Basics	HMDP	Inference	Results	HDPM	Results

CSci 8980: Advanced Topics in Graphical Models Analysis of Genetic Variation

Instructor: Arindam Banerjee

November 26, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Single nucleotide polymorphism (SNP)

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus

• Nucleotide can be one of $\{A, C, T, G\}$

Basics	HMDP	Inference	Results	HDPM	Results
Genetic	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs

Basics	HMDP	Inference	Results	HDPM	Results
Genetic	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs

• Each variant is called an allele

Basics	HMDP	Inference	Results	HDPM	Results
Genetic	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs

- Each variant is called an *allele*
- Haplotype

Basics	HMDP	Inference	Results	HDPM	Results
Genetic	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs
 - Each variant is called an *allele*
- Haplotype
 - List of alleles in a local region of a chromosome

Basics	HMDP	Inference	Results	HDPM	Results
Genetic I	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs
 - Each variant is called an *allele*
- Haplotype
 - List of alleles in a local region of a chromosome
 - Inherited as a unit, if there is no recombination

Basics	HMDP	Inference	Results	HDPM	Results
Genetic I	Polymorp	hism			

- Single nucleotide polymorphism (SNP)
 - Two possible kinds of nucleotides at a single locus
 - Nucleotide can be one of $\{A, C, T, G\}$
 - Most genetic human variation are related to SNPs
 - Each variant is called an *allele*
- Haplotype
 - List of alleles in a local region of a chromosome
 - Inherited as a unit, if there is no recombination
- Repeated recombinations between ancestral haplotypes

 Basics
 HMDP
 Inference
 Results
 HDPM
 Results

 Genetic Polymorphism (Contd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Linkage disequilibrium (LD)

- Linkage disequilibrium (LD)
 - Non-random association of alleles at different loci

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Linkage disequilibrium (LD)
 - Non-random association of alleles at different loci
 - Recombination decouples alleles, increase randomness, decrease LD

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Linkage disequilibrium (LD)
 - Non-random association of alleles at different loci
 - Recombination decouples alleles, increase randomness, decrease LD

• Infer chromosomal recombination hotspots

- Linkage disequilibrium (LD)
 - Non-random association of alleles at different loci
 - Recombination decouples alleles, increase randomness, decrease LD
- Infer chromosomal recombination hotspots
 - Help understand origin and characteristics of genetic variation

- Linkage disequilibrium (LD)
 - Non-random association of alleles at different loci
 - Recombination decouples alleles, increase randomness, decrease LD
 - Infer chromosomal recombination hotspots
 - Help understand origin and characteristics of genetic variation

• Analyze genetic variation to reconstruct evolutionary history

Basics	F	IMDP	Inference	Results	HDPM	Results

Haplotype Recombination and Inheritance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Generative model for choosing recombination sites

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Generative model for choosing recombination sites
- Hidden Markov process

- Generative model for choosing recombination sites
- Hidden Markov process
 - Hidden states correspond to index over chromosomes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Generative model for choosing recombination sites
- Hidden Markov process
 - Hidden states correspond to index over chromosomes
 - Transition probabilities correspond to recombination rates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Generative model for choosing recombination sites
- Hidden Markov process
 - Hidden states correspond to index over chromosomes
 - Transition probabilities correspond to recombination rates
 - Emission model corresponds to mutation process that give descendants

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics	HMDP	Inference	Results	HDPM	Results
Hidder	n Markov P	rocess			

- Generative model for choosing recombination sites
- Hidden Markov process
 - Hidden states correspond to index over chromosomes
 - Transition probabilities correspond to recombination rates
 - Emission model corresponds to mutation process that give descendants

 Implemented using a Hidden Markov Dirichlet Process (HMDP)

Basics	HMDP	Inference	Results	HDPM	Results
Dirichl	et Process	Mixtures			

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• We know the basics of DPMs

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	et Process	Mixtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	let Process	Mixtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A pool of ancestor haplotypes or founders

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	et Process	Mixtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A pool of ancestor haplotypes or founders
- The size of the pool is unknown

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	et Process	Mixtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model

- A pool of ancestor haplotypes or founders
- The size of the pool is unknown
- Standard coalescence based models

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	et Process	Mivtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model

- A pool of ancestor haplotypes or founders
- The size of the pool is unknown
- Standard coalescence based models
 - Hidden variables is prohibitively large

Basics	HMDP	Inference	Results	HDPM	Results
Dirich	at Process	Mixtures			

- We know the basics of DPMs
- Haplotype modeling using an infinite mixture model
 - A pool of ancestor haplotypes or founders
 - The size of the pool is unknown
- Standard coalescence based models
 - Hidden variables is prohibitively large
 - Hard to perform inference of ancestral features

Basics	HMDP	Inference	Results	HDPM	Results
Dirichlet	Process	Mixtures (Co	ontd.)		

• $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Basics	HMDP	Inference	Results	HDPM	Results
Dirichlet	Process	Mixtures (Co	ontd.)		

- $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i
- $A_k = [A_{k,1}, \dots, A_{k,T}]$ ancestral haplotype, mutation rate θ_k

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Basics	HMDP	Inference	Results	HDPM	Results
Dirichle	et Process	Mixtures (Co	ontd.)		

- $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i
- $A_k = [A_{k,1}, \dots, A_{k,T}]$ ancestral haplotype, mutation rate θ_k

• C_i , inheritance variable, latent ancestor of H_i

Basics	HMDP	Inference	Results	HDPM	Results
Dirichl	et Process	Mixtures (C	ontd.)		

- $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i
- $A_k = [A_{k,1}, \dots, A_{k,T}]$ ancestral haplotype, mutation rate θ_k

- C_i , inheritance variable, latent ancestor of H_i
- Generative Model:

Basics	HMDP	Inference	Results	HDPM	Results
Dirichl	et Process	Mixtures (Co	ontd.)		

- $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i
- $A_k = [A_{k,1}, \dots, A_{k,T}]$ ancestral haplotype, mutation rate θ_k
- C_i , inheritance variable, latent ancestor of H_i
- Generative Model:
 - Draw a first haplotype

$$egin{array}{rcl} egin{array}{rcl} egin{arra$$

Basics	HMDP	Inference	Results	HDPM	Results
Dirichl	et Process	Mixtures (Co	ontd.)		

- $H_i = [H_{i,1}, \dots, H_{i,T}]$ haplotype over T SNPs, chromosome i
- $A_k = [A_{k,1}, \dots, A_{k,T}]$ ancestral haplotype, mutation rate θ_k
- C_i , inheritance variable, latent ancestor of H_i
- Generative Model:
 - Draw a first haplotype

• For subsequent haplotypes

$$c_i | DP(\tau, Q_0) \sim \begin{cases} p(c_i = c_j \text{for some } j < i | c_1, \dots, c_{i-1}) = \frac{n_{c_j}}{i-1+\alpha_0} \\ p(c_i \neq c_j \text{for all } j < i | c_1, \dots, c_{i-1}) = \frac{\alpha_0}{i-1+\alpha_0} \end{cases}$$
Basics	HMDP	Inference	Results	HDPM	Results
Dirichle	et Process	Mixtures (Co	ontd.)		

• Generative Model (contd)

- Generative Model (contd)
 - Sample the founder of haplotype *i*

$$\phi_{c_i} | DP(\tau, Q_0) \begin{cases} = \{a_{c_i}, \theta_{c_j}\} \text{if } c_i = c_j \text{for some} j < i \\ \sim Q(a, \theta) \text{if } c_i \neq c_j \text{for all} j < i \end{cases}$$

- Generative Model (contd)
 - Sample the founder of haplotype *i*

$$\phi_{c_i} | DP(\tau, Q_0) \begin{cases} = \{a_{c_i}, \theta_{c_j}\} \text{if } c_i = c_j \text{for some} j < i \\ \sim Q(a, \theta) \text{if } c_i \neq c_j \text{for all} j < i \end{cases}$$

• Sample the haplotype according to its founder

$$h_i | c_i \sim P(\cdot | a_{c_i}, \theta_{c_i})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Generative Model (contd)
 - Sample the founder of haplotype i

$$\phi_{c_i} | DP(\tau, Q_0) \begin{cases} = \{a_{c_i}, \theta_{c_j}\} \text{if } c_i = c_j \text{for some} j < i \\ \sim Q(a, \theta) \text{if } c_i \neq c_j \text{for all} j < i \end{cases}$$

• Sample the haplotype according to its founder

$$h_i | c_i \sim P(\cdot | a_{c_i}, \theta_{c_i})$$

• Assumes each haplotype originates from one ancestor

- Generative Model (contd)
 - Sample the founder of haplotype *i*

$$\phi_{c_i} | DP(\tau, Q_0) \begin{cases} = \{a_{c_i}, \theta_{c_j}\} \text{if } c_i = c_j \text{for some} j < i \\ \sim Q(a, \theta) \text{if } c_i \neq c_j \text{for all} j < i \end{cases}$$

• Sample the haplotype according to its founder

$$h_i | c_i \sim P(\cdot | a_{c_i}, \theta_{c_i})$$

- Assumes each haplotype originates from one ancestor
 - Valid only for short regions in chromosome

- Generative Model (contd)
 - Sample the founder of haplotype *i*

$$\phi_{c_i} | DP(\tau, Q_0) \begin{cases} = \{a_{c_i}, \theta_{c_j}\} \text{if } c_i = c_j \text{for some} j < i \\ \sim Q(a, \theta) \text{if } c_i \neq c_j \text{for all} j < i \end{cases}$$

• Sample the haplotype according to its founder

$$h_i | c_i \sim P(\cdot | a_{c_i}, \theta_{c_i})$$

- Assumes each haplotype originates from one ancestor
 - Valid only for short regions in chromosome
 - Long regions will have recombination

Basics	HMDP	Inference	Results	HDPM	Results
Hidden M	larkov Dirio	chlet Process	5		

• Nonparametric Bayesian HMM

Basics	HMDP	Inference	Results	HDPM	Results
Hidden	Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basics	HMDP	Inference	Results	HDPM	Results
Hidden	Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space

• Conditioned on each state, sample a DP with the same support

Basics	HMDP	Inference	Results	HDPM	Results
Liddon	Markov	iriahlat Draa			
Fildden	IVIARKOV D	irichiet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space

- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns

Basics	HMDP	Inference	Results	HDPM	Results
Hidder	n Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space
- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns
 - Stock urn Q_0 with balls of K colors, n_k of color k

Basics	HMDP	Inference	Results	HDPM	Results
Hidden	Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space
- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns
 - Stock urn Q_0 with balls of K colors, n_k of color k
 - HMM-urns Q_1, \ldots, Q_K for prior and transition probabilities

Basics	HMDP	Inference	Results	HDPM	Results
Hidden	Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space
- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns
 - Stock urn Q_0 with balls of K colors, n_k of color k
 - HMM-urns Q_1, \ldots, Q_K for prior and transition probabilities

• Let $m_{j,k}$ be the number of balls of color k in urn Q_j

Basics	HMDP	Inference	Results	HDPM	Results
Hidder	Markov D	irichlet Proc	ess		

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space
- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns
 - Stock urn Q_0 with balls of K colors, n_k of color k
 - HMM-urns Q_1, \ldots, Q_K for prior and transition probabilities
 - Let $m_{j,k}$ be the number of balls of color k in urn Q_j
 - HDPM can be simulated by sampling from the urn hierarchy

Basics	HMDP	Inference	Results	HDPM	Results				
Hidden	Hidden Markov Dirichlet Process								

- Nonparametric Bayesian HMM
- Sample a DP to form the support of the infinite state space
- Conditioned on each state, sample a DP with the same support
- Hierarchical Urns
 - Stock urn Q_0 with balls of K colors, n_k of color k
 - HMM-urns Q_1, \ldots, Q_K for prior and transition probabilities
 - Let $m_{j,k}$ be the number of balls of color k in urn Q_j
 - HDPM can be simulated by sampling from the urn hierarchy
- Hierarchical DPM

 $Q_0|\alpha, F \sim DP(\alpha, F)$ $Q_j|\tau, Q_0 \sim DP(\tau, Q_0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Each color corresponds to ancestor configuration $\phi_k = \{a_k, \theta_k\}$

- Each color corresponds to ancestor configuration $\phi_k = \{a_k, \theta_k\}$
- For *n* random draws from Q_0

$$\phi_n | \phi_{-n} \sim \sum_{k=1}^{K} \frac{n_k}{n-1+\alpha} \delta_{\phi_k}(\phi_n) + \frac{\alpha}{n-1+\alpha} F(\phi_n)$$

- Each color corresponds to ancestor configuration $\phi_k = \{a_k, \theta_k\}$
- For *n* random draws from Q_0

$$\phi_n | \phi_{-n} \sim \sum_{k=1}^{K} \frac{n_k}{n-1+\alpha} \delta_{\phi_k}(\phi_n) + \frac{\alpha}{n-1+\alpha} F(\phi_n)$$

• Conditioned on Q_0 , the marginal configs from Q_j

$$\phi_{m_j}|\phi_{-m_j}\sim \sum_k \frac{m_{j,k}+\tau \frac{n_k}{n-1+\alpha}}{m_j-1+tau}+\frac{\tau}{m_j-1+\tau}\frac{\alpha}{n-1+\alpha}F(\phi_{m_j})$$

- Each color corresponds to ancestor configuration $\phi_k = \{a_k, \theta_k\}$
- For *n* random draws from Q_0

$$\phi_n | \phi_{-n} \sim \sum_{k=1}^{K} \frac{n_k}{n-1+\alpha} \delta_{\phi_k}(\phi_n) + \frac{\alpha}{n-1+\alpha} F(\phi_n)$$

• Conditioned on Q_0 , the marginal configs from Q_j

$$\phi_{m_j}|\phi_{-m_j}\sim \sum_k \frac{m_{j,k}+\tau \frac{n_k}{n-1+\alpha}}{m_j-1+tau}+\frac{\tau}{m_j-1+\tau}\frac{\alpha}{n-1+\alpha}F(\phi_{m_j})$$

Basics HMDP Inference Results H	DPM Results

HMDP for Recombination and Inheritance

• Priors for the conditional model parameters $F(A, \theta) = p(A)p(\theta)$

Basics	HMDP	Inference	Results	HDPM	Results

HMDP for Recombination and Inheritance

- Priors for the conditional model parameters
 F(A, θ) = p(A)p(θ)
- p(A) is assumed uniform, $p(\theta)$ is assumed beta

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters $F(A, \theta) = p(A)p(\theta)$
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \dots, C_{i,T}]$ ancestral index for chromosome i

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters $F(A, \theta) = p(A)p(\theta)$
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \ldots, C_{i,T}]$ ancestral index for chromosome *i*

• With no recombination, $C_{i,t} = k, \forall t$ for some k

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters
 F(A, θ) = p(A)p(θ)
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \dots, C_{i,T}]$ ancestral index for chromosome *i*
- With no recombination, $C_{i,t} = k, \forall t$ for some k
- Non-recombination is modeled by Poisson point process

 $P(C_{i,t+1} = C_{i,t} = k) = \exp(-dr) + (1 - \exp(-dr))\pi_{kk}$

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters
 F(A, θ) = p(A)p(θ)
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \dots, C_{i,T}]$ ancestral index for chromosome *i*
- With no recombination, $C_{i,t} = k, \forall t$ for some k
- Non-recombination is modeled by Poisson point process

 $P(C_{i,t+1} = C_{i,t} = k) = \exp(-dr) + (1 - \exp(-dr))\pi_{kk}$

• *d* is the distance between the two loci

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters
 F(A, θ) = p(A)p(θ)
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \dots, C_{i,T}]$ ancestral index for chromosome *i*
- With no recombination, $C_{i,t} = k, \forall t$ for some k
- Non-recombination is modeled by Poisson point process

 $P(C_{i,t+1} = C_{i,t} = k) = \exp(-dr) + (1 - \exp(-dr))\pi_{kk}$

- *d* is the distance between the two loci
- r is the rate of recombination per unit distance

Basics	HMDP	Inference	Results	HDPM	Results

- Priors for the conditional model parameters
 F(A, θ) = p(A)p(θ)
- p(A) is assumed uniform, $p(\theta)$ is assumed beta
- $C_i = [C_{i,1}, \dots, C_{i,T}]$ ancestral index for chromosome *i*
- With no recombination, $C_{i,t} = k, \forall t$ for some k
- Non-recombination is modeled by Poisson point process

 $P(C_{i,t+1} = C_{i,t} = k) = \exp(-dr) + (1 - \exp(-dr))\pi_{kk}$

- d is the distance between the two loci
- r is the rate of recombination per unit distance
- The transition probability to state k' is

$$P(C_{i,t} = k, C_{i,t+1} = k') = (1 - \exp(dr))\pi_{kk'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• H_i is a mosaic of multiple ancestral chromosomes

- *H_i* is a mosaic of multiple ancestral chromosomes
- Model is a time-inhomogenous infinite HMM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *H_i* is a mosaic of multiple ancestral chromosomes
- Model is a time-inhomogenous infinite HMM
- With $r \to \infty$, we get stationary HMM

- *H_i* is a mosaic of multiple ancestral chromosomes
- Model is a time-inhomogenous infinite HMM
- With $r \to \infty$, we get stationary HMM
- Single locus mutation model for emission

$$p(h_t|a_t, heta) = heta^{\mathbb{I}(h_t=a_t)} \left(rac{1- heta}{|B|-1}
ight)^{\mathbb{I}(h_t
eq a_t)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics		HMDP	Inference	Results	HDPM	Results
	-					

Haplotype Recombination and Inheritance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conditional probability of haplotype list h

$$p(h|c,a) = \prod_{k} \int_{\theta_{k}} \prod_{i,t|c_{i,t}=k} p(h_{i,t}|a_{k,t},\theta_{k}) Beta(\theta_{k}|\alpha_{h},\beta_{h}) d\theta_{k}$$
$$= \prod_{k} \frac{\Gamma(\alpha_{h}+\beta_{h})}{\Gamma(\alpha_{h})\Gamma(\beta_{h})} \frac{\Gamma(\alpha_{h}+\ell_{k})\Gamma(\beta_{h}+\ell_{k}')}{\Gamma(\alpha_{h}+\beta_{h}+\ell_{k}+\ell_{k}')} \left(\frac{1}{|B|-1}\right)^{\ell_{k}'}$$

where

$$\ell_k = \sum_{i,t} \mathbb{I}(h_{i,t} = a_{k,t}) \mathbb{I}(c_{i,t} = k) \quad \ell'_k = \sum_{i,t} \mathbb{I}(h_{i,t} \neq a_{k,t}) \mathbb{I}(c_{i,t} = k)$$

Basics	HMDP	Inference	Results	HDPM	Results
Inference					

• Gibbs sampler proceeds in two steps

Basics	HMDP	Inference	Results	HDPM	Results
Inference					

- Gibbs sampler proceeds in two steps
 - Sample inheritance $\{C_{i,k}\}$ given h and a

Basics	HMDP	Inference	Results	HDPM	Results
Inference					

- Gibbs sampler proceeds in two steps
 - Sample inheritance $\{C_{i,k}\}$ given h and a
 - Sample ancestors $a = \{a_1, \ldots, a_K\}$ given h, C
| Basics | HMDP | Inference | Results | HDPM | Results |
|-----------|------|-----------|---------|------|---------|
| Inference | | | | | |

- Gibbs sampler proceeds in two steps
 - Sample inheritance $\{C_{i,k}\}$ given h and a
 - Sample ancestors $a = \{a_1, \ldots, a_K\}$ given h, C
- Improve mixing for sampling inheritance

Basics	HMDP	Inference	Results	HDPM	Results
Inference					

- Gibbs sampler proceeds in two steps
 - Sample inheritance $\{C_{i,k}\}$ given h and a
 - Sample ancestors $a = \{a_1, \ldots, a_K\}$ given h, C
- Improve mixing for sampling inheritance
 - By Bayes rule

$$p(c_{t+1}: t+\delta|c_-, h, a) \propto \prod_{j=t}^{t+\delta} p(c_{j+1}|c_j, m, n) \prod_{j=t+1}^{t+\delta} p(h_j|a_{c_j,j}, \ell_{c_j})$$

Basics	HMDP	Inference	Results	HDPM	Results
Inference	ce				

- Gibbs sampler proceeds in two steps
 - Sample inheritance $\{C_{i,k}\}$ given h and a
 - Sample ancestors $a = \{a_1, \ldots, a_K\}$ given h, C
- Improve mixing for sampling inheritance
 - By Bayes rule

$$p(c_{t+1}:t+\delta|c_-,h,a) \propto \prod_{j=t}^{t+\delta} p(c_{j+1}|c_j,m,n) \prod_{j=t+1}^{t+\delta} p(h_j|a_{c_j,j},\ell_{c_j})$$

• Assume probability of having two recombinations is small

$$p(c_{t+1}: t+\delta | c_{-}, h, a) \propto p(c_{t'} | c_{t'-1}, m, n) p(c_{t+\delta+1} | c_{t+\delta} = c_{t'}, m, n)$$

i=

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics	HMDP	Inference	Results	HDPM	Results
Inference	(Contd.)				

• Assuming d, r to be small, $\lambda = 1 - \exp(-dr) pprox dr$

$$p(c_{t'} = k | c_{t'-1} = k, m, n, r, d) = \begin{cases} \lambda \pi_{k,k'} + (1-\lambda)\delta(k,k') \text{for} k' \in \{\lambda \pi_{k,K+1} & \text{for} k' = K+1 \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Basics	HMDP	Inference	Results	HDPM	Results
Inference	(Contd.)				

• Assuming d,r to be small, $\lambda = 1 - \exp(-dr) pprox dr$

$$p(c_{t'} = k | c_{t'-1} = k, m, n, r, d) = \begin{cases} \lambda \pi_{k,k'} + (1-\lambda)\delta(k,k') \text{for} k' \in \{ \lambda \pi_{k,K+1} & \text{for} k' = K+1 \end{cases}$$

◆□> <圖> < E> < E> E のQQ

• Terms can be replaced in original equation to get sampler

Basics	HMDP	Inference	Results	HDPM	Results
Inference	(Contd.)				

• Assuming d,r to be small, $\lambda = 1 - \exp(-dr) pprox dr$

$$p(c_{t'} = k | c_{t'-1} = k, m, n, r, d) = \begin{cases} \lambda \pi_{k,k'} + (1-\lambda)\delta(k,k') \text{for} k' \in \{\lambda \pi_{k,K+1} \mid \text{for} k' = K+1 \end{cases}$$

- Terms can be replaced in original equation to get sampler
- Posterior distribution for ancestors

$$p(a_{k,t}|c,h) \propto rac{\Gamma(lpha_h+eta_h)}{\Gamma(lpha_h)\Gamma(eta_h)} rac{\Gamma(lpha_h+\ell_{k,t})\Gamma(eta_h+\ell_{k,t})}{\Gamma(lpha_h+eta_h+\ell_{k,t}+\ell_{k,t}')} \left(rac{1}{|B|-1}
ight)^{\ell_{k,t}'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basics	HMDP	Inference	Results	HDPM	Results
Single F	Dopulation	Data			

Haplotype block boundaries HMDP (black solid), HMM (red dotted), MDL (blue dashed)

(日)、

æ

Basics	HMDP	Inference	Results	HDPM	Results
Two Pc	pulation E	Data			

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Basics	HMDP	Inference	Results	HDPM	Results
		c	1.0		

Hierarchical DPM for Haplotype Inference

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Basics	HMDP	Inference	Results	HDPM	Results
Hierarchio	cal DPM fo	r Haplotype	Inference (Contd.)	

$$\begin{split} &Q_0(\phi_1,\phi_2,\ldots)|\gamma,F\ \sim\ \mathrm{DP}(\gamma,F),\\ &Q_j(\phi_1^{(j)},\phi_2^{(j)},\ldots)|\tau,Q_0\ \sim\ \mathrm{DP}(\tau,Q_0),\\ &\phi_{i_e}^{(j)}|Q_j\ \sim\ Q_j,\\ &h_{i_e}^{(j)}|\phi_{i_e}^{(j)}\ \sim\ P_h(\cdot|\phi_{i_e}^{(j)}),\\ &g_i^{(j)}|h_{i_0}^{(j)},h_{i_1}^{(j)}\ \sim\ P_g(\cdot|h_{i_0}^{(j)},h_{i_1}^{(j)}), \end{split}$$

sample a DP of founders for all populations;

sample the DP of founders for each population; sample the founder of haplotype i_e in population j;

sample haplotype i_e in population j;

sample genotype i in population j,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basics	HMDP	Inference	Results	HDPM	Results
Experir	nents [,] Han	man Data			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• SNP genotypes from four populations

Basics	HMDP	Inference	Results	HDPM	Results
Evneri	ments [,] Han	man Data			

- SNP genotypes from four populations
 - CEPH, Utah residents with northern/weatern European ancestry, 60

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basics	HMDP	Inference	Results	HDPM	Results
Evneri	ments [.] Han	man Data			

experiments: Hapmap Data

- SNP genotypes from four populations
 - CEPH, Utah residents with northern/weatern European ancestry, 60

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• YRI, Yoruba in Ibadan, Nigeria, 60

Basics	HMDP	Inference	Results	HDPM	Results
Evneri	ments: Han	man Data			

- SNP genotypes from four populations
 - CEPH, Utah residents with northern/weatern European ancestry, 60

- YRI, Yoruba in Ibadan, Nigeria, 60
- CHB, Han Chinese in Beijing, 45

Basics	HMDP	Inference	Results	HDPM	Results
Evneri	ments: Han	man Data			

тепіз. партар Dala

- SNP genotypes from four populations
 - CEPH, Utah residents with northern/weatern European ancestry, 60

- YRI, Yoruba in Ibadan, Nigeria, 60
- CHB, Han Chinese in Beijing, 45
- JPT, Japanese in Tokyo, 44

Basics	HMDP	Inference	Results	HDPM	Results
Experime	ents: Hap	map Data			

- SNP genotypes from four populations
 - CEPH, Utah residents with northern/weatern European ancestry, 60
 - YRI, Yoruba in Ibadan, Nigeria, 60
 - CHB, Han Chinese in Beijing, 45
 - JPT, Japanese in Tokyo, 44
- \bullet Experiments on short (~ 10) and long $(\sim 10^2-10^3)~\text{SNPs}$

Basics	HMDP	Inference	Results	HDPM	Results
Short S	VP Seaue	nces			

Haplotype error (err_s) of short SNPs in four populations

・ロト ・聞ト ・ヨト ・ヨト

æ

Basics	HMDP	Inference	Results	HDPM	Results
Long S	ND Sequer				

Haplotype error (d_w) of long SNPs in four populations 0.18 HDP Phase fastPhase NA 0.16 0.14 0.12 0.1 ⊳≯ 0.08 0.06 0.04 0.02 0 5 6 Region ID 3 Δ 10

・ロト ・聞ト ・ヨト ・ヨト

æ

Basics	HMDP	Inference	Results	HDPM	Results
Mutati	on Rates a	nd Diversity			

(a) CEPH

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Basics HMDP Inference Results HDPM Results

Mutation Rates and Diversity (Contd.)

(c) Han Chinese

(d) Japanese

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ