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Finite Mixture Models

Prior of cluster assignment is independent

P(c|θ) =
N∏

i=1

p(xi |θ) =
N∏

i=1

θci

The mixture model is given by

P(X |θ) =
N∏

i=1

K∑
k=1

p(xi |ci = k)θk

Define a (symmetric) Dirichlet prior over θ

D
( α

K
, · · · ,

α

K

)
=

Γ( α
K )K

Γ(α)

The prior model

θ|α ∼ Dirichlet
( α

K
, · · · ,

α

K

)
ci |θ ∼ Discrete(θ)
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Finite Mixture Models (Contd.)

The marginal probability of assignment vector c

P(c) =

∫
∆K

N∏
i=1

P(ci |θ)p(θ)dθ

=

∏K
k=1 Γ(mk + α

K )

Γ( α
K )K

Γ(α)

Γ(N + α)

Note that mk =
∑N

i=1 δ(ci = k)

Individual assignments are exchangeable, not independent

Distribution is over a partitioning

Have to assume K to be the maximum number of partitions
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Infinite Mixture Models

Assume infinitely many classes

P(X |θ) =
N∏

i=1

∞∑
k=1

p(xi |ci = k)θk

One approach is to use a Dirichlet Process to get P(c)

Alternatively, one can compute limK→∞ P(c)

Let K+ be the number of classes with mk > 0, K = K+ + K0

Using Γ(x) = (x − 1)Γ(x − 1), we have

P(c) =
( α

K

)K+

K+∏
k=1

mk−1∏
j=1

(
j +

α

K

) Γ(α)

Γ(N + α)
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Infinite Mixture Models (Contd.)

As K →∞, P(c) → 0 for any particular c

However, K+ ≤ N, hence finitely many equivalence classes

Assignments {1, 1, 2} and {2, 2, 1} are equivalent
Induce the same partitioning, the label values do not matter
Denote the partitioning induced by c as [c]

With K = K+ + K0 classes, [c] has K !/K0! assignment vectors

The probability of each assignment vector is the same, so

P([c]) =
K !

K0!

( α

K

)K+

K+∏
k=1

mk−1∏
j=1

(
j +

α

K

) Γ(α)

Γ(N + α)

Taking limits as K →∞, we have

lim
K→∞

P([c]) = αK+

(∏
k=1

(mk − 1)!

)
Γ(α)

Γ(N + α)
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Chinese Restaurant Process

CRP gives a prior over partitions

P(ci = k|c1, . . . , ci−1) =

{
mk

i−1+α k ≤ K+

α
i−1+α otherwise

With N objects, the probability of a particular partition [c] is

αK+

(∏
k=1

(mk − 1)!

)
Γ(α)

Γ(N + α)

Intuitive means of specifying a prior for infinite mixture models

Sequential process to generate exchangeable class assignments
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Latent Feature Models
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Latent Feature Models (Contd.)

A latent feature has two components

A distribution P(F ) over features
A distribution P(X |F ) relating observations and features

Consider F = Z ⊗ V with P(F ) = P(Z )P(V ) where

Z is a binary matrix, indicating which features are on
V is a matrix containing feature values

Z determines the effective dimensionality of the model
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Finite Feature Models

Consider N objects and K features, Z is N × K

An object contains feature k with Bernoulli probability πk

The probability of a binary matrix Z

P(Z |π) =
K∏

k=1

N∏
i=1

p(zik |πk) =
K∏

k=1

πmk
k (1− πk)N−mk

Define a Beta prior B(r , s) over πk

p(πk) =
Γ(r + s)

Γ(r)Γ(s)
πr−1

k (1− πk)s−1

With r = α/K , s = 1, we have p(πk) = α/Kπ
α/K−1
k

Generative model

πk |α ∼ Beta(α/K , 1)

zik |πk ∼ Bernoulli(πk)
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Finite Feature Models (Contd.)

The marginal distribution of Z

P(Z ) =
K∏

k=1

∫ ( N∏
i=1

P(zik |πk)

)
p(πk)dπk

=
K∏

k=1

α

K

Γ(mk + α
K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

The expected number of non-zeroes is bounded for any K

Since each column is independent

E [1TZ1] = KE [1T zk ] = K
N∑

i=1

E (zik) = KN
α/K

1 + α/K
≤ Nα
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Equivalence Classes (Contd.)

Left-ordering defines an equivalence class [Z ]

Two matrices are equivalent if lof (Z ) = lof (Y )
Inference w.r.t. lof is appropriate for models unaffected by
feature ordering
All linear models belong to this category

How to compute cardinality of [Z ]

History h is the decimal equivalent of the column zk

Kh denote the number of features having history h
K0 denote the number of features having mk = 0

Then, K+ =
∑

+h = 12N−1Kh and K = K+ + K0

Then, the cardinality of [Z ] is(
K

K0 · · · K2N−1

)
=

K !∏2N−1
h=0 Kh!
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Infinite Feature Models

The marginal probability of an equivalence class

P([Z ]) =
K !∏2N−1

h=0 Kh!

K∏
k=1

α

K

Γ(mk + α
K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

Taking K →∞, with HN =
∑N

j=1 1/j , we get

lim
K→∞

P([Z ]) =
αK+∏2N−1

h=1 Kh!
exp(−αHN)

K+∏
k=1

(N −mk)!(mk − 1)!

N!

Exchangeable distribution, only depending on mk and Kh

The probability does not change by re-ordering objects
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Indian Buffet Process

Consider Indian restaurant with infinite dishes

Each customer chooses dishes following a sequential process

The generative process

First customer takes the first Poisson(α) dishes
The i thcustomer moves along the buffet

Let mk be the number of previous customers who tried disk k
Samples popular dishes with probability mk

i

Samples Poisson(α
i
) new dishes

The process generates a binary matrix sequentially

The lof equivalence class has the distribution P([Z ])
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Indian Buffet Process (Contd.)
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Inference by Gibbs Sampling

For a finite latent feature model, the full conditional

P(zik = 1|Z−(i ,k),X ) ∝ P(zik = 1|Z−(i ,k))P(X |Z )

For the Beta-Bernoulli model

P(zik = 1|z−i ,k) =

∫ 1

0
P(zik |πk)P(πk |z−i ,k)dπk =

m−i ,k + α/K

N + α/K

Only depends on the assignments for feature k, since columns
are independent

For the infinite case, for mk > 0

P(zik = 1|z−i ,k) =
m−i ,k

N

New features should be drawn from Poisson( α
N )
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Finite Linear Gaussian Model

Observation xi ∈ Rd is generated from a latent model

Gaussian distribution with mean ziA and covariance ΣX = σ2
X I

zi is a 1× K binary vector, A is K × D matrix

In matrix notation E [X ] = ZA, so that

P(X |Z ,A, σX ) =
1

(2πσ2
X )ND/2

exp

{
− 1

2σ2
x

tr((X − ZA)T (X − ZA))

}

Bayesian model with Gaussian prior over A

P(A|σA) =
1

(2πσ2
A)KD/2

exp

{
− 1

σ2
A

tr(ATA)

}

The model remains well defined when K →∞
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