CSci 8980: Advanced Topics in Graphical Models MCMC, Gibbs Sampling

Instructor: Arindam Banerjee

September 27, 2007

Problems	Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
	Problems			

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• Primarily of two types: Integration and Optimization

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Problems			
5.			

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning

Dasics	WCIVIC	Globs Sampling	Auxiliary Variable Samplers
Proł	olems		
	 Primarily of two types Bayesian inference and Computing normali 	U	

 $p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'}$

Basic

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Problem	าร		
 Primarily of two types: Integration and Optimization Bayesian inference and learning Computing normalization in Bayesian methods 			

$$p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'}$$

• Marginalization: $p(y|x) = \int_z p(y, z|x) dz$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
 - Computing normalization in Bayesian methods

$$p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'}$$

- Marginalization: $p(y|x) = \int_z p(y, z|x) dz$
- Expectation:

$$E_{y|x}[f(y)] = \int_{y} f(y) p(y|x) dy$$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
 - Computing normalization in Bayesian methods

$$p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'}$$

- Marginalization: $p(y|x) = \int_z p(y, z|x) dz$
- Expectation:

$$E_{y|x}[f(y)] = \int_{y} f(y)p(y|x)dy$$

• Statistical mechanics: Computing the partition function

$$Z = \sum_{s} \exp\left[-\frac{E(s)}{kT}\right]$$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
 - Computing normalization in Bayesian methods

$$p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'}$$

- Marginalization: $p(y|x) = \int_z p(y, z|x) dz$
- Expectation:

$$E_{y|x}[f(y)] = \int_{y} f(y)p(y|x)dy$$

• Statistical mechanics: Computing the partition function

$$Z = \sum_{s} \exp\left[-\frac{E(s)}{kT}\right]$$

• Optimization, Model Selection, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monte Carlo Principle

• Target density p(x) on a high-dimensional space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monte Carlo Principle

- Target density p(x) on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from p(x)

Monte Carlo Principle

- Target density p(x) on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from p(x)
- Construct empirical point mass function

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

Monte Carlo Principle

- Target density p(x) on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from p(x)
- Construct empirical point mass function

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

• One can approximate integrals/sums by

$$I_n(f) = \frac{1}{n} \sum_{i=1}^n f(x_i) \xrightarrow[n \to \infty]{a.s.} I(f) = \int_x f(x) p(x) dx$$

Monte Carlo Principle

- Target density p(x) on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from p(x)
- Construct empirical point mass function

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

• One can approximate integrals/sums by

$$I_n(f) = \frac{1}{n} \sum_{i=1}^n f(x_i) \xrightarrow[n \to \infty]{a.s.} I(f) = \int_x f(x) p(x) dx$$

• Unbiased estimate $I_n(f)$ converges by strong law

Monte Carlo Principle

- Target density p(x) on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from p(x)
- Construct empirical point mass function

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

• One can approximate integrals/sums by

$$I_n(f) = \frac{1}{n} \sum_{i=1}^n f(x_i) \xrightarrow[n \to \infty]{a.s.} I(f) = \int_x f(x) p(x) dx$$

- Unbiased estimate $I_n(f)$ converges by strong law
- For finite σ_f^2 , central limit theorem implies

$$\sqrt{n}(I_n(f) - I(f)) \Longrightarrow_{n \to \infty} \mathcal{N}(0, \sigma_f^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rejection Sampling

• Target density p(x) is known, but hard to sample

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 - **(**) Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0, 1)$

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 - Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
 - 2 If $u < \frac{p(x_i)}{Mq(x_i)}$, accept x_i , else reject

Rejection Sampling

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 - Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
 - 2 If $u < \frac{p(x_i)}{Mq(x_i)}$, accept x_i , else reject

Issues:

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 - Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
 - 2 If $u < \frac{p(x_i)}{Mq(x_i)}$, accept x_i , else reject
- Issues:
 - Tricky to bound p(x)/q(x) with a reasonable constant M

- Target density p(x) is known, but hard to sample
- Use an easy to sample proposal distribution q(x)
- q(x) satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 - Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
 - 2 If $u < \frac{p(x_i)}{Mq(x_i)}$, accept x_i , else reject
- Issues:
 - Tricky to bound p(x)/q(x) with a reasonable constant M
 - If M is too large, acceptance probability is small

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rejection Sampling (Contd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Importance Sampling

• For a proposal distribution q(x), with w(x) = p(x)/q(x)

$$I(f) = \int_{x} f(x)w(x)q(x)dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Importance Sampling

• For a proposal distribution q(x), with w(x) = p(x)/q(x)

$$I(f) = \int_{x} f(x)w(x)q(x)dx$$

• w(x) is the importance weight

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Importance Sampling

• For a proposal distribution q(x), with w(x) = p(x)/q(x)

$$I(f) = \int_{x} f(x)w(x)q(x)dx$$

- w(x) is the importance weight
- Monte Carlo estimate of I(f) based on samples $x_i \sim q(x)$

$$\hat{l}_n(f) = \sum_{i=1}^n f(x_i) w(x_i)$$

Importance Sampling

• For a proposal distribution q(x), with w(x) = p(x)/q(x)

$$I(f) = \int_{x} f(x)w(x)q(x)dx$$

- w(x) is the importance weight
- Monte Carlo estimate of I(f) based on samples $x_i \sim q(x)$

$$\hat{l}_n(f) = \sum_{i=1}^n f(x_i) w(x_i)$$

• The estimator is unbiased, and converges to I(f) a.s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

• Applying Jensen's and optimizing, we get

 $q^*(x) = \frac{|f(x)|p(x)|}{\int |f(x)|p(x)dx|}$

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

• Applying Jensen's and optimizing, we get

$$q^*(x) = \frac{|f(x)|p(x)|}{\int |f(x)|p(x)dx|}$$

• Efficient sampling focuses on regions of high |f(x)|p(x)

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

• Applying Jensen's and optimizing, we get

$$q^*(x) = \frac{|f(x)|p(x)|}{\int |f(x)|p(x)dx|}$$

- Efficient sampling focuses on regions of high |f(x)|p(x)
- Super efficient sampling, variance lower than even q(x) = p(x)

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

• Applying Jensen's and optimizing, we get

$$q^*(x) = \frac{|f(x)|p(x)|}{\int |f(x)|p(x)dx|}$$

- Efficient sampling focuses on regions of high |f(x)|p(x)
- Super efficient sampling, variance lower than even q(x) = p(x)
- Exploited to evaluate probability of rare events, q(x) ∝ I_E(x)p(x)

Importance Sampling (Contd.)

• Choose q(x) that minimizes variance of $\hat{l}_n(f)$

 $\operatorname{var}_{q}(f(x)w(x)) = E_{q}[f^{2}(x)w^{2}(x)] - I^{2}(f)$

• Applying Jensen's and optimizing, we get

$$q^*(x) = \frac{|f(x)|p(x)|}{\int |f(x)|p(x)dx|}$$

- Efficient sampling focuses on regions of high |f(x)|p(x)
- Super efficient sampling, variance lower than even q(x) = p(x)
- Exploited to evaluate probability of rare events, q(x) ∝ I_E(x)p(x)

Importance Sampling (Contd.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Markov C	hains		

• Use a Markov chain to explore the state space

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Markov Cl	hains		

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

・ロト・日本・モト・モート ヨー うへで

Basics	мсмс	Gibbs Sampling	Auxiliary Variable Samplers
Markov (Chains		

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

• A chain is homogenous if T is invariant for all i

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Markov	Chains		

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Markov	Chains		

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
 - Irreducible, transition graph is connected

Basics	МСМС	Gibbs Sampling	Auxiliary Variable Samplers
Markov	Chains		

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
 - Irreducible, transition graph is connected
 - Aperiodic, does not get trapped in cycles

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
 - Irreducible, transition graph is connected
 - Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure p(x) is the invariant distribution

 $p(x_i)T(x_{i-1}|x_i) = p(x_{i-1})T(x_i|x_{i-1})$

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
 - Irreducible, transition graph is connected
 - Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure p(x) is the invariant distribution

 $p(x_i)T(x_{i-1}|x_i) = p(x_{i-1})T(x_i|x_{i-1})$

• MCMC samplers, invariant distribution = target distribution

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
 - Irreducible, transition graph is connected
 - Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure p(x) is the invariant distribution

 $p(x_i)T(x_{i-1}|x_i) = p(x_{i-1})T(x_i|x_{i-1})$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 のへで

- MCMC samplers, invariant distribution = target distribution
- Design of samplers for fast convergence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Markov Chains (Contd.)

• Random walker on the web

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Random walker on the web
 - Irreducibility, should be able to reach all pages

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E
 - L = link matrix for the web graph

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E
 - L = link matrix for the web graph
 - *E* = uniform random matrix, to ensure irreducibility, aperiodicity

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E
 - L = link matrix for the web graph
 - *E* = uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution p(x) represents rank of webpage x

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E
 - L = link matrix for the web graph
 - *E* = uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution p(x) represents rank of webpage x
- Continuous spaces, T becomes an integral kernel K

$$\int_{x_i} p(x_i) \mathcal{K}(x_{i+1}|x_i) dx_i = p(x_{i+1})$$

Markov Chains (Contd.)

- Random walker on the web
 - Irreducibility, should be able to reach all pages
 - Aperiodicity, do not get stuck in a loop
- PageRank uses T = L + E
 - L = link matrix for the web graph
 - *E* = uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution p(x) represents rank of webpage x
- Continuous spaces, T becomes an integral kernel K

$$\int_{x_i} p(x_i) \mathcal{K}(x_{i+1}|x_i) dx_i = p(x_{i+1})$$

• p(x) is the corresponding eigenfunction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Metropolis-Hastings Algorithm

• Most popular MCMC method

Basics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$
- Algorithm: For $i = 0, \ldots, (n-1)$

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$
- Algorithm: For $i = 0, \ldots, (n-1)$
 - Sample $u \sim \mathcal{U}(0, 1)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$
- Algorithm: For $i = 0, \ldots, (n-1)$
 - Sample $u \sim \mathcal{U}(0, 1)$
 - Sample $x^* \sim q(x^*|x_i)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$
- Algorithm: For $i = 0, \ldots, (n-1)$
 - Sample $u \sim \mathcal{U}(0, 1)$
 - Sample $x^* \sim q(x^*|x_i)$
 - Then

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min\left\{1, \frac{p(x^*)q(x_i|x^*)}{p(x_i)q(x^*|x_i)}\right\}\\ x_i & \text{otherwise} \end{cases}$$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$
- Algorithm: For $i = 0, \ldots, (n-1)$
 - Sample $u \sim \mathcal{U}(0, 1)$
 - Sample $x^* \sim q(x^*|x_i)$
 - Then

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min\left\{1, \frac{p(x^*)q(x_i|x^*)}{p(x_i)q(x^*|x_i)}\right\}\\ x_i & \text{otherwise} \end{cases}$$

• The transition kernel is

 $K_{MH}(x_{i+1}|x_i) = q(x_{i+1}|x_i)A(x_i, x_{i+1}) + \delta_{x_i}(x_{i+1})r(x_i)$

where $r(x_i)$ is the term associated with rejection

$$r(x_i) = \int_X q(x|x_i)(1 - A(x_i, x))dx$$

i=500

20

20

i=5000

The Metropolis-Hastings Algorithm (Contd.)

। इ. २०००

Basics

The Metropolis-Hastings Algorithm (Contd.)

• By construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Metropolis-Hastings Algorithm (Contd.)

• By construction

 $p(x_i)K_{MH}(x_{i+1}|x_i) = p(x_{i+1})K_{MH}(x_i|x_{i+1})$

• Implies p(x) is the invariant distribution

The Metropolis-Hastings Algorithm (Contd.)

• By construction

- Implies p(x) is the invariant distribution
- Basic properties

The Metropolis-Hastings Algorithm (Contd.)

• By construction

- Implies p(x) is the invariant distribution
- Basic properties
 - Irreducibility, ensure support of q contains support of p

The Metropolis-Hastings Algorithm (Contd.)

• By construction

- Implies p(x) is the invariant distribution
- Basic properties
 - Irreducibility, ensure support of *q* contains support of *p*
 - Aperiodicity, ensured since rejection is always a possibility

The Metropolis-Hastings Algorithm (Contd.)

• By construction

- Implies p(x) is the invariant distribution
- Basic properties
 - Irreducibility, ensure support of *q* contains support of *p*
 - Aperiodicity, ensured since rejection is always a possibility
- Independent sampler: $q(x^*|x_i) = q(x^*)$ so that

$$A(x_i, x^*) = \min\left\{1, \frac{p(x^*)q(x_i)}{q(x^*)p(x_i)}\right\}$$

The Metropolis-Hastings Algorithm (Contd.)

• By construction

 $p(x_i)K_{MH}(x_{i+1}|x_i) = p(x_{i+1})K_{MH}(x_i|x_{i+1})$

- Implies p(x) is the invariant distribution
- Basic properties
 - Irreducibility, ensure support of *q* contains support of *p*
 - Aperiodicity, ensured since rejection is always a possibility
- Independent sampler: $q(x^*|x_i) = q(x^*)$ so that

$$A(x_i, x^*) = \min\left\{1, \frac{p(x^*)q(x_i)}{q(x^*)p(x_i)}\right\}$$

• Metropolis sampler: symmetric $q(x^*|x_i) = q(x_i|x^*)$

$$A(x_i, x^*) = \min\left\{1, \frac{p(x^*)}{p(x_i)}\right\}$$

э

The Metropolis-Hastings Algorithm (Contd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Simulated Annealing

• Problem: To find global maximum of p(x)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulated Annealing

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simulated Annealing

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_i(x) \propto p^{1/T_i}(x)$

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration *i* is $p_i(x) \propto p^{1/T_i}(x)$
- Sample update follows

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min\left\{1, \frac{p^{\frac{1}{T_i}}(x^*)q(x_i|x^*)}{p^{\frac{1}{T_i}}(x_i)q(x^*|x_i)}\right\}\\ x_i & \text{otherwise} \end{cases}$$

Simulated Annealing

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration *i* is $p_i(x) \propto p^{1/T_i}(x)$
- Sample update follows

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min\left\{1, \frac{p^{\frac{1}{T_i}}(x^*)q(x_i|x^*)}{p^{\frac{1}{T_i}}(x_i)q(x^*|x_i)}\right\}\\ x_i & \text{otherwise} \end{cases}$$

• T_i decreases following a cooling schedule, $\lim_{i\to\infty} T_i = 0$

- Problem: To find global maximum of p(x)
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration *i* is $p_i(x) \propto p^{1/T_i}(x)$
- Sample update follows

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min\left\{1, \frac{p^{\frac{1}{T_i}}(x^*)q(x_i|x^*)}{p^{\frac{1}{T_i}}(x_i)q(x^*|x_i)}\right\}\\ x_i & \text{otherwise} \end{cases}$$

- T_i decreases following a cooling schedule, $\lim_{i\to\infty} T_i = 0$
- Cooling schedule needs proper choice, e.g., $T_i = \frac{1}{C \log(i + T_0)}$

Simulated Annealing (Contd.)

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Estimate the expectation using MCMC

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$A(z,z^*) = \min\left\{1, \frac{p(x|z^*,\theta_n)p(z^*|\theta_n)q(z|z^*)}{p(x|z,\theta_n)p(z|\theta_n)q(z^*|z)}\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$A(z,z^*) = \min\left\{1, \frac{p(x|z^*,\theta_n)p(z^*|\theta_n)q(z|z^*)}{p(x|z,\theta_n)p(z|\theta_n)q(z^*|z)}\right\}$$

• Several variants:

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$A(z,z^*) = \min\left\{1, \frac{p(x|z^*,\theta_n)p(z^*|\theta_n)q(z|z^*)}{p(x|z,\theta_n)p(z|\theta_n)q(z^*|z)}\right\}$$

- Several variants:
 - Stochastic EM: Draw one sample

• E-step involves computing an expectation

$$Q(\theta, \theta_n) = \int_x \log p(x, z|\theta) p(z|x, \theta_n) dx$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$A(z,z^*) = \min\left\{1, \frac{p(x|z^*,\theta_n)p(z^*|\theta_n)q(z|z^*)}{p(x|z,\theta_n)p(z|\theta_n)q(z^*|z)}\right\}$$

• Several variants:

- Stochastic EM: Draw one sample
- Monte Carlo EM: Draw multiple samples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mixtures of MCMC Kernels

• Powerful property of MCMC: Combination of Samplers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability α)

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability α)
 - Local proposals discover finer details (with probability (1-lpha))

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability α)
 - Local proposals discover finer details (with probability (1-lpha))
- Example: Target has many narrow peaks

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability $\alpha)$
 - Local proposals discover finer details (with probability (1-lpha))
- Example: Target has many narrow peaks
 - Global proposal gets the peaks

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $lpha \mathcal{K}_1 + (1-lpha) \mathcal{K}_2, lpha \in [0,1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability $\alpha)$
 - Local proposals discover finer details (with probability (1-lpha))
- Example: Target has many narrow peaks
 - Global proposal gets the peaks
 - Local proposals get the neighborhood of peaks (random walk)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cycles of MCMC Kernels

• Split a multi-variate state into blocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Split a multi-variate state into blocks
- Each block can be updated separately

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$K_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} K_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$\mathcal{K}_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} \mathcal{K}_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})$$

Trade-off on block size

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$\mathcal{K}_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} \mathcal{K}_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})$$

- Trade-off on block size
 - If block size is small, chain takes long time to explore the space

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$K_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} K_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})$$

- Trade-off on block size
 - If block size is small, chain takes long time to explore the space
 - If block size is large, acceptance probability is low

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$K_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} K_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})$$

- Trade-off on block size
 - If block size is small, chain takes long time to explore the space
 - If block size is large, acceptance probability is low
- Gibbs sampling effectively uses block size of 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Gibbs Sampler

• For a *d*-dimensional vector *x*, assume we know

$$p(x_j|x_{-j}) = p(x_j|x_1, \ldots, x_{j-1}, x_{j+1}, \cdots, x_d)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Gibbs Sampler

• For a *d*-dimensional vector *x*, assume we know

$$p(x_j|x_{-j}) = p(x_j|x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_d)$$

• Gibbs sampler uses the following proposal distribution

$$q(x^*|x^{(i)}) = egin{cases} p(x_j^*|x_{-j}^{(i)}) & ext{if} \ \ x_{-j}^* = x_{-j}^{(i)} \\ 0 & ext{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Gibbs Sampler

• For a *d*-dimensional vector *x*, assume we know

$$p(x_j|x_{-j}) = p(x_j|x_1, \ldots, x_{j-1}, x_{j+1}, \cdots, x_d)$$

• Gibbs sampler uses the following proposal distribution

$$q(x^*|x^{(i)}) = egin{cases} p(x_j^*|x_{-j}^{(i)}) & ext{if} \ \ x_{-j}^* = x_{-j}^{(i)} \ 0 & ext{otherwise} \end{cases}$$

• The acceptance probability

$$A(x^{(i)}, x^*) = \min\left\{1, \frac{p(x^*)q(x^{(i)}|x^*)}{p(x^{(i)})q(x^*|x^{(i)})}\right\} = 1$$

The Gibbs Sampler

• For a *d*-dimensional vector *x*, assume we know

$$p(x_j|x_{-j}) = p(x_j|x_1, \ldots, x_{j-1}, x_{j+1}, \cdots, x_d)$$

• Gibbs sampler uses the following proposal distribution

$$q(x^*|x^{(i)}) = egin{cases} p(x_j^*|x_{-j}^{(i)}) & ext{if} \ \ x_{-j}^* = x_{-j}^{(i)} \ 0 & ext{otherwise} \end{cases}$$

• The acceptance probability

$$A(x^{(i)}, x^*) = \min\left\{1, \frac{p(x^*)q(x^{(i)}|x^*)}{p(x^{(i)})q(x^*|x^{(i)})}\right\} = 1$$

• Deterministic scan: All samples are accepted

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Gibbs Sampler (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N - 1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Gibbs Sampler (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N-1)$
• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N-1)$
• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$
• Sample $x_2^{(i+1)} \sim p(x_1|x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N-1)$
• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$
• Sample $x_2^{(i+1)} \sim p(x_1|x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$
• \cdots

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N-1)$
• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$
• Sample $x_2^{(i+1)} \sim p(x_1|x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$
• ...
• Sample $x_d^{(i+1)} \sim p(x_d|x_1^{(i+1)}, ..., x_{d-1}^{(i+1)})$

The Gibbs Sampler (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N-1)$
• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$
• Sample $x_2^{(i+1)} \sim p(x_1|x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$
• ...
• Sample $x_d^{(i+1)} \sim p(x_d|x_1^{(i+1)}, ..., x_{d-1}^{(i+1)})$

• Possible to have MH steps inside a Gibbs sampler

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (N - 1)$
• Sample $x_1^{(i+1)} \sim p(x_1 | x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$
• Sample $x_2^{(i+1)} \sim p(x_1 | x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$
• ...
• Sample $x_d^{(i+1)} \sim p(x_d | x_1^{(i+1)}, ..., x_{d-1}^{(i+1)})$

- Possible to have MH steps inside a Gibbs sampler
- For d = 2, Gibbs sampler is the data augmentation algorithm

- Initialize $x^{(0)}$. For i = 0, ..., (N-1)• Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i)})$ • Sample $x_2^{(i+1)} \sim p(x_1|x_1^{(i+1)}, x_3^{(i)}, ..., x_d^{(i)})$ • ... • Sample $x_d^{(i+1)} \sim p(x_d|x_1^{(i+1)}, ..., x_{d-1}^{(i+1)})$
- Possible to have MH steps inside a Gibbs sampler
- For d = 2, Gibbs sampler is the data augmentation algorithm
- For Bayes nets, the conditioning is on the Markov blanket

$$p(x_j|x_{-j}) = p(x_j|x_{pa(j)}) \prod_{k \in ch(j)} p(x_k|pa(k))$$

Bayesian LDA

Gibbs Sampler for Bayesian LDA

• The conditional distribution

 $p(z_\ell = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_\ell = h | z_{-\ell}) p(w_\ell | z_\ell = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

Gibbs Sampler for Bayesian LDA

• The conditional distribution

 $p(z_{\ell} = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_{\ell} = h | z_{-\ell}) p(w_{\ell} | z_{\ell} = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

Notation:

・ロト・日本・モート モー うへで

Gibbs Sampler for Bayesian LDA

• The conditional distribution

 $p(z_\ell = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_\ell = h | z_{-\ell}) p(w_\ell | z_\ell = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

- Notation:
 - $C_{(d-\ell,h)}^{DT}$ = words from d assigned to h, excluding current word

Gibbs Sampler for Bayesian LDA

The conditional distribution

 $p(z_{\ell} = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_{\ell} = h | z_{-\ell}) p(w_{\ell} | z_{\ell} = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

- Notation:
 - C^{DT}_(d-ℓ,h) = words from d assigned to h, excluding current word
 C^{WT}_(w-ℓ,h) = w_ℓ assigned to h, excluding current word

Gibbs Sampler for Bayesian LDA

• The conditional distribution

 $p(z_\ell = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_\ell = h | z_{-\ell}) p(w_\ell | z_\ell = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

Notation:

C^{DT}_(d-ℓ,h) = words from d assigned to h, excluding current word
 C^{WT}_(w-ℓ,h) = w_ℓ assigned to h, excluding current word

Then, the first term

$$p(z_{\ell} = h|z_{-\ell}) = \frac{C_{(d_{-\ell},h)}^{DT} + \alpha}{\sum_{t=1}^{T} C_{(d_{-\ell},t)}^{DT} + T\alpha}$$

Gibbs Sampler for Bayesian LDA

• The conditional distribution

 $p(z_\ell = h | \mathbf{z}_{-\ell}, \mathbf{w}) \propto p(z_\ell = h | z_{-\ell}) p(w_\ell | z_\ell = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell})$

Notation:

• $C_{(d-\ell,h)}^{DT}$ = words from *d* assigned to *h*, excluding current word • $C_{(w-\ell,h)}^{WT}$ = w_{ℓ} assigned to *h*, excluding current word

Then, the first term

$$p(z_{\ell} = h | z_{-\ell}) = \frac{C_{(d_{-\ell},h)}^{DT} + \alpha}{\sum_{t=1}^{T} C_{(d_{-\ell},t)}^{DT} + T\alpha}$$

The second term

$$p(w_{\ell}|z_{\ell} = h, \mathbf{z}_{-\ell}, \mathbf{w}_{-ell}) = \frac{C_{(w_{-\ell},h)}^{WT} + \beta}{\sum_{w=1}^{W} C_{(w_{-\ell},h)}^{WT} + W\beta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Basic Idea

• Sometimes easier to sample from p(x, u) rather than p(x)

- Sometimes easier to sample from p(x, u) rather than p(x)
- Sample (x_i, u_i) , and then ignore u_i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Sometimes easier to sample from p(x, u) rather than p(x)
- Sample (x_i, u_i) , and then ignore u_i
- Consider two well-known examples:

- Sometimes easier to sample from p(x, u) rather than p(x)
- Sample (x_i, u_i) , and then ignore u_i
- Consider two well-known examples:
 - Hybrid Monte Carlo

- Sometimes easier to sample from p(x, u) rather than p(x)
- Sample (x_i, u_i) , and then ignore u_i
- Consider two well-known examples:
 - Hybrid Monte Carlo
 - Slice sampling

Hybrid Monte Carlo

• Uses gradient of the target distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of p(x)

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of p(x)
- Introduce auxiliary momentum variables $u \in \mathbb{R}^d$ with

 $p(x,u) = p(x)N(u;0,\mathbb{I}_d)$

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of p(x)
- Introduce auxiliary momentum variables $u \in \mathbb{R}^d$ with

 $p(x, u) = p(x)N(u; 0, \mathbb{I}_d)$

• Gradient vector $\Delta(x) = \partial \log p(x) / \partial x$, step-size ρ

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of p(x)
- Introduce auxiliary momentum variables $u \in \mathbb{R}^d$ with

 $p(x, u) = p(x)N(u; 0, \mathbb{I}_d)$

- Gradient vector $\Delta(x) = \partial \log p(x) / \partial x$, step-size ρ
- Gradient descent for L steps to get proposal candidate

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of p(x)
- Introduce auxiliary momentum variables $u \in \mathbb{R}^d$ with

 $p(x, u) = p(x)N(u; 0, \mathbb{I}_d)$

- Gradient vector $\Delta(x) = \partial \log p(x) / \partial x$, step-size ρ
- Gradient descent for L steps to get proposal candidate
- When L = 1, one obtains the Langevin algorithm

$$x^* = x_0 + \rho u_0 = x^{(i-1)} + \rho(u^* + \rho \Delta(x^{(i-1)})/2)$$

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n-1)$

- Initialize $x^{(0)}$. For i = 0, ..., (n-1)
 - Sample $v \sim \mathcal{U}[0,1], u^* \sim \mathcal{N}(0,\mathbb{I}_d)$

- Initialize $x^{(0)}$. For i = 0, ..., (n-1)
 - Sample $v \sim \mathcal{U}[0,1], u^* \sim \mathcal{N}(0,\mathbb{I}_d)$
 - Let $x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n-1)$

• Sample
$$v \sim \mathcal{U}[0,1], u^* \sim \mathcal{N}(0,\mathbb{I}_d)$$

• Let
$$x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$$

• For
$$\ell = 1, \dots, L$$
, with $\rho_\ell = \rho, \ell < L$, $\rho_L = \rho/2$

$$x_{\ell} = x_{\ell-1} + \rho u_{\ell-1}$$
 $u_{\ell} = u_{\ell-1} + \rho_{\ell} \Delta(x_{\ell})$

Hybrid Monte Carlo (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n - 1)$
• Sample $v \sim \mathcal{U}[0, 1], u^* \sim \mathcal{N}(0, \mathbb{I}_d)$
• Let $x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$
• For $\ell = 1, ..., L$, with $\rho_\ell = \rho, \ell < L, \rho_L = \rho/2$
 $x_\ell = x_{\ell-1} + \rho u_{\ell-1}$ $u_\ell = u_{\ell-1} + \rho_\ell \Delta(x_\ell)$

Set

$$(x^{(i+1)}, u^{(i+1)}) = \begin{cases} (x_L, u_L) & \text{if } A = \min\left\{1, \frac{p(x_L)}{p(x_i)} \exp\left(-\frac{1}{2}(\|u_L\|^2 - \|u^*\|^2)\right)\right\} \\ (x^{(i)}, u^{(i)}) & \text{otherwise} \end{cases}$$

Hybrid Monte Carlo (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n-1)$
• Sample $v \sim \mathcal{U}[0, 1], u^* \sim \mathcal{N}(0, \mathbb{I}_d)$
• Let $x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$
• For $\ell = 1, ..., L$, with $\rho_\ell = \rho, \ell < L, \ \rho_L = \rho/2$
 $x_\ell = x_{\ell-1} + \rho u_{\ell-1}$ $u_\ell = u_{\ell-1} + \rho_\ell \Delta(x_\ell)$

Set

 $(x^{(i+1)}, u^{(i+1)}) = \begin{cases} (x_L, u_L) & \text{if } A = \min\left\{1, \frac{p(x_L)}{p(x_i)} \exp\left(-\frac{1}{2}(\|u_L\|^2 - \|u^*\|^2)\right)\right\} \\ (x^{(i)}, u^{(i)}) & \text{otherwise} \end{cases}$

• Tradeoffs for ρ, L

Hybrid Monte Carlo (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n - 1)$
• Sample $v \sim \mathcal{U}[0, 1], u^* \sim \mathcal{N}(0, \mathbb{I}_d)$
• Let $x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$
• For $\ell = 1, ..., L$, with $\rho_\ell = \rho, \ell < L, \rho_L = \rho/2$
 $x_\ell = x_{\ell-1} + \rho u_{\ell-1}$ $u_\ell = u_{\ell-1} + \rho_\ell \Delta(x_\ell)$

Set

$$(x^{(i+1)}, u^{(i+1)}) = \begin{cases} (x_L, u_L) & \text{if } A = \min\left\{1, \frac{p(x_L)}{p(x_i)}\exp\left(-\frac{1}{2}(\|u_L\|^2 - \|u^*\|^2)\right)\right\} \\ (x^{(i)}, u^{(i)}) & \text{otherwise} \end{cases}$$

• Tradeoffs for ρ, L

• Large ρ gives low acceptance, small ρ needs many steps

Hybrid Monte Carlo (Contd.)

• Initialize
$$x^{(0)}$$
. For $i = 0, ..., (n - 1)$
• Sample $v \sim \mathcal{U}[0, 1], u^* \sim \mathcal{N}(0, \mathbb{I}_d)$
• Let $x_0 = x^{(i-1)}, u_0 = u^* + \rho \Delta(x_0)/2$
• For $\ell = 1, ..., L$, with $\rho_\ell = \rho, \ell < L, \rho_L = \rho/2$
 $x_\ell = x_{\ell-1} + \rho u_{\ell-1}$ $u_\ell = u_{\ell-1} + \rho_\ell \Delta(x_\ell)$

Set

 $(x^{(i+1)}, u^{(i+1)}) = \begin{cases} (x_L, u_L) & \text{if } A = \min\left\{1, \frac{p(x_L)}{p(x_i)} \exp\left(-\frac{1}{2}(\|u_L\|^2 - \|u^*\|^2)\right)\right\} \\ (x^{(i)}, u^{(i)}) & \text{otherwise} \end{cases}$

- Tradeoffs for ρ, L
 - $\bullet\,$ Large ρ gives low acceptance, small ρ needs many steps
 - Large L gives candidates far from x_0 , but expensive

The Slice Sampler

• Construct extended target distribution

$$p^*(x,u) = egin{cases} 1 & ext{if } 0 \leq u \leq p(x) \ 0 & ext{otherwise} \end{cases}$$

The Slice Sampler

• Construct extended target distribution

$$p^*(x,u) = egin{cases} 1 & ext{if } 0 \leq u \leq p(x) \ 0 & ext{otherwise} \end{cases}$$

• It follows that: $\int p^*(x, u) = \int_0^{p(x)} du = p(x)$

The Slice Sampler

• Construct extended target distribution

$$p^*(x,u) = egin{cases} 1 & ext{if } 0 \leq u \leq p(x) \ 0 & ext{otherwise} \end{cases}$$

- It follows that: $\int p^*(x, u) = \int_0^{p(x)} du = p(x)$
- From the Gibbs sampling perspective

 $p(u|x) = \mathcal{U}[0, p(x)] \qquad p(x|u) = \mathcal{U}_A, A = \{x : p(x) \ge u\}$

The Slice Sampler

• Construct extended target distribution

$$p^*(x,u) = egin{cases} 1 & ext{if } 0 \leq u \leq p(x) \ 0 & ext{otherwise} \end{cases}$$

- It follows that: $\int p^*(x, u) = \int_0^{p(x)} du = p(x)$
- From the Gibbs sampling perspective

 $p(u|x) = \mathcal{U}[0, p(x)] \qquad p(x|u) = \mathcal{U}_A, A = \{x : p(x) \ge u\}$

• Algorithm is easy is A is easy to figure out

The Slice Sampler

• Construct extended target distribution

$$p^*(x,u) = egin{cases} 1 & ext{if } 0 \leq u \leq p(x) \ 0 & ext{otherwise} \end{cases}$$

- It follows that: $\int p^*(x, u) = \int_0^{p(x)} du = p(x)$
- From the Gibbs sampling perspective

 $p(u|x) = \mathcal{U}[0, p(x)] \qquad p(x|u) = \mathcal{U}_A, A = \{x : p(x) \ge u\}$

- Algorithm is easy is A is easy to figure out
- Otherwise, several auxiliary variables need to be introduced

The Slice Sampler (Contd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ