{\top} K^{-1} \mathbf{y} - \frac{1}{2} \log |K| - \frac{n}{2} \log(2\pi)$$

is the combination of a data fit term and complexity penalty. Occam's Razor is automatic.

Learning in Gaussian process models involves finding

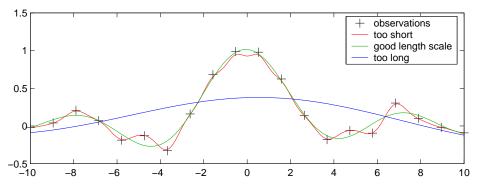
- the form of the covariance function, and
- any unknown (hyper-) parameters θ.

This can be done by optimizing the marginal likelihood:

$$\frac{\partial \log p(\mathbf{y}|\mathbf{x}, \theta, M_i)}{\partial \theta_i} = \frac{1}{2} \mathbf{y}^\top K^{-1} \frac{\partial K}{\partial \theta_i} K^{-1} \mathbf{y} - \frac{1}{2} \operatorname{trace}(K^{-1} \frac{\partial K}{\partial \theta_i})$$

Example: Fitting the length scale parameter

Parameterized covariance function: $k(x, x') = v^2 \exp\left(-\frac{(x-x')^2}{2\ell^2}\right) + \sigma_n^2 \delta_{xx'}$.

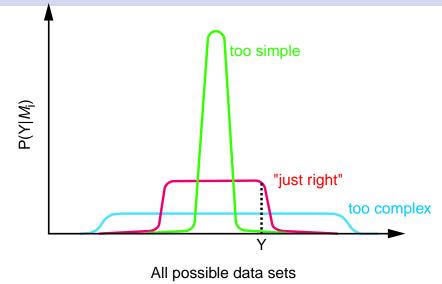


The mean posterior predictive function is plotted for 3 different length scales (the green curve corresponds to optimizing the marginal likelihood). Notice, that an almost exact fit to the data can be achieved by reducing the length scale – but the marginal likelihood does not favour this!

Rasmussen (MPI for Biological Cybernetics)

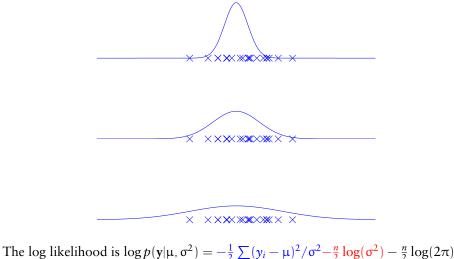
Advances in Gaussian Processes

Why, in principle, does Bayesian Inference work? Occam's Razor



An illustrative analogous example

Imagine the simple task of fitting the variance, σ^2 , of a zero-mean Gaussian to a set of *n* scalar observations.



From random functions to covariance functions

Consider the class of linear functions:

$$f(x) = ax + b$$
, where $a \sim \mathcal{N}(0, \alpha)$, and $b \sim \mathcal{N}(0, \beta)$.

We can compute the mean function:

$$\mu(x) = E[f(x)] = \iint f(x)p(a)p(b)dadb = \int axp(a)da + \int bp(b)db = 0,$$

and covariance function:

$$\begin{aligned} k(x,x') &= E[(f(x) - 0)(f(x') - 0)] &= \iint (ax + b)(ax' + b)p(a)p(b)dadb \\ &= \int a^2 x x' p(a) da + \int b^2 p(b) db + (x + x') \int abp(a)p(b) dadb = \alpha x x' + \beta \end{aligned}$$

From random functions to covariance functions II

Consider the class of functions (sums of squared exponentials):

$$f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{i} \gamma_{i} \exp(-(x - i/n)^{2}), \text{ where } \gamma_{i} \sim \mathcal{N}(0, 1), \forall i$$
$$= \int_{-\infty}^{\infty} \gamma(u) \exp(-(x - u)^{2}) du, \text{ where } \gamma(u) \sim \mathcal{N}(0, 1), \forall u.$$

The mean function is:

$$\mu(x) = E[f(x)] = \int_{-\infty}^{\infty} \exp(-(x-u)^2) \int_{-\infty}^{\infty} \gamma p(\gamma) d\gamma du = 0,$$

and the covariance function:

$$E[f(x)f(x')] = \int \exp\left(-(x-u)^2 - (x'-u)^2\right) du$$

= $\int \exp\left(-2(u-\frac{x+x'}{2})^2 + \frac{(x+x')^2}{2} - x^2 - x'^2\right) du \propto \exp\left(-\frac{(x-x')^2}{2}\right).$

Thus, the squared exponential covariance function is equivalent to regression using infinitely many Gaussian shaped basis functions placed everywhere, not just at your training points!

Rasmussen (MPI for Biological Cybernetics)

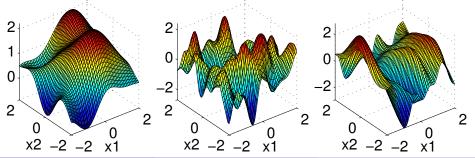
Model Selection in Practise; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function. We use a hierarchical model using hyperparameters. Eg, in ARD:

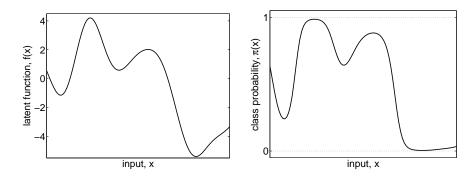
$$k(\mathbf{x}, \mathbf{x}') = v_0^2 \exp\left(-\sum_{d=1}^{D} \frac{(x_d - x'_d)^2}{2v_d^2}\right), \quad \text{hyperparameters } \theta = (v_0, v_1, \dots, v_d, \sigma_n^2).$$

v1=v2=1 v1=v2=0.32 v1=0.32 and v2=1



Rasmussen (MPI for Biological Cybernetics)

Binary Gaussian Process Classification



The class probability is related to the *latent* function, *f*, through:

$$p(\mathbf{y} = 1|f(\mathbf{x})) = \pi(\mathbf{x}) = \Phi(f(\mathbf{x})),$$

where Φ is a sigmoid function, such as the logistic or cumulative Gaussian. Observations are independent given f, so the likelihood is

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{n} p(y_i|f_i) = \prod_{i=1}^{n} \Phi(y_if_i).$$

Prior and Posterior for Classification

We use a Gaussian process prior for the latent function:

 $\mathbf{f}|X, \mathbf{\theta} \sim \mathcal{N}(\mathbf{0}, K)$

The posterior becomes:

$$p(\mathbf{f}|\mathcal{D}, \theta) = \frac{p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|\mathbf{X}, \theta)}{p(\mathcal{D}|\theta)} = \frac{\mathcal{N}(\mathbf{f}|\mathbf{0}, K)}{p(\mathcal{D}|\theta)} \prod_{i=1}^{m} \Phi(\mathbf{y}_{i}f_{i}),$$

which is non-Gaussian.

The latent value at the test point, $f(\mathbf{x}^*)$ is

$$p(f_*|\mathcal{D}, \boldsymbol{\theta}, \mathbf{x}_*) = \int p(f_*|\mathbf{f}, X, \boldsymbol{\theta}, \mathbf{x}_*) p(\mathbf{f}|\mathcal{D}, \boldsymbol{\theta}) d\mathbf{f},$$

and the predictive class probability becomes

$$p(\mathbf{y}_*|\mathcal{D}, \mathbf{\theta}, \mathbf{x}_*) = \int p(\mathbf{y}_*|f_*) p(f_*|\mathcal{D}, \mathbf{\theta}, \mathbf{x}_*) df_*,$$

both of which are intractable to compute.

Rasmussen (MPI for Biological Cybernetics)

Gaussian Approximation to the Posterior

We approximate the non-Gaussian posterior by a Gaussian:

$$p(\mathbf{f}|\mathcal{D}, \mathbf{\theta}) \simeq q(\mathbf{f}|\mathcal{D}, \mathbf{\theta}) = \mathcal{N}(\mathbf{m}, A)$$

then $q(f_*|\mathcal{D}, \theta, \mathbf{x}_*) = \mathcal{N}(f_*|\mu_*, \sigma_*^2)$, where

$$\mu_* = \mathbf{k}_*^\top K^{-1} \mathbf{m} \sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^\top (K^{-1} - K^{-1} A K^{-1}) \mathbf{k}_*.$$

Using this approximation with the cumulative Gaussian likelihood

$$q(\mathbf{y}_{*} = 1 | \mathcal{D}, \boldsymbol{\theta}, \mathbf{x}_{*}) = \int \Phi(f_{*}) \,\mathcal{N}(f_{*} | \boldsymbol{\mu}_{*}, \sigma_{*}^{2}) df_{*} = \Phi\left(\frac{\boldsymbol{\mu}_{*}}{\sqrt{1 + \sigma_{*}^{2}}}\right)$$

Laplace's method and Expectation Propagation

How do we find a good Gaussian approximation $\mathcal{N}(\mathbf{m}, A)$ to the posterior?

Laplace's method: Find the Maximum A Posteriori (MAP) lantent values f_{MAP} , and use a local expansion (Gaussian) around this point as suggested by Williams and Barber [10].

Variational bounds: bound the likelihood by some tractable expression A local variational bound for each likelihood term was given by Gibbs and MacKay [1]. A lower bound based on Jensen's inequality by Opper and Seeger [7].

Expectation Propagation: use an approximation of the likelihood, such that the moments of the marginals of the approximate posterior match the (approximate) moment of the posterior, Minka [6].

Laplace's method and EP were compared by Kuss and Rasmussen [3].

Conclusions

Complex non-linear inference problems can be solved by manipulating plain old Gaussian distributions

- Bayesian inference is tractable for GP regression and
- Approximations exist for classification
- predictions are probabilistic
- compare different models (via the marginal likelihood)

GPs are a simple and intuitive means of specifying prior information, and explaining data, and equivalent to other models: RVM's, splines, closely related to SVMs.

Outlook:

- new interesting covariance functions
- application to structured data
- better understanding of sparse methods