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Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Problems

Primarily of two types: Integration and Optimization

Bayesian inference and learning

Computing normalization in Bayesian methods

p(y |x) =
p(y)p(x |y)∫

y ′
p(y ′)p(x |y ′)dy ′

Marginalization: p(y |x) =
∫
z
p(y , z |x)dz

Expectation:

Ey |x [f (y)] =

∫
y

f (y)p(y |x)dy

Statistical mechanics: Computing the partition function

Z =
∑

s

exp

[
−E (s)

kT

]
Optimization, Model Selection, etc.
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Monte Carlo Principle

Target density p(x) on a high-dimensional space

Draw i.i.d. samples {xi}n
i=1 from p(x)

Construct empirical point mass function

pn(x) =
1

n

n∑
i=1

δxi (x)

One can approximate integrals/sums by

In(f ) =
1

n

n∑
i=1

f (xi )
a.s.−−−→

n→∞
I (f ) =

∫
x
f (x)p(x)dx

Unbiased estimate In(f ) converges by strong law
For finite σ2

f , central limit theorem implies
√

n(In(f )− I (f )) =⇒
n→∞

N (0, σ2
f )
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Rejection Sampling

Target density p(x) is known, but hard to sample

Use an easy to sample proposal distribution q(x)

q(x) satisfies p(x) ≤ Mq(x),M < ∞
Algorithm: For i = 1, · · · , n

1 Sample xi ∼ q(x) and u ∼ U(0, 1)
2 If u < p(xi )

Mq(xi )
, accept xi , else reject

Issues:

Tricky to bound p(x)/q(x) with a reasonable constant M
If M is too large, acceptance probability is small
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Rejection Sampling (Contd.)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Importance Sampling

For a proposal distribution q(x), with w(x) = p(x)/q(x)

I (f ) =

∫
x
f (x)w(x)q(x)dx

w(x) is the importance weight

Monte Carlo estimate of I (f ) based on samples xi ∼ q(x)

În(f ) =
n∑

i=1

f (xi )w(xi )

The estimator is unbiased, and converges to I (f ) a.s.
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Importance Sampling (Contd.)

Choose q(x) that minimizes variance of În(f )

varq(f (x)w(x)) = Eq[f
2(x)w2(x)]− I 2(f )

Applying Jensen’s and optimizing, we get

q∗(x) =
|f (x)|p(x)∫
|f (x)|p(x)dx

Efficient sampling focuses on regions of high |f (x)|p(x)

Super efficient sampling, variance lower than even q(x) = p(x)

Exploited to evaluate probability of rare events,
q(x) ∝ IE (x)p(x)
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Markov Chains

Use a Markov chain to explore the state space

Markov chain in a discrete space is a process with

p(xi |xi−1, . . . , x1) = T (xi |xi−1)

A chain is homogenous if T is invariant for all i
MC will stabilize into an invariant distribution if

1 Irreducible, transition graph is connected
2 Aperiodic, does not get trapped in cycles

Sufficient condition to ensure p(x) is the invariant distribution

p(xi )T (xi−1|xi ) = p(xi−1)T (xi |xi−1)

MCMC samplers, invariant distribution = target distribution

Design of samplers for fast convergence
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Markov Chains (Contd.)

Random walker on the web

Irreducibility, should be able to reach all pages
Aperiodicity, do not get stuck in a loop

PageRank uses T = L + E

L = link matrix for the web graph
E = uniform random matrix, to ensure irreducibility,
aperiodicity

Invariant distribution p(x) represents rank of webpage x

Continuous spaces, T becomes an integral kernel K∫
xi

p(xi )K (xi+1|xi )dxi = p(xi+1)

p(x) is the corresponding eigenfunction
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The Metropolis-Hastings Algorithm

Most popular MCMC method

Based on a proposal distribution q(x∗|x)
Algorithm: For i = 0, . . . , (n − 1)

Sample u ∼ U(0, 1)
Sample x∗ ∼ q(x∗|xi )
Then

xi+1 =

{
x∗ if u < A(xi , x

∗) = min
{

1, p(x∗)q(xi |x∗)
p(xi )q(x∗|xi )

}
xi otherwise

The transition kernel is

KMH(xi+1|xi ) = q(xi+1|xi )A(xi , xi+1) + δxi (xi+1)r(xi )

where r(xi ) is the term associated with rejection

r(xi ) =

∫
x
q(x |xi )(1− A(xi , x))dx
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The Metropolis-Hastings Algorithm (Contd.)

By construction

p(xi )KMH(xi+1|xi ) = p(xi+1)KMH(xi |xi+1)

Implies p(x) is the invariant distribution
Basic properties

Irreducibility, ensure support of q contains support of p
Aperiodicity, ensured since rejection is always a possibility

Independent sampler: q(x∗|xi ) = q(x∗) so that

A(xi , x
∗) = min

{
1,

p(x∗)q(xi )

q(x∗)p(xi )

}
Metropolis sampler: symmetric q(x∗|xi ) = q(xi |x∗)

A(xi , x
∗) = min

{
1,

p(x∗)

p(xi )

}
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Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Simulated Annealing (Contd.)
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Monte Carlo EM

E-step involves computing an expectation

Q(θ, θn) =

∫
x
log p(x , z |θ)p(z |x , θn)dx

Estimate the expectation using MCMC

Draw samples using MH with acceptance probability

A(z , z∗) = min

{
1,

p(x |z∗, θn)p(z∗|θn)q(z |z∗)
p(x |z , θn)p(z |θn)q(z∗|z)

}
Several variants:

Stochastic EM: Draw one sample
Monte Carlo EM: Draw multiple samples
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Mixtures of MCMC Kernels

Powerful property of MCMC: Combination of Samplers

Let K1,K2 be kernels with invariant distribution p

Mixture kernel αK1 + (1− α)K2, α ∈ [0, 1] converges to p
Cycle kernel K1K2 converges to p

Mixtures can use global and local proposals

Global proposals explore the entire space (with probability α)
Local proposals discover finer details (with probability (1− α))

Example: Target has many narrow peaks

Global proposal gets the peaks
Local proposals get the neighborhood of peaks (random walk)
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Cycles of MCMC Kernels

Split a multi-variate state into blocks

Each block can be updated separately

Convergence is faster if correlated variables are blocked

Transition kernel is given by

KMHCycle(x
(i+1)|x (i)) =

nb∏
j=1

KMH(j)(x
(i+1)
bj

|x (i)
bj

, x
(i+1)
−[bj ]

)

Trade-off on block size

If block size is small, chain takes long time to explore the space
If block size is large, acceptance probability is low

Gibbs sampling effectively uses block size of 1
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Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler

For a d-dimensional vector x , assume we know

p(xj |x−j) = p(xj |x1, . . . , xj−1, xj+1, · · · , xd)

Gibbs sampler uses the following proposal distribution

q(x∗|x (i)) =

{
p(x∗j |x

(i)
−j ) if x∗−j = x

(i)
−j

0 otherwise

The acceptance probability

A(x (i), x∗) = min

{
1,

p(x∗)q(x (i)|x∗)
p(x (i))q(x∗|x (i))

}
= 1

Deterministic scan: All samples are accepted
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The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·

Sample x
(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) = p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Bayesian LDA



Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Gibbs Sampler for Bayesian LDA

The conditional distribution

p(z` = h|z−`,w) ∝ p(z` = h|z−`)p(w`|z` = h, z−`,w−`)

Notation:

CDT
(d−`,h) = words from d assigned to h, excluding current word

CWT
(w−`,h) = w` assigned to h, excluding current word

Then, the first term

p(z` = h|z−`) =
CDT

(d−`,h) + α∑T
t=1 CDT

(d−`,t)
+ Tα

The second term

p(w`|z` = h, z−`,w−ell) =
CWT

(w−`,h) + β∑W
w=1 CWT

(w−`,h) + Wβ
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Basic Idea

Sometimes easier to sample from p(x , u) rather than p(x)

Sample (xi , ui ), and then ignore ui

Consider two well-known examples:

Hybrid Monte Carlo
Slice sampling
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Basics MCMC Gibbs Sampling Auxiliary Variable Samplers

Hybrid Monte Carlo

Uses gradient of the target distribution

Improves “mixing” in high dimensions

Effectively, take steps based on gradient of p(x)

Introduce auxiliary momentum variables u ∈ Rd with

p(x , u) = p(x)N(u; 0, Id)

Gradient vector ∆(x) = ∂ log p(x)/∂x , step-size ρ

Gradient descent for L steps to get proposal candidate

When L = 1, one obtains the Langevin algorithm

x∗ = x0 + ρu0 = x (i−1) + ρ(u∗ + ρ∆(x (i−1))/2)
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Hybrid Monte Carlo (Contd.)

Initialize x (0). For i = 0, . . . , (n − 1)

Sample v ∼ U [0, 1], u∗ ∼ N (0, Id)
Let x0 = x (i−1), u0 = u∗ + ρ∆(x0)/2
For ` = 1, . . . , L, with ρ` = ρ, ` < L, ρL = ρ/2

x` = x`−1 + ρu`−1 u` = u`−1 + ρ`∆(x`)

Set

(x (i+1), u(i+1)) =

{
(xL, uL) if A = min

{
1, p(xL)

p(xi )
exp

(
− 1

2 (‖uL‖2 − ‖u∗‖2)
)}

(x (i), u(i)) otherwise

Tradeoffs for ρ, L

Large ρ gives low acceptance, small ρ needs many steps
Large L gives candidates far from x0, but expensive
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The Slice Sampler

Construct extended target distribution

p∗(x , u) =

{
1 if 0 ≤ u ≤ p(x)

0 otherwise

It follows that:
∫

p∗(x , u) =
∫ p(x)
0 du = p(x)

From the Gibbs sampling perspective

p(u|x) = U [0, p(x)] p(x |u) = UA,A = {x : p(x) ≥ u}

Algorithm is easy is A is easy to figure out

Otherwise, several auxiliary variables need to be introduced
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