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Directed Graphical Models

Graph G = (V ,E )

Each vertex is a random variable

π(s) denote the set of all parents of s ∈ V

The joint distribution

p(x) =
∏
s∈V

p(xs |xπ(s))
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Undirected Graphical Models

Distribution factorizes over cliques of the graph

Let ψC : X n 7→ R+ be a function over clique C

The joint distribution

p(x) =
1

Z

∏
C

ψC (xC )

Z ensures the distribution is normalized

Known as a Markov random field
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Basics (Review)

For any h : X n 7→ R+, define measure ν as dν = h(x)dx

Let t = {φα|α ∈ I} be a set of sufficient statistics

Let θ = {θα|α ∈ I} be the natural parameters

The family of density functions w.r.t. dν

p(x ; θ) = exp(〈θ, t(x)〉 − ψ(θ))

where

ψ(θ) = log

∫
x
exp(〈θ, t(x)〉)ν(dx)
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Graphical Models as Exponential Families

Graphical models are described as products of functions

Products are additive in the exponent

Ising Model:

Each vertex is a Bernoulli random variable
Components xs , xt interact only if there is an edge
The joint distribution

p(x ; θ) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt − ψ(θ)


Dimensionality of the model is d = n + |E |
It is a regular exponential family, with Θ = Rd
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Graphical Models as Exponential Families (Contd.)

Latent Dirichlet Allocation: For a single document

p(θ, z ,w |α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β)

∝ exp

 k∑
i=1

(αi − 1) log θi +
N∑

n=1

k∑
i=1

Ii (zn) log θi +
N∑

n=1

k∑
i=1

V∑
j=1

Ii [zn]Ij [wn] log βij



The sufficient statistics consists of:

{log θi , [i ]
k
1} {Ii [zn] log θi , [i ]

k
1 , [n]N1 } {Ii [zn]Ij [wn], [i ]

k
1 , [n]N1 , [j ]

V
1 }



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Graphical Models as Exponential Families (Contd.)

Latent Dirichlet Allocation: For a single document

p(θ, z ,w |α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β)

∝ exp

 k∑
i=1

(αi − 1) log θi +
N∑

n=1

k∑
i=1

Ii (zn) log θi +
N∑

n=1

k∑
i=1

V∑
j=1

Ii [zn]Ij [wn] log βij


The sufficient statistics consists of:

{log θi , [i ]
k
1} {Ii [zn] log θi , [i ]

k
1 , [n]N1 } {Ii [zn]Ij [wn], [i ]

k
1 , [n]N1 , [j ]

V
1 }



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Properties of the Cumulant ψ

ψ is the cumulant or log-partition function

ψ(θ) is C∞ on Θ

Its derivatives gives the moments of θ

∂ψ(θ)

∂θα
= Eθ[tα(x)]

∂2ψ(θ)

∂θα∂θ(β)
= Eθ[tα(x)tβ(x)]− Eθ[tα(x)]Eθ[tβ(x)]

ψ is a convex function, strictly convex if t(x) is minimal
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Properties of the Cumulant ψ (Contd.)

The set of mean parameters

M =

{
µ ∈ Rd |∃p(.)s.t.

∫
t(x)p(x)ν(dx) = µ

}

Consider the mapping Λ : Θ 7→ M as

Λ(θ) = Eθ[t(x)] =

∫
x
t(x)p(x ; θ)ν(dx)

If t is minimal, Λ is one-to-one

Further, Λ is onto the (relative) interior ofM
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Fenchel-Legendre Conjugacy

The conjugate dual function

ψ∗(µ) = sup
θ∈Θ
{〈µ, θ〉 − ψ(θ)}

The (Bolzmann-Shannon) entropy of p(x ; θ) w.r.t. ν is

H(p(x ; θ)) = −
∫

x
p(x ; θ) log p(x ; θ)ν(dx) = −Eθ[log p(x ; θ)]

If µ ∈ riM, then

ψ∗(µ) = −H(p(x ; θ(µ)))

In terms of the dual, ψ has a variational representation

ψ(θ) = sup
µ∈M

{〈θ, µ〉 − ψ∗(µ)}
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Main Issues

Key problems:

Computation of the cumulant function ψ(θ)
Computation of the mean parameter µ = Eθ[t(x)]

The key equation for both problems

ψ(θ) = sup
µ∈M

{〈θ, µ〉 − ψ∗(µ)}

For all θ ∈ Θ, the supremum is attained by µ ∈ riM

µ = Eθ[t(x)] =

∫
x
t(x)p(x ; θ)ν(dx)

Two primary challenges

Set M is difficult to characterize
Function ψ∗ lacks an explicit definition
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Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal

M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters

M has the following properties

M is full-dimensional if t is minimal
M is bounded iff Θ = Rd and ψ is Lipschitz

Example: Mutinomial random vector x ∈ X n

The setM is a polytope

M = {µ ∈ Rd |〈aj , µ〉 ≤ bj ,∀j ∈ J }

Index set J is finite, but can be large

Facets of the polytope can grow very fast with n

A complete graph with n = 7 has more than 2× 108 facets



Graphical Models Exponential Families Variational Methods Mean Field Approximation

Mean Parameters (Contd.)
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Dual Function

ψ∗ is the negative entropy

Typically, does not have an explicit closed form

In general, can be specified as a composition of two functions

Compute an inverse image θ(µ) using Λ−1(µ)
Compute the negative entropy of p(x ; θ(µ))
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Tractable Families

Based on the key equation

ψ(θ) = sup
µ∈M

{〈µ, θ〉 − ψ∗(µ)}

Mean field focuses on tractable distributions

Let H ⊆ G on which exact calculations are feasible

I(H) be the indices of cliques in H

Natural parameters for distributions corresponding to H

E(H) = {θ ∈ Θ|θα = 0,∀α ∈ I \ I(H)}
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Tractable Families (Contd.)

Simple tractable subgraph is H = (V , ∅)

Natural parameters belong to the subspace

E(H) = {θ ∈ Θ|θst = 0, ∀(s, t) ∈ E}

Corresponding distribution p(x ; θ) =
∏

s∈V p(xs ; θs)

Structured approximation using spanning tree T = (V ,E (T ))

Natural parameters belong to the subspace

E(T ) = {θ ∈ Θ|θst = 0, ∀(s, t) ∈ E (T )}

For a subgraph H, the set of realizable mean parameters

Mtract(G ;H) = {µ ∈ Rd |µ = Eθ[t(x)], θ ∈ E(H)}

The inclusionMtract(G ;H) ⊆M(G ) always holds
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Lower Bounds

For any µ ∈ riM, ψ(θ) ≥ 〈θ, µ〉 − ψ∗(µ)

Alternative proof using Jensen’s inequality

ψ(θ) = log

∫
x
p(x ; θ)

exp(〈θ, t(x)〉)
p(x ; θ)

ν(dx)

≥
∫

x
p(x ; θ) [〈θ, t(x)〉 − log p(x ; θ(µ))] ν(dx)

= 〈θ, µ〉 − ψ∗(µ)

In general, ψ∗ does not have closed form

Since ψ∗H has an explicit form, solve approximation

sup
µ∈Mtract

{〈µ, θ〉 − ψ∗H(µ)}
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Naive Mean Field

Chooses a fully factorized distribution to approximate the
original distribution

We will study Ising model as an example

Approximate G by fully disconnected graph H0 with no edges

Then, the mean parameter set

Mtract = {(µs , µst)|0 ≤ µs ≤ 1, µst = µsµt}

The negative entropy of the product distribution is

ψ∗H0
(µ) =

∑
s∈V

[µs logµs + (1− µs) log(1− µs)]
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Naive Mean Field (Contd.)

The naive mean field problem takes the form

max
µ∈Mtract

{〈µ, θ〉 − ψ∗H0
(µ)}

Using µst = µsµt , we get the reduced problem

max
{µs}∈[0,1]n

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt −
∑
s∈V

[µs logµs + (1− µs) log(1− µs)]


It is concave in µs with other co-ordinates held fixed

Taking gradient and setting it to zero yields

µs ←
1

1 + exp(−(θs +
∑

t∈N(s) θstµt))
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Structured Mean Field

Considers tractable distributions with additional structure

For subgraph H, lets I(H) be the index set associated with H

With µ(H) = {µα|α ∈ H}, we have

The subvector µ(H) can be an arbitrary member ofM(H)
Dual ψ∗H depends only on µ(H), not on µβ , β ∈ I(G ) \ I(H)

But such µβ do appear in the 〈µ, β〉 term

Each µβ = gβ(µ(H)), i.e., depends on µ(H) non-linearly

The approximate optimization problem can be written as

sup
µ(H)∈M(H)

 ∑
α∈I(H)

θαµα +
∑

α∈Ic (H)

θαgα(µ(H))− ψ∗H(µ(H))


For Ising model, with H0 = (V , ∅), gst(µ(H0)) = µsµt
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Structured Mean Field (Contd.)

Let F (µ(H)) denote the cost function

Taking derivative w.r.t. µβ, β ∈ I(H) yields

∂F (µ(H))

∂µβ
= θβ +

∑
α∈Ic (H)

θα
∂gα(µ(H))

∂µβ
−
∂ψ∗H(µ(H))

∂µβ

γβ(H) =
∂ψ∗H(µ(H))

∂µβ
is the inverse moment mapping

Setting the gradient to zero yields the update

γβ(H)← θβ +
∑

α∈Ic (H)

θα
∂gα(µ(H))

∂µβ

For Ising model, ∂gst

∂µs
= µt and so on

We get the exact updates as naive mean field

In general, H can be more involved
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Non-convexity of Mean Field

The original problem is concave

The constraint set M(H) is convex
The objective contains entropy and linear terms in µα

The (structured) mean field contains non-linear terms

∑
α∈I(H) θαgα(µ) involves non-linear function gα

For Ising model, gα is of the form µsµt

A quadratic form need not be concave
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