CSci 8980: Advanced Topics in Graphical Models Infinite Mixture Models, Indian Buffet Process

Instructor: Arindam Banerjee

October 30, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite Mixture Models

• Prior of cluster assignment is independent

$$P(\mathbf{c}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i}$$

Indian Buffet Process

Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Mixture Models

• Prior of cluster assignment is independent

$$P(\mathbf{c}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i}$$

• The mixture model is given by

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_i|c_i = k)\theta_k$$

Indian Buffet Process

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite Mixture Models

• Prior of cluster assignment is independent

$$P(\mathbf{c}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i}$$

• The mixture model is given by

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_i|c_i = k)\theta_k$$

• Define a (symmetric) Dirichlet prior over $\boldsymbol{\theta}$

$$D\left(\frac{\alpha}{K},\cdots,\frac{\alpha}{K}\right) = \frac{\Gamma(\frac{\alpha}{K})^{K}}{\Gamma(\alpha)}$$

Finite Mixture Models

• Prior of cluster assignment is independent

$$P(\mathbf{c}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i}$$

• The mixture model is given by

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_i|c_i = k)\theta_k$$

• Define a (symmetric) Dirichlet prior over θ

$$D\left(\frac{\alpha}{K},\cdots,\frac{\alpha}{K}\right) = \frac{\Gamma(\frac{\alpha}{K})^{K}}{\Gamma(\alpha)}$$

• The prior model

$$\theta | \alpha \sim \text{Dirichlet}\left(\frac{\alpha}{K}, \cdots, \frac{\alpha}{K}\right)$$

 $c_i | \theta \sim \text{Discrete}(\theta)$

Finite Mixture Models (Contd.)

 $\bullet\,$ The marginal probability of assignment vector ${\bf c}\,$

$$P(\mathbf{c}) = \int_{\Delta_{K}} \prod_{i=1}^{N} P(c_{i}|\theta) p(\theta) d\theta$$
$$= \frac{\prod_{k=1}^{K} \Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Mixture Models (Contd.)

• The marginal probability of assignment vector **c**

$$P(\mathbf{c}) = \int_{\Delta_{K}} \prod_{i=1}^{N} P(c_{i}|\theta) p(\theta) d\theta$$
$$= \frac{\prod_{k=1}^{K} \Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

• Note that $m_k = \sum_{i=1}^N \delta(c_i = k)$

Finite Mixture Models (Contd.)

 ${\ensuremath{\,\circ\,}}$ The marginal probability of assignment vector ${\ensuremath{\,c\,}}$

$$P(\mathbf{c}) = \int_{\Delta_{K}} \prod_{i=1}^{N} P(c_{i}|\theta) p(\theta) d\theta$$
$$= \frac{\prod_{k=1}^{K} \Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

- Note that $m_k = \sum_{i=1}^N \delta(c_i = k)$
- Individual assignments are exchangeable, not independent

Finite Mixture Models (Contd.)

 ${\ensuremath{\,\circ\,}}$ The marginal probability of assignment vector ${\ensuremath{\,c\,}}$

$$P(\mathbf{c}) = \int_{\Delta_{K}} \prod_{i=1}^{N} P(c_{i}|\theta) p(\theta) d\theta$$
$$= \frac{\prod_{k=1}^{K} \Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

- Note that $m_k = \sum_{i=1}^N \delta(c_i = k)$
- Individual assignments are exchangeable, not independent
- Distribution is over a partitioning

Finite Mixture Models (Contd.)

 ${\ensuremath{\,\circ\,}}$ The marginal probability of assignment vector ${\ensuremath{\,c\,}}$

$$P(\mathbf{c}) = \int_{\Delta_{K}} \prod_{i=1}^{N} P(c_{i}|\theta) p(\theta) d\theta$$
$$= \frac{\prod_{k=1}^{K} \Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

- Note that $m_k = \sum_{i=1}^N \delta(c_i = k)$
- Individual assignments are exchangeable, not independent
- Distribution is over a partitioning
- Have to assume K to be the maximum number of partitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Infinite Mixture Models

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Infinite Mixture Models

• Assume infinitely many classes

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k$$

• One approach is to use a Dirichlet Process to get $P(\mathbf{c})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Infinite Mixture Models

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k$$

- One approach is to use a Dirichlet Process to get $P(\mathbf{c})$
- Alternatively, one can compute $\lim_{K\to\infty} P(\mathbf{c})$

Infinite Mixture Models

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k$$

- One approach is to use a Dirichlet Process to get $P(\mathbf{c})$
- Alternatively, one can compute $\lim_{K\to\infty} P(\mathbf{c})$
- Let K_+ be the number of classes with $m_k > 0$, $K = K_+ + K_0$

Infinite Mixture Models

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k$$

- One approach is to use a Dirichlet Process to get $P(\mathbf{c})$
- Alternatively, one can compute $\lim_{K\to\infty} P(\mathbf{c})$
- Let K_+ be the number of classes with $m_k > 0$, $K = K_+ + K_0$
- Using $\Gamma(x) = (x-1)\Gamma(x-1)$, we have

$$P(\mathbf{c}) = \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K^+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right)\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Infinite Mixture Models (Contd.)

• As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - Denote the partitioning induced by **c** as **[c]**

Infinite Mixture Models (Contd.)

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - Denote the partitioning induced by **c** as **[c]**

• With $K = K_+ + K_0$ classes, [c] has $K!/K_0!$ assignment vectors

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - \bullet Denote the partitioning induced by c as [c]
- With $K = K_+ + K_0$ classes, [c] has $K!/K_0!$ assignment vectors
- The probability of each assignment vector is the same, so

$$P([\mathbf{c}]) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K^+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right)\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

Infinite Mixture Models (Contd.)

- As $K \to \infty$, $P(\mathbf{c}) \to 0$ for any particular \mathbf{c}
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - \bullet Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - \bullet Denote the partitioning induced by c as [c]
- With $K = K_+ + K_0$ classes, [c] has $K!/K_0!$ assignment vectors
- The probability of each assignment vector is the same, so

$$P([\mathbf{c}]) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K^+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right)\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

• Taking limits as $K \to \infty$, we have

$$\lim_{K\to\infty} P([\mathbf{c}]) = \alpha^{K_+} \left(\prod_{k=1} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Chinese Restaurant Process

• CRP gives a prior over partitions

$$P(c_i = k | c_1, \dots, c_{i-1}) = \begin{cases} \frac{m_k}{i-1+\alpha} & k \le K_+ \\ \frac{\alpha}{i-1+\alpha} & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Chinese Restaurant Process

• CRP gives a prior over partitions

$$P(c_i = k | c_1, \dots, c_{i-1}) = egin{cases} rac{m_k}{i-1+lpha} & k \leq K_+ \ rac{lpha}{i-1+lpha} & ext{otherwise} \end{cases}$$

• With N objects, the probability of a particular partition [c] is

$$\alpha^{K_+}\left(\prod_{k=1}(m_k-1)!\right)\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

Chinese Restaurant Process

• CRP gives a prior over partitions

$$P(c_i = k | c_1, \dots, c_{i-1}) = egin{cases} rac{m_k}{i-1+lpha} & k \leq \mathcal{K}_+ \ rac{lpha}{i-1+lpha} & ext{otherwise} \end{cases}$$

• With N objects, the probability of a particular partition [c] is

$$\alpha^{K_+}\left(\prod_{k=1}(m_k-1)!\right)\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

• Intuitive means of specifying a prior for infinite mixture models

Chinese Restaurant Process

• CRP gives a prior over partitions

$$P(c_i = k | c_1, \dots, c_{i-1}) = egin{cases} rac{m_k}{i-1+lpha} & k \leq K_+ \ rac{lpha}{i-1+lpha} & ext{otherwise} \end{cases}$$

• With N objects, the probability of a particular partition [c] is

$$\alpha^{K_+}\left(\prod_{k=1}(m_k-1)!\right)\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Intuitive means of specifying a prior for infinite mixture models
- Sequential process to generate exchangeable class assignments

Latent Feature Models

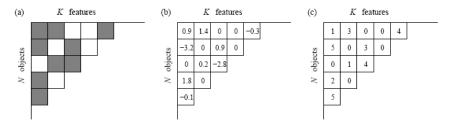


Figure 3: Feature matrices. A binary matrix Z, as shown in (a), can be used as the basis for sparse infinite latent feature models, indicating which features take non-zero values. Elementwise multiplication of Z by a matrix V of continuous values gives a representation like that shown in (b). If V contains discrete values, we obtain a representation like that shown in (c).

Latent Feature Models (Contd.)

• A latent feature has two components

Latent Feature Models (Contd.)

• A latent feature has two components

• A distribution P(F) over features

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A latent feature has two components
 - A distribution P(F) over features
 - A distribution P(X|F) relating observations and features

- A latent feature has two components
 - A distribution P(F) over features
 - A distribution P(X|F) relating observations and features
- Consider $F = Z \otimes V$ with P(F) = P(Z)P(V) where

- A latent feature has two components
 - A distribution P(F) over features
 - A distribution P(X|F) relating observations and features
- Consider $F = Z \otimes V$ with P(F) = P(Z)P(V) where
 - Z is a binary matrix, indicating which features are on

- A latent feature has two components
 - A distribution P(F) over features
 - A distribution P(X|F) relating observations and features
- Consider $F = Z \otimes V$ with P(F) = P(Z)P(V) where
 - Z is a binary matrix, indicating which features are on
 - V is a matrix containing feature values

- A latent feature has two components
 - A distribution P(F) over features
 - A distribution P(X|F) relating observations and features
- Consider $F = Z \otimes V$ with P(F) = P(Z)P(V) where
 - Z is a binary matrix, indicating which features are on
 - V is a matrix containing feature values
- Z determines the effective dimensionality of the model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite Feature Models

• Consider N objects and K features, Z is $N \times K$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k

Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1-\pi_k)^{N-m_k}$$

Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1-\pi_k)^{N-m_k}$$

• Define a Beta prior B(r,s) over π_k

$$p(\pi_k) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1} (1-\pi_k)^{s-1}$$

Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1-\pi_k)^{N-m_k}$$

• Define a Beta prior B(r,s) over π_k

$$p(\pi_k) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1} (1-\pi_k)^{s-1}$$

• With $r = \alpha/K, s = 1$, we have $p(\pi_k) = \alpha/K\pi_k^{\alpha/K-1}$

Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1-\pi_k)^{N-m_k}$$

• Define a Beta prior B(r, s) over π_k

$$p(\pi_k) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1} (1-\pi_k)^{s-1}$$

• With $r = \alpha/K, s = 1$, we have $p(\pi_k) = \alpha/K\pi_k^{\alpha/K-1}$

Generative model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Finite Feature Models (Contd.)

• The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik}|\pi_k)\right) p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Feature Models (Contd.)

• The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik}|\pi_k)\right) p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

• The expected number of non-zeroes is bounded for any K

Finite Feature Models (Contd.)

• The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik} | \pi_k) \right) p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

- The expected number of non-zeroes is bounded for any K
- Since each column is independent

$$E[1^{T}Z1] = KE[1^{T}z_{k}] = K\sum_{i=1}^{N} E(z_{ik}) = KN\frac{\alpha/K}{1+\alpha/K} \le N\alpha$$

ヘロン 人間 とくほとう ほとう

Equivalence Classes

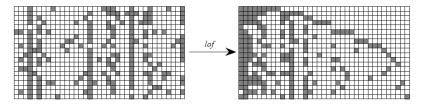


Figure 4: Binary matrices and the left-ordered form. The binary matrix on the left is transformed into the left-ordered binary matrix on the right by the function $lof(\cdot)$. This left-ordered matrix was generated from the exchangeable Indian buffet process with $\alpha = 10$. Empty columns are omitted from both matrices.

Equivalence Classes (Contd.)

• Left-ordering defines an equivalence class [Z]

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]
 - History h is the decimal equivalent of the column z_k

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]
 - History h is the decimal equivalent of the column z_k
 - K_h denote the number of features having history h

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]
 - History h is the decimal equivalent of the column z_k
 - K_h denote the number of features having history h
 - K_0 denote the number of features having $m_k = 0$

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]
 - History h is the decimal equivalent of the column z_k
 - K_h denote the number of features having history h
 - K_0 denote the number of features having $m_k = 0$
 - Then, $K_+ = \sum +h = 1^{2^N-1}K_h$ and $K = K_+ + K_0$

- Left-ordering defines an equivalence class [Z]
 - Two matrices are equivalent if lof(Z) = lof(Y)
 - Inference w.r.t. *lof* is appropriate for models unaffected by feature ordering
 - All linear models belong to this category
- How to compute cardinality of [Z]
 - History h is the decimal equivalent of the column z_k
 - K_h denote the number of features having history h
 - K_0 denote the number of features having $m_k = 0$
 - Then, $K_+ = \sum +h = 1^{2^N-1}K_h$ and $K = K_+ + K_0$
- Then, the cardinality of [Z] is

$$\binom{K}{K_0 \cdots K_{2^N-1}} = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Infinite Feature Models

• The marginal probability of an equivalence class

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^K \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

Infinite Feature Models

• The marginal probability of an equivalence class

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^K \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

• Taking $K
ightarrow \infty$, with $H_N = \sum_{j=1}^N 1/j$, we get

$$\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2^N - 1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

Infinite Feature Models

• The marginal probability of an equivalence class

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^K \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

• Taking $K
ightarrow \infty$, with $H_N = \sum_{j=1}^N 1/j$, we get

$$\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2^N - 1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

• Exchangeable distribution, only depending on m_k and K_h

Infinite Feature Models

• The marginal probability of an equivalence class

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^K \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

• Taking $\mathcal{K}
ightarrow \infty$, with $H_{\mathcal{N}} = \sum_{j=1}^{\mathcal{N}} 1/j$, we get

$$\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2^N - 1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

- Exchangeable distribution, only depending on m_k and K_h
- The probability does not change by re-ordering objects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Indian Buffet Process

• Consider Indian restaurant with infinite dishes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet
 - Let m_k be the number of previous customers who tried disk k

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$
 - Samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$
 - Samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes
- The process generates a binary matrix sequentially

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $Poisson(\alpha)$ dishes
 - The *ithcustomer* moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$
 - Samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes
- The process generates a binary matrix sequentially
- The lof equivalence class has the distribution P([Z])

Indian Buffet Process (Contd.)

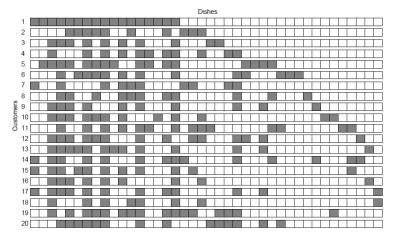


Figure 5: A binary matrix generated by the Indian buffet process with $\alpha = 10$.

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Inference by Gibbs Sampling

• For a finite latent feature model, the full conditional

 $P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)}) P(X | Z)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inference by Gibbs Sampling

• For a finite latent feature model, the full conditional

$$P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)}) P(X | Z)$$

• For the Beta-Bernoulli model

$$P(z_{ik} = 1 | \mathbf{z}_{-i,k}) = \int_0^1 P(z_{ik} | \pi_k) P(\pi_k | z_{-i,k}) d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K}$$

Inference by Gibbs Sampling

• For a finite latent feature model, the full conditional

$$P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)}) P(X | Z)$$

• For the Beta-Bernoulli model

$$P(z_{ik} = 1 | \mathbf{z}_{-i,k}) = \int_0^1 P(z_{ik} | \pi_k) P(\pi_k | z_{-i,k}) d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K}$$

• Only depends on the assignments for feature k, since columns are independent

Inference by Gibbs Sampling

• For a finite latent feature model, the full conditional

$$P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)}) P(X | Z)$$

• For the Beta-Bernoulli model

$$P(z_{ik} = 1 | \mathbf{z}_{-i,k}) = \int_0^1 P(z_{ik} | \pi_k) P(\pi_k | z_{-i,k}) d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K}$$

- Only depends on the assignments for feature k, since columns are independent
- For the infinite case, for $m_k > 0$

$$P(z_{ik}=1|\mathbf{z}_{-i,k})=\frac{m_{-i,k}}{N}$$

Inference by Gibbs Sampling

• For a finite latent feature model, the full conditional

$$P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)}) P(X | Z)$$

• For the Beta-Bernoulli model

$$P(z_{ik} = 1 | \mathbf{z}_{-i,k}) = \int_0^1 P(z_{ik} | \pi_k) P(\pi_k | z_{-i,k}) d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K}$$

- Only depends on the assignments for feature k, since columns are independent
- For the infinite case, for $m_k > 0$

$$P(z_{ik}=1|\mathbf{z}_{-i,k})=\frac{m_{-i,k}}{N}$$

• New features should be drawn from $Poisson(\frac{\alpha}{N})$

Indian Buffet Process

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Finite Linear Gaussian Model

• Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i A$ and covariance $\Sigma_X = \sigma_X^2 I$

Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i A$ and covariance $\Sigma_X = \sigma_X^2 I$
 - \mathbf{z}_i is a $1 \times K$ binary vector, A is $K \times D$ matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i A$ and covariance $\Sigma_X = \sigma_X^2 I$
 - \mathbf{z}_i is a $1 \times K$ binary vector, A is $K \times D$ matrix
- In matrix notation E[X] = ZA, so that

$$P(X|Z, A, \sigma_X) = \frac{1}{(2\pi\sigma_X^2)^{ND/2}} \exp\left\{-\frac{1}{2\sigma_X^2} \operatorname{tr}((X - ZA)^T (X - ZA))\right\}$$

Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i A$ and covariance $\Sigma_X = \sigma_X^2 I$
 - \mathbf{z}_i is a $1 \times K$ binary vector, A is $K \times D$ matrix
- In matrix notation E[X] = ZA, so that

$$P(X|Z, A, \sigma_X) = \frac{1}{(2\pi\sigma_X^2)^{ND/2}} \exp\left\{-\frac{1}{2\sigma_X^2} \operatorname{tr}((X - ZA)^T (X - ZA))\right\}$$

• Bayesian model with Gaussian prior over A

$$P(A|\sigma_A) = \frac{1}{(2\pi\sigma_A^2)^{KD/2}} \exp\left\{-\frac{1}{\sigma_A^2} \operatorname{tr}(A^T A)\right\}$$

Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i A$ and covariance $\Sigma_X = \sigma_X^2 I$
 - \mathbf{z}_i is a $1 \times K$ binary vector, A is $K \times D$ matrix
- In matrix notation E[X] = ZA, so that

$$P(X|Z, A, \sigma_X) = \frac{1}{(2\pi\sigma_X^2)^{ND/2}} \exp\left\{-\frac{1}{2\sigma_X^2} \operatorname{tr}((X - ZA)^T (X - ZA))\right\}$$

• Bayesian model with Gaussian prior over A

$$P(A|\sigma_A) = \frac{1}{(2\pi\sigma_A^2)^{KD/2}} \exp\left\{-\frac{1}{\sigma_A^2} \operatorname{tr}(A^T A)\right\}$$

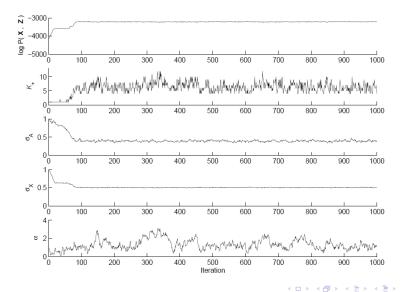
• The model remains well defined when $K
ightarrow \infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Results



Results (Contd.)



Sac