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Directed Graphical Models

e Graph G =(V,E)
@ Each vertex is a random variable
o 7(s) denote the set of all parents of s € V

@ The joint distribution

p(x) = [ plxslxn(s)

seV
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Graphical Models

Undirected Graphical Models

Distribution factorizes over cliques of the graph

Let ¢ : X" — R, be a function over clique C
The joint distribution

o9 = L et
C

Z ensures the distribution is normalized

Known as a Markov random field
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Exponential Families

Basics (Review)

For any h: X" — R, define measure v as dv = h(x)dx
Let t = {¢pn|a € T} be a set of sufficient statistics
Let 6 = {0.|ac € Z} be the natural parameters

The family of density functions w.r.t. dv

p(x; ) = exp((0, t(x)) — ¢ (0))

where

(0) = log / exp( (0, t(x)))(dx)

X
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Exponential Families

Graphical Models as Exponential Families

@ Graphical models are described as products of functions

@ Products are additive in the exponent
o Ising Model:

Each vertex is a Bernoulli random variable
Components xg, x; interact only if there is an edge
The joint distribution

p(x; 0) = exp ZGXS+ Z Ostxsxe — (0)

scV (s,t)€E

Dimensionality of the model is d = n + |E]
It is a regular exponential family, with © = R
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@ Latent Dirichlet Allocation: For a single document
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Exponential Families

Graphical Models as Exponential Families (Contd.)

@ Latent Dirichlet Allocation: For a single document

N

p(8, 2, wla, B) = p(6la) [ | p(zal6)p(wn|za, 5)

n=1

k Nk N k V
X exp (Z(a; —1)log8; + Z Z I;(z,) log 0; + Z Z Z Ii[zp)!

i=1 n=1 i=1 n=1 i=1 j=1

@ The sufficient statistics consists of:

{|Og 9/7 [’]ll(} {]L'[Z,,] |Og 9,‘, [’]Il< [n]i\l} {Hi[zn]ﬂj[wn]v [i]ll(a [n]i\lv D]Y}
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@ 1 is the cumulant or log-partition function
e Y(f)is C>* on ©
@ lts derivatives gives the moments of 6

P(0)
90,
9% ()
90,00(3)

= Eplta(x)]
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Exponential Families

Properties of the Cumulant v

@ 1 is the cumulant or log-partition function
e Y(f)is C>* on ©
@ lts derivatives gives the moments of 6

WO~ Eftate
2)
m = Bplta(x)t5(x)] = Eglta(x)]Eg[ts(x)]

@ 1 is a convex function, strictly convex if t(x) is minimal
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Exponential Families

Properties of the Cumulant ¢ (Contd.)

The set of mean parameters

M = {u € Rdap(.)s.t./ t(x)p(x)v(dx) = M}

o Consider the mapping A : © — M as

NO) = Exlt()] = [ t(x)p(xi0)v(e)

X

If t is minimal, A is one-to-one
Further, A is onto the (relative) interior of M
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Exponential Families

Fenchel-Legendre Conjugacy

@ The conjugate dual function

V(1) = sup{{p,0) — ¥(0)}
/€O

@ The (Bolzmann-Shannon) entropy of p(x;0) w.r.t. v is

H(p(x;0)) = — / p(x; 0) log p(x; 0)v(dx) = —Egy|log p(x; )]

X

o If u €riM, then
Y*(u) = —H(p(x; 0(1)))

@ In terms of the dual, v has a variational representation

P(0) = sup {(0,p) — " (1)}
HEM
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Variational Methods

Main Issues

@ Key problems:

o Computation of the cumulant function ()
o Computation of the mean parameter p = Ep[t(x)]

@ The key equation for both problems

P(0) = sup {(0, ) — ¢ (n)}

HeEM

@ For all § € ©, the supremum is attained by u € ri M

p= ()] = [ tplxio)u(ex)

X

@ Two primary challenges

o Set M is difficult to characterize
e Function ¥* lacks an explicit definition
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Variational Methods

Mean Parameters

@ M has the following properties

e M is full-dimensional if t is minimal
o M is bounded iff © = R? and  is Lipschitz

@ Example: Mutinomial random vector x € X"
o The set M is a polytope

M ={u € R|(aj, ) < bj,¥j € T}

o Index set J is finite, but can be large
@ Facets of the polytope can grow very fast with n

o A complete graph with n = 7 has more than 2 x 108 facets
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Variational Methods

Dual Function

@ * is the negative entropy
@ Typically, does not have an explicit closed form

@ In general, can be specified as a composition of two functions

o Compute an inverse image () using A=1(u)
o Compute the negative entropy of p(x;6(u))

)

Y=

woo T A —H(p(x0(p) [ A (i
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Mean Field Approximation

Tractable Families

Based on the key equation

Y(0) = sup {(u,0) —¢*(u)}

HEM

Mean field focuses on tractable distributions

Let H C G on which exact calculations are feasible
Z(H) be the indices of cliques in H

Natural parameters for distributions corresponding to H

E(H)={0€0]0,=0,Yaec IT\ZI(H)}
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Mean Field Approximation

Tractable Families (Contd.)

e Simple tractable subgraph is H = (V,0)
@ Natural parameters belong to the subspace

E(H) = {0 € ©lfs = 0, ¥(s, t) € E}

Corresponding distribution p(x;0) = [[..\ p(xs; 0s)
Structured approximation using spanning tree T = (V,E(T))

Natural parameters belong to the subspace

E(T)=1{0€0|0+=0, ¥(s,t) € E(T)}

For a subgraph H, the set of realizable mean parameters

Mrace(Gi H) = {1 € R = Ey[t(x)], 0 € E(H)}

The inclusion Myact(G; H) € M(G) always holds
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Mean Field Approximation

Lower Bounds

o For any 1 € ri M, v:(0) > (0, 1) — (1)
@ Alternative proof using Jensen's inequality

_ o exp({f, t(x)))
Y(l) = |0g/XP(Xv9)p(X;9)

> / p(x; 6) [(6, £(x)) — log p(x; 6(1))] v(dk)

X

= (0, 1) — ()

v(dx)

@ In general, ©* does not have closed form
@ Since 1}, has an explicit form, solve approximation

sup  {(u, 0) — ()}

M eM tract
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Mean Field Approximation

Naive Mean Field

@ Chooses a fully factorized distribution to approximate the
original distribution

We will study Ising model as an example

Approximate G by fully disconnected graph Hy with no edges

Then, the mean parameter set

Miract = {(MSa /Lst)‘o < s <1 ps = ,Usﬂt}

The negative entropy of the product distribution is

Yip() = Y s log pis + (1 — us) log(1 — pis)]
seV
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Mean Field Approximation

Naive Mean Field (Contd.)

@ The naive mean field problem takes the form

max  {(u, 0) — ¥, (1)}

HEMiract

o Using pst = pspte, we get the reduced problem

max Z Ospts + Z Ostpispte — Z[Hs log s + 1 - ,us) log

€[o,1]"
{nshelo1] (s,t)€E seV

@ It is concave in us with other co-ordinates held fixed
@ Taking gradient and setting it to zero yields

1
1+ exp(—(0s + X sen(s) Osthit))

Hs <
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Mean Field Approximation

Structured Mean Field

o Considers tractable distributions with additional structure
e For subgraph H, lets Z(H) be the index set associated with H
With u(H) = {ua|a € H}, we have

o The subvector i(H) can be an arbitrary member of M(H)
o Dual v}, depends only on p(H), not on ug, 5 € Z(G) \ Z(H)

But such pp do appear in the (i, 3) term

Each pg = gg(i(H)), i.e., depends on p(H) non-linearly

The approximate optimization problem can be written as

sup Z Oatta + Z O a1t — Yk (p(H))

u(H)eM(H) a€Z(H) a€Z(H)

For Ising model, with Hy = (V,0), gst((Ho)) = pspit
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Mean Field Approximation

Structured Mean Field (Contd.)

e Let F(u(H)) denote the cost function
o Taking derivative w.r.t. ug, 3 € Z(H) yields

OF (u(H) 9ga(p(H))  0vf(u(H))
(7 - '9 + 00{ -
s . GIZC 3#9 Opp
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Structured Mean Field (Contd.)

e Let F(u(H)) denote the cost function
o Taking derivative w.r.t. ug, 3 € Z(H) yields

OF(u(H) _, ) Haagaaﬂ p(H)) 03 (u(H))
B
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v3(H) = %";H)) is the inverse moment mapping

Setting the gradient to zero yields the update

0ga(1(H))
” <_9ﬂ+ e; Oa Oug

gis: = 11+ and so on

For Ising model,

We get the exact updates as naive mean field

In general, H can be more involved
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Mean Field Approximation

Non-convexity of Mean Field

@ The original problem is concave
e The constraint set M(H) is convex
e The objective contains entropy and linear terms in p,
@ The (structured) mean field contains non-linear terms
® > aez(H) Pagalnt) involves non-linear function g,
e For Ismg model, g, is of the form pspu;
e A quadratic form need not be concave
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