▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CSci 8980: Advanced Topics in Graphical Models

Instructor: Arindam Banerjee

September 4, 2007

General Information

- Course Number: CSci 8980
- Class: Tu Th 09:45-11:00 am
- Location: 156 Amundson Hall
- Instructor: Arindam Banerjee
- Office Hours: EE/CS 6-213 Tu Th 11 am 12 noon
- Web page: http://www-users.itlabs.umn.edu/classes/Fall-2007/csci8980-graph
- Email: banerjee@cs.umn.edu

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Course Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Course Work

• Paper Reviews: 30% of total grade

• Review 10 papers from the 'Papers' section

- Paper Reviews: 30% of total grade
 - Review 10 papers from the 'Papers' section
 - Each paper is 3% of total grade

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class
- Cannot submit more than 10 reviews

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class
- Cannot submit more than 10 reviews
- Guidelines in class page

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class
- Cannot submit more than 10 reviews
- Guidelines in class page
- Paper Presentation: 15% of total grade

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class
- Cannot submit more than 10 reviews
- Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section

- Paper Reviews: 30% of total grade
 - Review 10 papers from the 'Papers' section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes

- Paper Reviews: 30% of total grade
 - Review 10 papers from the 'Papers' section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes
 - Guidelines in class page

- Paper Reviews: 30% of total grade
 - Review 10 papers from the 'Papers' section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes
 - Guidelines in class page
- Class Participation: 10% of total grade

- Paper Reviews: 30% of total grade
 - Review 10 papers from the 'Papers' section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes
 - Guidelines in class page
- Class Participation: 10% of total grade
 - Discussion, Q&A in class

Course Work

- Review 10 papers from the 'Papers' section
- Each paper is 3% of total grade
- 1-2 page reviews, due before class
- Cannot submit more than 10 reviews
- Guidelines in class page
- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes
 - Guidelines in class page
- Class Participation: 10% of total grade
 - Discussion, Q&A in class
 - Contributions need to be constructive/useful

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Course Work (Contd.)

Course Work (Contd.)

• Class Project: 45% of total grade

• Has the following components

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
- Groups of 1-2 (you can work on your own)

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
- Groups of 1-2 (you can work on your own)
- Stop by if you want to discuss project ideas

Course Work (Contd.)

- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
- Groups of 1-2 (you can work on your own)
- Stop by if you want to discuss project ideas
- Guidelines in class page

Topics

• Warmup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Warmup
 - Finite Mixture Models, EM, Exponential Families

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation
- Applications

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation
- Applications
 - Topic Modeling, Social Network Analysis

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation
- Applications
 - Topic Modeling, Social Network Analysis
 - Computational Biology

Finite Mixture Models (FMM)

• A FMM is a probabilistic model of the form

$$p(x|\alpha,\Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h)$$

Finite Mixture Models (FMM)

• A FMM is a probabilistic model of the form

$$p(x|\alpha,\Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h)$$

• α is a discrete distribution over k components

Finite Mixture Models (FMM)

• A FMM is a probabilistic model of the form

$$p(x|\alpha,\Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h)$$

- α is a discrete distribution over k components
- $p_h(x|\theta_h)$ is the distribution of the h^{th} component

Finite Mixture Models (FMM)

• A FMM is a probabilistic model of the form

$$p(x|\alpha,\Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h)$$

- α is a discrete distribution over k components
- $p_h(x|\theta_h)$ is the distribution of the h^{th} component
- Widely used for model-based clustering

FMM (Contd.)

• Generative Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FMM (Contd.)

- Generative Model
 - Sample $h \sim \alpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FMM (Contd.)

- Generative Model
 - Sample $h \sim \alpha$
 - Sample $x \sim p(x|\theta_h)$

FMM (Contd.)

• Generative Model

- Sample $h\sim \alpha$
- Sample $x \sim p(x|\theta_h)$

• Given a set of samples $\mathcal{X} = \{x_1, \dots, x_n\}$

FMM (Contd.)

• Generative Model

- Sample $h \sim \alpha$
- Sample $x \sim p(x|\theta_h)$
- Given a set of samples $\mathcal{X} = \{x_1, \dots, x_n\}$
 - Estimation problem: Which set of parameters are most likely

$$(lpha^*, \Theta^*) = \operatorname{argmax}_{(lpha, \Theta)} \sum_{i=1}^n \log p(x_i | lpha, \Theta)$$

FMM (Contd.)

• Generative Model

- Sample $h \sim \alpha$
- Sample $x \sim p(x|\theta_h)$
- Given a set of samples $\mathcal{X} = \{x_1, \dots, x_n\}$
 - Estimation problem: Which set of parameters are most likely

$$(\alpha^*, \Theta^*) = \operatorname{argmax}_{(\alpha, \Theta)} \sum_{i=1}^n \log p(x_i | \alpha, \Theta)$$

• Minimizes KL-divergence to the empirical distribution

FMM (Contd.)

• Generative Model

- Sample $h \sim \alpha$
- Sample $x \sim p(x|\theta_h)$
- Given a set of samples $\mathcal{X} = \{x_1, \dots, x_n\}$
 - Estimation problem: Which set of parameters are most likely

$$(\alpha^*, \Theta^*) = \operatorname{argmax}_{(\alpha, \Theta)} \sum_{i=1}^n \log p(x_i | \alpha, \Theta)$$

- Minimizes KL-divergence to the empirical distribution
- Inference problem: Which component z_i generated sample x_i?

Learning Mixture Models

• Estimation: Need to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)$$

Learning Mixture Models

• Estimation: Need to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)$$

• Direct optimization w.r.t. (α, Θ) is "tricky"

Learning Mixture Models

• Estimation: Need to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)$$

- Direct optimization w.r.t. (α, Θ) is "tricky"
- Expectation Maximization (EM) is the standard approach

Learning Mixture Models

• Estimation: Need to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)$$

- Direct optimization w.r.t. (α, Θ) is "tricky"
- Expectation Maximization (EM) is the standard approach
- Recent years have seen progress on alternative methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

EM: The Basic Idea

• Let z_i be the latent component generating x_i

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z | \alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i | \theta_{z_i}))$$

EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z | \alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i | \theta_{z_i}))$$

• A random variable, function of latent variables z_i

EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z | \alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i | \theta_{z_i}))$$

- A random variable, function of latent variables z_i
- EM implements the following:

EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z | \alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i | \theta_{z_i}))$$

- A random variable, function of latent variables z_i
- EM implements the following:
 - Inference (E-step): Obtain the distributions $p(z_i|x_i, \alpha, \Theta)$

EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z | \alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i | \theta_{z_i}))$$

- A random variable, function of latent variables z_i
- EM implements the following:
 - Inference (E-step): Obtain the distributions $p(z_i|x_i, \alpha, \Theta)$
 - Estimation (M-step): Obtain parameters (α, Θ) that maximize

 $E_{Z}[\log p(X, Z | \alpha, \Theta)]$