CSci 8980: Advanced Topics in Graphical Models

Instructor: Arindam Banerjee

September 27, 2007

Problems

- Primarily of two types: Integration and Optimization

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
- Computing normalization in Bayesian methods

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{\int_{y^{\prime}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right) d y^{\prime}}
$$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
- Computing normalization in Bayesian methods

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{\int_{y^{\prime}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right) d y^{\prime}}
$$

- Marginalization: $p(y \mid x)=\int_{z} p(y, z \mid x) d z$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
- Computing normalization in Bayesian methods

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{\int_{y^{\prime}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right) d y^{\prime}}
$$

- Marginalization: $p(y \mid x)=\int_{z} p(y, z \mid x) d z$
- Expectation:

$$
E_{y \mid x}[f(y)]=\int_{y} f(y) p(y \mid x) d y
$$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
- Computing normalization in Bayesian methods

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{\int_{y^{\prime}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right) d y^{\prime}}
$$

- Marginalization: $p(y \mid x)=\int_{z} p(y, z \mid x) d z$
- Expectation:

$$
E_{y \mid x}[f(y)]=\int_{y} f(y) p(y \mid x) d y
$$

- Statistical mechanics: Computing the partition function

$$
Z=\sum_{s} \exp \left[-\frac{E(s)}{k T}\right]
$$

Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
- Computing normalization in Bayesian methods

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{\int_{y^{\prime}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right) d y^{\prime}}
$$

- Marginalization: $p(y \mid x)=\int_{z} p(y, z \mid x) d z$
- Expectation:

$$
E_{y \mid x}[f(y)]=\int_{y} f(y) p(y \mid x) d y
$$

- Statistical mechanics: Computing the partition function

$$
Z=\sum_{s} \exp \left[-\frac{E(s)}{k T}\right]
$$

- Optimization, Model Selection, etc.

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\left\{x_{i}\right\}_{i=1}^{n}$ from $p(x)$

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\left\{x_{i}\right\}_{i=1}^{n}$ from $p(x)$
- Construct empirical point mass function

$$
p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(x)
$$

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\left\{x_{i}\right\}_{i=1}^{n}$ from $p(x)$
- Construct empirical point mass function

$$
p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(x)
$$

- One can approximate integrals/sums by

$$
I_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} I(f)=\int_{x} f(x) p(x) d x
$$

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\left\{x_{i}\right\}_{i=1}^{n}$ from $p(x)$
- Construct empirical point mass function

$$
p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(x)
$$

- One can approximate integrals/sums by

$$
I_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} I(f)=\int_{x} f(x) p(x) d x
$$

- Unbiased estimate $I_{n}(f)$ converges by strong law

Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\left\{x_{i}\right\}_{i=1}^{n}$ from $p(x)$
- Construct empirical point mass function

$$
p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(x)
$$

- One can approximate integrals/sums by

$$
I_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} I(f)=\int_{x} f(x) p(x) d x
$$

- Unbiased estimate $I_{n}(f)$ converges by strong law
- For finite σ_{f}^{2}, central limit theorem implies

$$
\sqrt{n}\left(I_{n}(f)-I(f)\right) \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}\left(0, \sigma_{f}^{2}\right)
$$

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$
(1) Sample $x_{i} \sim q(x)$ and $u \sim \mathcal{U}(0,1)$

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$
(1) Sample $x_{i} \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
(2) If $u<\frac{p\left(x_{i}\right)}{M q\left(x_{i}\right)}$, accept x_{i}, else reject

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$
(1) Sample $x_{i} \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
(2) If $u<\frac{p\left(x_{i}\right)}{M q\left(x_{i}\right)}$, accept x_{i}, else reject
- Issues:

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$
(1) Sample $x_{i} \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
(2) If $u<\frac{p\left(x_{i}\right)}{M q\left(x_{i}\right)}$, accept x_{i}, else reject
- Issues:
- Tricky to bound $p(x) / q(x)$ with a reasonable constant M

Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq M q(x), M<\infty$
- Algorithm: For $i=1, \cdots, n$
(1) Sample $x_{i} \sim q(x)$ and $u \sim \mathcal{U}(0,1)$
(2) If $u<\frac{p\left(x_{i}\right)}{M q\left(x_{i}\right)}$, accept x_{i}, else reject
- Issues:
- Tricky to bound $p(x) / q(x)$ with a reasonable constant M
- If M is too large, acceptance probability is small

Rejection Sampling (Contd.)

Importance Sampling

- For a proposal distribution $q(x)$, with $w(x)=p(x) / q(x)$

$$
I(f)=\int_{x} f(x) w(x) q(x) d x
$$

Importance Sampling

- For a proposal distribution $q(x)$, with $w(x)=p(x) / q(x)$

$$
I(f)=\int_{x} f(x) w(x) q(x) d x
$$

- $w(x)$ is the importance weight

Importance Sampling

- For a proposal distribution $q(x)$, with $w(x)=p(x) / q(x)$

$$
I(f)=\int_{x} f(x) w(x) q(x) d x
$$

- $w(x)$ is the importance weight
- Monte Carlo estimate of $I(f)$ based on samples $x_{i} \sim q(x)$

$$
\hat{I}_{n}(f)=\sum_{i=1}^{n} f\left(x_{i}\right) w\left(x_{i}\right)
$$

Importance Sampling

- For a proposal distribution $q(x)$, with $w(x)=p(x) / q(x)$

$$
I(f)=\int_{x} f(x) w(x) q(x) d x
$$

- $w(x)$ is the importance weight
- Monte Carlo estimate of $I(f)$ based on samples $x_{i} \sim q(x)$

$$
\hat{I}_{n}(f)=\sum_{i=1}^{n} f\left(x_{i}\right) w\left(x_{i}\right)
$$

- The estimator is unbiased, and converges to $I(f)$ a.s.

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

- Applying Jensen's and optimizing, we get

$$
q^{*}(x)=\frac{|f(x)| p(x)}{\int|f(x)| p(x) d x}
$$

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

- Applying Jensen's and optimizing, we get

$$
q^{*}(x)=\frac{|f(x)| p(x)}{\int|f(x)| p(x) d x}
$$

- Efficient sampling focuses on regions of high $|f(x)| p(x)$

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

- Applying Jensen's and optimizing, we get

$$
q^{*}(x)=\frac{|f(x)| p(x)}{\int|f(x)| p(x) d x}
$$

- Efficient sampling focuses on regions of high $|f(x)| p(x)$
- Super efficient sampling, variance lower than even $q(x)=p(x)$

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

- Applying Jensen's and optimizing, we get

$$
q^{*}(x)=\frac{|f(x)| p(x)}{\int|f(x)| p(x) d x}
$$

- Efficient sampling focuses on regions of high $|f(x)| p(x)$
- Super efficient sampling, variance lower than even $q(x)=p(x)$
- Exploited to evaluate probability of rare events, $q(x) \propto \mathbb{I}_{E}(x) p(x)$

Importance Sampling (Contd.)

- Choose $q(x)$ that minimizes variance of $\hat{I}_{n}(f)$

$$
\operatorname{var}_{q}(f(x) w(x))=E_{q}\left[f^{2}(x) w^{2}(x)\right]-I^{2}(f)
$$

- Applying Jensen's and optimizing, we get

$$
q^{*}(x)=\frac{|f(x)| p(x)}{\int|f(x)| p(x) d x}
$$

- Efficient sampling focuses on regions of high $|f(x)| p(x)$
- Super efficient sampling, variance lower than even $q(x)=p(x)$
- Exploited to evaluate probability of rare events, $q(x) \propto \mathbb{I}_{E}(x) p(x)$

Importance Sampling (Contd.)

Markov Chains

- Use a Markov chain to explore the state space

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
(1) Irreducible, transition graph is connected

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
(1) Irreducible, transition graph is connected
(2) Aperiodic, does not get trapped in cycles

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
(1) Irreducible, transition graph is connected
(2) Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure $p(x)$ is the invariant distribution

$$
p\left(x_{i}\right) T\left(x_{i-1} \mid x_{i}\right)=p\left(x_{i-1}\right) T\left(x_{i} \mid x_{i-1}\right)
$$

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
(1) Irreducible, transition graph is connected
(2) Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure $p(x)$ is the invariant distribution

$$
p\left(x_{i}\right) T\left(x_{i-1} \mid x_{i}\right)=p\left(x_{i-1}\right) T\left(x_{i} \mid x_{i-1}\right)
$$

- MCMC samplers, invariant distribution $=$ target distribution

Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with

$$
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=T\left(x_{i} \mid x_{i-1}\right)
$$

- A chain is homogenous if T is invariant for all i
- MC will stabilize into an invariant distribution if
(1) Irreducible, transition graph is connected
(2) Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure $p(x)$ is the invariant distribution

$$
p\left(x_{i}\right) T\left(x_{i-1} \mid x_{i}\right)=p\left(x_{i-1}\right) T\left(x_{i} \mid x_{i-1}\right)
$$

- MCMC samplers, invariant distribution $=$ target distribution
- Design of samplers for fast convergence

Markov Chains (Contd.)

- Random walker on the web

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$
- $L=$ link matrix for the web graph

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$
- $L=$ link matrix for the web graph
- $E=$ uniform random matrix, to ensure irreducibility, aperiodicity

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$
- $L=$ link matrix for the web graph
- $E=$ uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution $p(x)$ represents rank of webpage x

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$
- $L=$ link matrix for the web graph
- $E=$ uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution $p(x)$ represents rank of webpage x
- Continuous spaces, T becomes an integral kernel K

$$
\int_{x_{i}} p\left(x_{i}\right) K\left(x_{i+1} \mid x_{i}\right) d x_{i}=p\left(x_{i+1}\right)
$$

Markov Chains (Contd.)

- Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop
- PageRank uses $T=L+E$
- $L=$ link matrix for the web graph
- $E=$ uniform random matrix, to ensure irreducibility, aperiodicity
- Invariant distribution $p(x)$ represents rank of webpage x
- Continuous spaces, T becomes an integral kernel K

$$
\int_{x_{i}} p\left(x_{i}\right) K\left(x_{i+1} \mid x_{i}\right) d x_{i}=p\left(x_{i+1}\right)
$$

- $p(x)$ is the corresponding eigenfunction

The Metropolis-Hastings Algorithm

- Most popular MCMC method

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$
- Algorithm: For $i=0, \ldots,(n-1)$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$
- Algorithm: For $i=0, \ldots,(n-1)$
- Sample $u \sim \mathcal{U}(0,1)$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$
- Algorithm: For $i=0, \ldots,(n-1)$
- Sample $u \sim \mathcal{U}(0,1)$
- Sample $x^{*} \sim q\left(x^{*} \mid x_{i}\right)$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$
- Algorithm: For $i=0, \ldots,(n-1)$
- Sample $u \sim \mathcal{U}(0,1)$
- Sample $x^{*} \sim q\left(x^{*} \mid x_{i}\right)$
- Then

$$
x_{i+1}= \begin{cases}x^{*} & \text { if } u<A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x_{i} \mid x^{*}\right)}{p\left(x_{i}\right) q\left(x^{*} \mid x_{i}\right)}\right\} \\ x_{i} & \text { otherwise }\end{cases}
$$

The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q\left(x^{*} \mid x\right)$
- Algorithm: For $i=0, \ldots,(n-1)$
- Sample $u \sim \mathcal{U}(0,1)$
- Sample $x^{*} \sim q\left(x^{*} \mid x_{i}\right)$
- Then

$$
x_{i+1}= \begin{cases}x^{*} & \text { if } u<A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x_{i} \mid x^{*}\right)}{p\left(x_{i}\right) q\left(x^{*} \mid x_{i}\right)}\right\} \\ x_{i} & \text { otherwise }\end{cases}
$$

- The transition kernel is

$$
K_{M H}\left(x_{i+1} \mid x_{i}\right)=q\left(x_{i+1} \mid x_{i}\right) A\left(x_{i}, x_{i+1}\right)+\delta_{x_{i}}\left(x_{i+1}\right) r\left(x_{i}\right)
$$

where $r\left(x_{i}\right)$ is the term associated with rejection

$$
r\left(x_{i}\right)=\int_{x} q\left(x \mid x_{i}\right)\left(1-A\left(x_{i}, x\right)\right) d x
$$

The Metropolis-Hastings Algorithm (Contd.)

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution
- Basic properties

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution
- Basic properties
- Irreducibility, ensure support of q contains support of p

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution
- Basic properties
- Irreducibility, ensure support of q contains support of p
- Aperiodicity, ensured since rejection is always a possibility

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution
- Basic properties
- Irreducibility, ensure support of q contains support of p
- Aperiodicity, ensured since rejection is always a possibility
- Independent sampler: $q\left(x^{*} \mid x_{i}\right)=q\left(x^{*}\right)$ so that

$$
A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x_{i}\right)}{q\left(x^{*}\right) p\left(x_{i}\right)}\right\}
$$

The Metropolis-Hastings Algorithm (Contd.)

- By construction

$$
p\left(x_{i}\right) K_{M H}\left(x_{i+1} \mid x_{i}\right)=p\left(x_{i+1}\right) K_{M H}\left(x_{i} \mid x_{i+1}\right)
$$

- Implies $p(x)$ is the invariant distribution
- Basic properties
- Irreducibility, ensure support of q contains support of p
- Aperiodicity, ensured since rejection is always a possibility
- Independent sampler: $q\left(x^{*} \mid x_{i}\right)=q\left(x^{*}\right)$ so that

$$
A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x_{i}\right)}{q\left(x^{*}\right) p\left(x_{i}\right)}\right\}
$$

- Metropolis sampler: symmetric $q\left(x^{*} \mid x_{i}\right)=q\left(x_{i} \mid x^{*}\right)$

$$
A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right)}{p\left(x_{i}\right)}\right\}
$$

The Metropolis-Hastings Algorithm (Contd.)

$\sigma=100$

Simulated Annealing

- Problem: To find global maximum of $p(x)$

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_{i}(x) \propto p^{1 / T_{i}}(x)$

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_{i}(x) \propto p^{1 / T_{i}}(x)$
- Sample update follows

$$
x_{i+1}=\left\{\begin{array}{ll}
x^{*} & \text { if } u<A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p^{\frac{1}{T_{i}}}\left(x^{*}\right) q\left(x_{i} \mid x^{*}\right)}{p^{\frac{1}{T_{i}}}\left(x_{i}\right) q\left(x^{*} \mid x_{i}\right)}\right.
\end{array}\right\}
$$

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_{i}(x) \propto p^{1 / T_{i}}(x)$
- Sample update follows

$$
x_{i+1}=\left\{\begin{array}{ll}
x^{*} & \text { if } u<A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p^{\frac{1}{T_{i}}}\left(x^{*}\right) q\left(x_{i} \mid x^{*}\right)}{p^{\frac{1}{T_{i}}}\left(x_{i}\right) q\left(x^{*} \mid x_{i}\right)}\right.
\end{array}\right\}
$$

- T_{i} decreases following a cooling schedule, $\lim _{i \rightarrow \infty} T_{i}=0$

Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_{i}(x) \propto p^{1 / T_{i}}(x)$
- Sample update follows

$$
x_{i+1}=\left\{\begin{array}{ll}
x^{*} & \text { if } u<A\left(x_{i}, x^{*}\right)=\min \left\{1, \frac{p^{\frac{1}{T_{i}}}\left(x^{*}\right) q\left(x_{i} \mid x^{*}\right)}{p^{\frac{1}{T_{i}}}\left(x_{i}\right) q\left(x^{*} \mid x_{i}\right)}\right.
\end{array}\right\}
$$

- T_{i} decreases following a cooling schedule, $\lim _{i \rightarrow \infty} T_{i}=0$
- Cooling schedule needs proper choice, e.g., $T_{i}=\frac{1}{C \log \left(i+T_{0}\right)}$

Simulated Annealing (Contd.)

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

- Estimate the expectation using MCMC

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$
A\left(z, z^{*}\right)=\min \left\{1, \frac{p\left(x \mid z^{*}, \theta_{n}\right) p\left(z^{*} \mid \theta_{n}\right) q\left(z \mid z^{*}\right)}{p\left(x \mid z, \theta_{n}\right) p\left(z \mid \theta_{n}\right) q\left(z^{*} \mid z\right)}\right\}
$$

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$
A\left(z, z^{*}\right)=\min \left\{1, \frac{p\left(x \mid z^{*}, \theta_{n}\right) p\left(z^{*} \mid \theta_{n}\right) q\left(z \mid z^{*}\right)}{p\left(x \mid z, \theta_{n}\right) p\left(z \mid \theta_{n}\right) q\left(z^{*} \mid z\right)}\right\}
$$

- Several variants:

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$
A\left(z, z^{*}\right)=\min \left\{1, \frac{p\left(x \mid z^{*}, \theta_{n}\right) p\left(z^{*} \mid \theta_{n}\right) q\left(z \mid z^{*}\right)}{p\left(x \mid z, \theta_{n}\right) p\left(z \mid \theta_{n}\right) q\left(z^{*} \mid z\right)}\right\}
$$

- Several variants:
- Stochastic EM: Draw one sample

Monte Carlo EM

- E-step involves computing an expectation

$$
Q\left(\theta, \theta_{n}\right)=\int_{x} \log p(x, z \mid \theta) p\left(z \mid x, \theta_{n}\right) d x
$$

- Estimate the expectation using MCMC
- Draw samples using MH with acceptance probability

$$
A\left(z, z^{*}\right)=\min \left\{1, \frac{p\left(x \mid z^{*}, \theta_{n}\right) p\left(z^{*} \mid \theta_{n}\right) q\left(z \mid z^{*}\right)}{p\left(x \mid z, \theta_{n}\right) p\left(z \mid \theta_{n}\right) q\left(z^{*} \mid z\right)}\right\}
$$

- Several variants:
- Stochastic EM: Draw one sample
- Monte Carlo EM: Draw multiple samples

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals
- Global proposals explore the entire space (with probability α)

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals
- Global proposals explore the entire space (with probability α)
- Local proposals discover finer details (with probability $(1-\alpha)$)

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals
- Global proposals explore the entire space (with probability α)
- Local proposals discover finer details (with probability $(1-\alpha)$)
- Example: Target has many narrow peaks

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals
- Global proposals explore the entire space (with probability α)
- Local proposals discover finer details (with probability $(1-\alpha)$)
- Example: Target has many narrow peaks
- Global proposal gets the peaks

Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_{1}, K_{2} be kernels with invariant distribution p
- Mixture kernel $\alpha K_{1}+(1-\alpha) K_{2}, \alpha \in[0,1]$ converges to p
- Cycle kernel $K_{1} K_{2}$ converges to p
- Mixtures can use global and local proposals
- Global proposals explore the entire space (with probability α)
- Local proposals discover finer details (with probability $(1-\alpha)$)
- Example: Target has many narrow peaks
- Global proposal gets the peaks
- Local proposals get the neighborhood of peaks (random walk)

Cycles of MCMC Kernels

- Split a multi-variate state into blocks

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$
K_{\text {MHCycle }}\left(x^{(i+1)} \mid x^{(i)}\right)=\prod_{j=1}^{n_{b}} K_{M H(j)}\left(x_{b_{j}}^{(i+1)} \mid x_{b_{j}}^{(i)}, x_{-\left[b_{j}\right]}^{(i+1)}\right)
$$

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$
K_{\text {MHCycle }}\left(x^{(i+1)} \mid x^{(i)}\right)=\prod_{j=1}^{n_{b}} K_{M H(j)}\left(x_{b_{j}}^{(i+1)} \mid x_{b_{j}}^{(i)}, x_{-\left[b_{j}\right]}^{(i+1)}\right)
$$

- Trade-off on block size

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$
K_{\text {MHCycle }}\left(x^{(i+1)} \mid x^{(i)}\right)=\prod_{j=1}^{n_{b}} K_{M H(j)}\left(x_{b_{j}}^{(i+1)} \mid x_{b_{j}}^{(i)}, x_{-\left[b_{j}\right]}^{(i+1)}\right)
$$

- Trade-off on block size
- If block size is small, chain takes long time to explore the space

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$
K_{\text {MHCycle }}\left(x^{(i+1)} \mid x^{(i)}\right)=\prod_{j=1}^{n_{b}} K_{M H(j)}\left(x_{b_{j}}^{(i+1)} \mid x_{b_{j}}^{(i)}, x_{-\left[b_{j}\right]}^{(i+1)}\right)
$$

- Trade-off on block size
- If block size is small, chain takes long time to explore the space
- If block size is large, acceptance probability is low

Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

$$
K_{\text {MHCycle }}\left(x^{(i+1)} \mid x^{(i)}\right)=\prod_{j=1}^{n_{b}} K_{M H(j)}\left(x_{b_{j}}^{(i+1)} \mid x_{b_{j}}^{(i)}, x_{-\left[b_{j}\right]}^{(i+1)}\right)
$$

- Trade-off on block size
- If block size is small, chain takes long time to explore the space
- If block size is large, acceptance probability is low
- Gibbs sampling effectively uses block size of 1

The Gibbs Sampler

- For a d-dimensional vector x, assume we know

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{1}, \ldots, x_{j-1}, x_{j+1}, \cdots, x_{d}\right)
$$

The Gibbs Sampler

- For a d-dimensional vector x, assume we know

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{1}, \ldots, x_{j-1}, x_{j+1}, \cdots, x_{d}\right)
$$

- Gibbs sampler uses the following proposal distribution

$$
q\left(x^{*} \mid x^{(i)}\right)= \begin{cases}p\left(x_{j}^{*} \mid x_{-j}^{(i)}\right) & \text { if } x_{-j}^{*}=x_{-j}^{(i)} \\ 0 & \text { otherwise }\end{cases}
$$

The Gibbs Sampler

- For a d-dimensional vector x, assume we know

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{1}, \ldots, x_{j-1}, x_{j+1}, \cdots, x_{d}\right)
$$

- Gibbs sampler uses the following proposal distribution

$$
q\left(x^{*} \mid x^{(i)}\right)= \begin{cases}p\left(x_{j}^{*} \mid x_{-j}^{(i)}\right) & \text { if } x_{-j}^{*}=x_{-j}^{(i)} \\ 0 & \text { otherwise }\end{cases}
$$

- The acceptance probability

$$
A\left(x^{(i)}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x^{(i)} \mid x^{*}\right)}{p\left(x^{(i)}\right) q\left(x^{*} \mid x^{(i)}\right)}\right\}=1
$$

The Gibbs Sampler

- For a d-dimensional vector x, assume we know

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{1}, \ldots, x_{j-1}, x_{j+1}, \cdots, x_{d}\right)
$$

- Gibbs sampler uses the following proposal distribution

$$
q\left(x^{*} \mid x^{(i)}\right)= \begin{cases}p\left(x_{j}^{*} \mid x_{-j}^{(i)}\right) & \text { if } x_{-j}^{*}=x_{-j}^{(i)} \\ 0 & \text { otherwise }\end{cases}
$$

- The acceptance probability

$$
A\left(x^{(i)}, x^{*}\right)=\min \left\{1, \frac{p\left(x^{*}\right) q\left(x^{(i)} \mid x^{*}\right)}{p\left(x^{(i)}\right) q\left(x^{*} \mid x^{(i)}\right)}\right\}=1
$$

- Deterministic scan: All samples are accepted

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{d}^{(i+1)} \sim p\left(x_{d} \mid x_{1}^{(i+1)}, \ldots, x_{d-1}^{(i+1)}\right)$

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- ...
- Sample $x_{d}^{(i+1)} \sim p\left(x_{d} \mid x_{1}^{(i+1)}, \ldots, x_{d-1}^{(i+1)}\right)$
- Possible to have MH steps inside a Gibbs sampler

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- ...
- Sample $x_{d}^{(i+1)} \sim p\left(x_{d} \mid x_{1}^{(i+1)}, \ldots, x_{d-1}^{(i+1)}\right)$
- Possible to have MH steps inside a Gibbs sampler
- For $d=2$, Gibbs sampler is the data augmentation algorithm

The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(N-1)$
- Sample $x_{1}^{(i+1)} \sim p\left(x_{1} \mid x_{2}^{(i)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- Sample $x_{2}^{(i+1)} \sim p\left(x_{1} \mid x_{1}^{(i+1)}, x_{3}^{(i)} \ldots, x_{d}^{(i)}\right)$
- ...
- Sample $x_{d}^{(i+1)} \sim p\left(x_{d} \mid x_{1}^{(i+1)}, \ldots, x_{d-1}^{(i+1)}\right)$
- Possible to have MH steps inside a Gibbs sampler
- For $d=2$, Gibbs sampler is the data augmentation algorithm
- For Bayes nets, the conditioning is on the Markov blanket

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{p a(j)}\right) \prod_{k \in c h(j)} p\left(x_{k} \mid p a(k)\right)
$$

Bayesian LDA

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

- Notation:

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

- Notation:
- $C_{\left(d_{-\ell, h)}\right.}^{D T}=$ words from d assigned to h, excluding current word

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

- Notation:
- $C_{\left(d_{-\ell}, h\right)}^{D T}=$ words from d assigned to h, excluding current word
- $C_{\left(w_{-\ell, h)}\right.}^{W T}=w_{\ell}$ assigned to h, excluding current word

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

- Notation:
- $C_{\left(d_{-\ell}, h\right)}^{D T}=$ words from d assigned to h, excluding current word
- $C_{\left(w_{-\ell, h)}\right.}^{W T}=w_{\ell}$ assigned to h, excluding current word
- Then, the first term

$$
p\left(z_{\ell}=h \mid z_{-\ell}\right)=\frac{C_{\left(d_{-\ell}, h\right)}^{D T}+\alpha}{\sum_{t=1}^{T} C_{\left(d_{-\ell, t)}\right.}^{D T}+T \alpha}
$$

Gibbs Sampler for Bayesian LDA

- The conditional distribution

$$
p\left(z_{\ell}=h \mid \mathbf{z}_{-\ell}, \mathbf{w}\right) \propto p\left(z_{\ell}=h \mid z_{-\ell}\right) p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-\ell}\right)
$$

- Notation:
- $C_{\left(d_{-\ell}, h\right)}^{D T}=$ words from d assigned to h, excluding current word
- $C_{\left(w_{-\ell, h)}\right.}^{W T}=w_{\ell}$ assigned to h, excluding current word
- Then, the first term

$$
p\left(z_{\ell}=h \mid z_{-\ell}\right)=\frac{C_{\left(d_{-\ell, h)}\right.}^{D T}+\alpha}{\sum_{t=1}^{T} C_{\left(d_{-\ell, t)}\right.}^{D T}+T \alpha}
$$

- The second term

$$
p\left(w_{\ell} \mid z_{\ell}=h, \mathbf{z}_{-\ell}, \mathbf{w}_{-e l l}\right)=\frac{C_{(w-\ell, h)}^{W T}+\beta}{\sum_{w=1}^{W} C_{\left(w_{-\ell, h)}\right.}^{W T}+W \beta}
$$

Basic Idea

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$

Basic Idea

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$
- Sample $\left(x_{i}, u_{i}\right)$, and then ignore u_{i}

Basic Idea

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$
- Sample $\left(x_{i}, u_{i}\right)$, and then ignore u_{i}
- Consider two well-known examples:

Basic Idea

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$
- Sample $\left(x_{i}, u_{i}\right)$, and then ignore u_{i}
- Consider two well-known examples:
- Hybrid Monte Carlo

Basic Idea

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$
- Sample $\left(x_{i}, u_{i}\right)$, and then ignore u_{i}
- Consider two well-known examples:
- Hybrid Monte Carlo
- Slice sampling

Hybrid Monte Carlo

- Uses gradient of the target distribution

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of $p(x)$

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of $p(x)$
- Introduce auxiliary momentum variables $u \in \mathbb{R}^{d}$ with

$$
p(x, u)=p(x) N\left(u ; 0, \mathbb{I}_{d}\right)
$$

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of $p(x)$
- Introduce auxiliary momentum variables $u \in \mathbb{R}^{d}$ with

$$
p(x, u)=p(x) N\left(u ; 0, \mathbb{I}_{d}\right)
$$

- Gradient vector $\Delta(x)=\partial \log p(x) / \partial x$, step-size ρ

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of $p(x)$
- Introduce auxiliary momentum variables $u \in \mathbb{R}^{d}$ with

$$
p(x, u)=p(x) N\left(u ; 0, \mathbb{I}_{d}\right)
$$

- Gradient vector $\Delta(x)=\partial \log p(x) / \partial x$, step-size ρ
- Gradient descent for L steps to get proposal candidate

Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves "mixing" in high dimensions
- Effectively, take steps based on gradient of $p(x)$
- Introduce auxiliary momentum variables $u \in \mathbb{R}^{d}$ with

$$
p(x, u)=p(x) N\left(u ; 0, \mathbb{I}_{d}\right)
$$

- Gradient vector $\Delta(x)=\partial \log p(x) / \partial x$, step-size ρ
- Gradient descent for L steps to get proposal candidate
- When $L=1$, one obtains the Langevin algorithm

$$
x^{*}=x_{0}+\rho u_{0}=x^{(i-1)}+\rho\left(u^{*}+\rho \Delta\left(x^{(i-1)}\right) / 2\right)
$$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$
- For $\ell=1, \ldots, L$, with $\rho_{\ell}=\rho, \ell<L, \rho_{L}=\rho / 2$

$$
x_{\ell}=x_{\ell-1}+\rho u_{\ell-1} \quad u_{\ell}=u_{\ell-1}+\rho_{\ell} \Delta\left(x_{\ell}\right)
$$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$
- For $\ell=1, \ldots, L$, with $\rho_{\ell}=\rho, \ell<L, \rho_{L}=\rho / 2$

$$
x_{\ell}=x_{\ell-1}+\rho u_{\ell-1} \quad u_{\ell}=u_{\ell-1}+\rho_{\ell} \Delta\left(x_{\ell}\right)
$$

- Set

$$
\left(x^{(i+1)}, u^{(i+1)}\right)= \begin{cases}\left(x_{L}, u_{L}\right) & \text { if } A=\min \left\{1, \frac{p\left(x_{L}\right)}{p\left(x_{i}\right)} \exp \left(-\frac{1}{2}\left(\left\|u_{L}\right\|^{2}-\left\|u^{*}\right\|^{2}\right)\right)\right\} \\ \left(x^{(i)}, u^{(i)}\right) & \text { otherwise }\end{cases}
$$

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$
- For $\ell=1, \ldots, L$, with $\rho_{\ell}=\rho, \ell<L, \rho_{L}=\rho / 2$

$$
x_{\ell}=x_{\ell-1}+\rho u_{\ell-1} \quad u_{\ell}=u_{\ell-1}+\rho_{\ell} \Delta\left(x_{\ell}\right)
$$

- Set

$$
\left(x^{(i+1)}, u^{(i+1)}\right)= \begin{cases}\left(x_{L}, u_{L}\right) & \text { if } A=\min \left\{1, \frac{p\left(x_{L}\right)}{p\left(x_{i}\right)} \exp \left(-\frac{1}{2}\left(\left\|u_{L}\right\|^{2}-\left\|u^{*}\right\|^{2}\right)\right)\right\} \\ \left(x^{(i)}, u^{(i)}\right) & \text { otherwise }\end{cases}
$$

- Tradeoffs for ρ, L

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$
- For $\ell=1, \ldots, L$, with $\rho_{\ell}=\rho, \ell<L, \rho_{L}=\rho / 2$

$$
x_{\ell}=x_{\ell-1}+\rho u_{\ell-1} \quad u_{\ell}=u_{\ell-1}+\rho_{\ell} \Delta\left(x_{\ell}\right)
$$

- Set
$\left(x^{(i+1)}, u^{(i+1)}\right)= \begin{cases}\left(x_{L}, u_{L}\right) & \text { if } A=\min \left\{1, \frac{p\left(x_{L}\right)}{p\left(x_{i}\right)} \exp \left(-\frac{1}{2}\left(\left\|u_{L}\right\|^{2}-\left\|u^{*}\right\|^{2}\right)\right)\right\} \\ \left(x^{(i)}, u^{(i)}\right) & \text { otherwise }\end{cases}$
- Tradeoffs for ρ, L
- Large ρ gives low acceptance, small ρ needs many steps

Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i=0, \ldots,(n-1)$
- Sample $v \sim \mathcal{U}[0,1], u^{*} \sim \mathcal{N}\left(0, \mathbb{I}_{d}\right)$
- Let $x_{0}=x^{(i-1)}, u_{0}=u^{*}+\rho \Delta\left(x_{0}\right) / 2$
- For $\ell=1, \ldots, L$, with $\rho_{\ell}=\rho, \ell<L, \rho_{L}=\rho / 2$

$$
x_{\ell}=x_{\ell-1}+\rho u_{\ell-1} \quad u_{\ell}=u_{\ell-1}+\rho_{\ell} \Delta\left(x_{\ell}\right)
$$

- Set
$\left(x^{(i+1)}, u^{(i+1)}\right)= \begin{cases}\left(x_{L}, u_{L}\right) & \text { if } A=\min \left\{1, \frac{p\left(x_{L}\right)}{p\left(x_{i}\right)} \exp \left(-\frac{1}{2}\left(\left\|u_{L}\right\|^{2}-\left\|u^{*}\right\|^{2}\right)\right)\right\} \\ \left(x^{(i)}, u^{(i)}\right) & \text { otherwise }\end{cases}$
- Tradeoffs for ρ, L
- Large ρ gives low acceptance, small ρ needs many steps
- Large L gives candidates far from x_{0}, but expensive

The Slice Sampler

- Construct extended target distribution

$$
p^{*}(x, u)= \begin{cases}1 & \text { if } 0 \leq u \leq p(x) \\ 0 & \text { otherwise }\end{cases}
$$

The Slice Sampler

- Construct extended target distribution

$$
p^{*}(x, u)= \begin{cases}1 & \text { if } 0 \leq u \leq p(x) \\ 0 & \text { otherwise }\end{cases}
$$

- It follows that: $\int p^{*}(x, u)=\int_{0}^{p(x)} d u=p(x)$

The Slice Sampler

- Construct extended target distribution

$$
p^{*}(x, u)= \begin{cases}1 & \text { if } 0 \leq u \leq p(x) \\ 0 & \text { otherwise }\end{cases}
$$

- It follows that: $\int p^{*}(x, u)=\int_{0}^{p(x)} d u=p(x)$
- From the Gibbs sampling perspective

$$
p(u \mid x)=\mathcal{U}[0, p(x)] \quad p(x \mid u)=\mathcal{U}_{A}, A=\{x: p(x) \geq u\}
$$

The Slice Sampler

- Construct extended target distribution

$$
p^{*}(x, u)= \begin{cases}1 & \text { if } 0 \leq u \leq p(x) \\ 0 & \text { otherwise }\end{cases}
$$

- It follows that: $\int p^{*}(x, u)=\int_{0}^{p(x)} d u=p(x)$
- From the Gibbs sampling perspective

$$
p(u \mid x)=\mathcal{U}[0, p(x)] \quad p(x \mid u)=\mathcal{U}_{A}, A=\{x: p(x) \geq u\}
$$

- Algorithm is easy is A is easy to figure out

The Slice Sampler

- Construct extended target distribution

$$
p^{*}(x, u)= \begin{cases}1 & \text { if } 0 \leq u \leq p(x) \\ 0 & \text { otherwise }\end{cases}
$$

- It follows that: $\int p^{*}(x, u)=\int_{0}^{p(x)} d u=p(x)$
- From the Gibbs sampling perspective

$$
p(u \mid x)=\mathcal{U}[0, p(x)] \quad p(x \mid u)=\mathcal{U}_{A}, A=\{x: p(x) \geq u\}
$$

- Algorithm is easy is A is easy to figure out
- Otherwise, several auxiliary variables need to be introduced

The Slice Sampler (Contd.)

