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List of alleles in a local region of a chromosome
Inherited as a unit, if there is no recombination

Repeated recombinations between ancestral haplotypes
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decrease LD

Infer chromosomal recombination hotspots

Help understand origin and characteristics of genetic variation

Analyze genetic variation to reconstruct evolutionary history
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Implemented using a Hidden Markov Dirichlet Process
(HMDP)
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Hard to perform inference of ancestral features
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Dirichlet Process Mixtures (Contd.)

Hi = [Hi ,1, . . . ,Hi ,T ] haplotype over T SNPs, chromosome i

Ak = [Ak,1, . . . ,Ak,T ] ancestral haplotype, mutation rate θk

Ci , inheritance variable, latent ancestor of Hi

Generative Model:

Draw a first haplotype

a1|DP(τ,Q0) ∼ Q0

h1 ∼ Ph(·|a1, θ1)

For subsequent haplotypes

ci |DP(τ,Q0) ∼

{
p(ci = cj for some j < i |c1, . . . , ci−1) =

ncj

i−1+α0

p(ci 6= cj for all j < i |c1, . . . , ci−1) = α0

i−1+α0
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Dirichlet Process Mixtures (Contd.)

Generative Model (contd)

Sample the founder of haplotype i

φci |DP(τ,Q0)

{
= {acj , θcj}ifci = cj for somej < i

∼ Q(a, θ)ifci 6= cj for allj < i

Sample the haplotype according to its founder

hi |ci ∼ P(·|aci , θci )

Assumes each haplotype originates from one ancestor

Valid only for short regions in chromosome
Long regions will have recombination
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Hidden Markov Dirichlet Process

Nonparametric Bayesian HMM

Sample a DP to form the support of the infinite state space

Conditioned on each state, sample a DP with the same
support

Hierarchical Urns

Stock urn Q0 with balls of K colors, nk of color k
HMM-urns Q1, . . . ,QK for prior and transition probabilities
Let mj,k be the number of balls of color k in urn Qj

HDPM can be simulated by sampling from the urn hierarchy

Hierarchical DPM

Q0|α, F ∼ DP(α, F )

Qj |τ,Q0 ∼ DP(τ,Q0)
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Hidden Markov Dirichlet Process (Contd.)

Each color corresponds to ancestor configuration
φk = {ak , θk}

For n random draws from Q0

φn|φ−n ∼
K∑

k=1

nk

n − 1 + α
δφk

(φn) +
α

n − 1 + α
F (φn)

Conditioned on Q0, the marginal configs from Qj

φmj |φ−mj ∼
∑
k

mj ,k + τ nk
n−1+α

mj − 1 + tau
+

τ

mj − 1 + τ

α

n − 1 + α
F (φmj )
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HMDP for Recombination and Inheritance

Priors for the conditional model parameters
F (A, θ) = p(A)p(θ)

p(A) is assumed uniform, p(θ) is assumed beta

Ci = [Ci ,1, . . . ,Ci ,T ] ancestral index for chromosome i

With no recombination, Ci ,t = k,∀t for some k

Non-recombination is modeled by Poisson point process

P(Ci ,t+1 = Ci ,t = k) = exp(−dr) + (1− exp(−dr))πkk

d is the distance between the two loci
r is the rate of recombination per unit distance

The transition probability to state k ′ is

P(Ci ,t = k,Ci ,t+1 = k ′) = (1− exp(dr))πkk ′
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HMDP for Recombination and Inheritance (Contd.)

Hi is a mosaic of multiple ancestral chromosomes

Model is a time-inhomogenous infinite HMM

With r →∞, we get stationary HMM

Single locus mutation model for emission

p(ht |at , θ) = θI(ht=at)

(
1− θ

|B| − 1

)I(ht 6=at)
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Haplotype Recombination and Inheritance
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HMDP for Recombination and Inheritance (Contd.)

Conditional probability of haplotype list h

p(h|c , a) =
∏
k

∫
θk

∏
i ,t|ci,t=k

p(hi ,t |ak,t , θk)Beta(θk |αh, βh)dθk

=
∏
k

Γ(αh + βh)

Γ(αh)Γ(βh)

Γ(αh + `k)Γ(βh + `′k)

Γ(αh + βh + `k + `′k)

(
1

|B| − 1

)`′
k

where

`k =
∑
i ,t

I(hi ,t = ak,t)I(ci ,t = k) `′k =
∑
i ,t

I(hi ,t 6= ak,t)I(ci ,t = k)
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Inference

Gibbs sampler proceeds in two steps

Sample inheritance {Ci,k} given h and a
Sample ancestors a = {a1, . . . , aK} given h,C

Improve mixing for sampling inheritance

By Bayes rule

p(ct+1 : t + δ|c−, h, a) ∝
t+δ∏
j=t

p(cj+1|cj ,m, n)
t+δ∏

j=t+1

p(hj |acj ,j , `cj )

Assume probability of having two recombinations is small

p(ct+1 : t + δ|c−, h, a) ∝ p(ct′ |ct′−1,m, n)p(ct+δ+1|ct+δ = ct′ ,m, n)
t+δ∏

j=t+1

p(hj |acj ,j , `cj )
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Inference (Contd.)

Assuming d , r to be small, λ = 1− exp(−dr) ≈ dr

p(ct′ = k|ct′−1 = k,m, n, r , d) =

{
λπk,k ′ + (1− λ)δ(k, k ′)fork ′ ∈ {1, . . . ,K}
λπk,K+1 fork ′ = K + 1

Terms can be replaced in original equation to get sampler

Posterior distribution for ancestors

p(ak,t |c , h) ∝ Γ(αh + βh)

Γ(αh)Γ(βh)

Γ(αh + `k,t)Γ(βh + `′k,t)

Γ(αh + βh + `k,t + `′k,t)

(
1

|B| − 1

)`′
k,t
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Single Population Data

Haplotype block boundaries
HMDP (black solid), HMM (red dotted), MDL (blue dashed)
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Two Population Data
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Hierarchical DPM for Haplotype Inference
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Hierarchical DPM for Haplotype Inference (Contd.)
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Experiments: Hapmap Data

SNP genotypes from four populations

CEPH, Utah residents with northern/weatern European
ancestry, 60
YRI, Yoruba in Ibadan, Nigeria, 60
CHB, Han Chinese in Beijing, 45
JPT, Japanese in Tokyo, 44

Experiments on short (∼ 10) and long (∼ 102 − 103) SNPs
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Short SNP Sequences
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Long SNP Sequences
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Mutation Rates and Diversity
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Mutation Rates and Diversity (Contd.)
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