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Dyadic Data

• Two finite sets of objects X and Y .

• Observations made for pairs consisting of one element from each

set: dyads (x, y).

• In some cases, a third observation w(x, y) might be available indi-

cating similarity or association values between x and y.

• This paper restricts itself to purely dyadic observations: (x, y).
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Problem Description

• The objective is to accomplish two tasks:

– Learning a joint or conditional probability distribution over

X x Y .

– Discovering structure: Learning clusters or data hierarchies.

• Looks very similar to the usual learning setting.

• Why is this a hard problem ?

– Metric distances are not known ! In the standard setting,

features are represented as vectors in a Euclidean space.

– Data can be extremely sparse, zero frequencies are common.
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To summarize the problems

• Consider two sets X = {x1, x2, x3} and Y = {y1, y2, y3, y4}. Suppose

our observations are (x1, y2), (x1, y3), (x2, y2), (x3, y1), (x1, y2). Note

that we can have |X| ∗ |Y | different dyads. Hence many pairs usually

have zero frequencies in observations.

• How to handle sparse data ? What do we do when some pairs are

never sampled (the zero-frequency problem)?

• How to handle the lack of a distance metric ?

• Sparseness problem also occurs in the standard setting, however,

knowing a distance metric can help us generalize to unseen

examples.
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Applications

• Computer Vision: In image segmentation, data is usually obtained

as pixel values (or processed using some filters) for each image

location. The task is to group similar regions together.

• Information retrieval: One set is the collection of documents, the

other represents vocabulary. A dyad is the occurrence of an object

from the vocabulary in the corresponding document.

• Consumer preference analysis: One set represents consumers and

the other is objects they can consume.

• Note that in some of these examples, there does not exist an obvious

“distance” metric between two objects of a set.
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Basic modeling principles

• Modeling is done using latent variables by specifying a joint proba-

bility distribution for latent and observable variables.

• Marginalization (summing over latent variables) gives a model over

observable variables.

• Bayes’ rule is used to obtain posterior probabilities over latent vari-

ables with respect to observed variables - used for structure discov-

ery. Useful where data groups and/or hierarchies are to be found.
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Summary of Contributions

• The paper proposes a family of latent class models to deal with the

data sparseness problem.

• Flat as well as hierarchical models are described and evaluated. A

close relationship between aspect models and clustering models is

shown.

• Previously studied models like n-gram models, distributional cluster-

ing, aggregate Markov models arise as special cases of this frame-

work.

• The authors study EM algorithms for application to these models.

Some promising results in the previously mentioned application do-

mains are provided.
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Aspect models

• Consider an observation sequence S = (xn, yn)1≤n≤N as a realization

of an underlying sequence of random variables (Xn, Y n)1≤n≤N .

• We can introduce a latent class for each dyad observed. (xn, yn) is

associated with An over a finite set A = {a1, a2, . . . , aK}.

• Notice that aspect models partition the observations. Therefore,

identical dyads can be associated with different latent classes.

• The set of observations can be thought of as generated by a (latent)

finite mixture model. The choice of the latent class from A corre-

sponds to choosing the component of a mixture. In this view, the

observed variables (xn, yn) are those generated by this component

an of the mixture.
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Model description

• Assumption: The observations are i.i.d. and pairs of random vari-

ables Xn and Y n are conditionally independent given the latent class

An.

• Data generation process:

– Choose an aspect a with P (a).

– Choose an object x from the set X with P (x|a).

– Choose an object y from the set Y with P (y|a).
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Aspect model

Graphical representation of an aspect model.

(a) In the symmetric parameterization

(b) In the asymmetric parameterization.
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Model description

• As described earlier, the complete data probability is first obtained

and then marginalized.

P (S, a) =
∏N

n=1 P (xn, yn, an), where

P (xn, yn, an) = P (an)P (xn|an)P (yn|an).

• Decomposition into products follows from the i.i.d. assumption,

simplification of chain rule follows from the conditional independence

assumption.
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Model description

• Marginalizing w.r.t a gives P (x, y) =
∑

a∈A P (a)P (x|a)P (y|a).

• Grouping identical dyads together, we get

P (S) =
∏

x∈X

∏
y∈Y

P (x, y)n(x,y)

.

• n(x, y) represents the empirical co-occurrence frequencies. This

number is expected to be zero for most (x, y) pairs as we have

sparse data.
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Expectation Maximization

• Parameter estimation is to be done using Maximum Likelihood.

However, there exist problems since we have a log of a summation.

The EM algorithm is therefore applied.

• Expectation step: Estimating the posterior probabilities of the un-

observed mapping P (a|S, θ′). θ′ is the current parameter estimate.

• Maximization step: Maximization of the expected complete data

log-likelihood L(θ|θ′) =
∑

a P (a|S, θ′)logP (S, a, θ) with respect to θ.
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An equivalent asymmetric parameterization

• From the asymmetric graphical model shown earlier,

P (x, y) = P (x)P (y|x) = P (x)
∑
a∈A

P (a|x)P (y|a). (1)

• For a fixed x, all conditional distributions P (y|x) are obtained by

convex combinations of P (y|a).

• Also, P (x) can be estimated independently as n(x)/N (the occur-

rence frequency). Thus, maximizing the joint likelihood P (x, y) and

the conditional likelihood P (y|x) are equivalent.
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Word generation example from documents

• Pick a document d with probability P (d).

• Pick a latent class z with probability P (z|d).

• Generate a word w with probability P (w|z).

• From before, we have P (w|d) =
∑

z∈Z P (w|z)P (z|d).

• Document specific word distributions are obtained by a convex com-
bination of the aspects P (w|z).

• Documents are not assigned to clusters, they are characterized by
a specific mixture of factors with weights P (z|d). These mixing
weights offer modeling flexibility.
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• Assume a vocabulary of size M . Then, we have M − 1 dimensional
vectors P (·|z) over the vocabulary. There are K such points assum-
ing K latent classes.

• Because of the convex combination of described earlier, P (·|d) can lie
in a K−1 dimensional sub-simplex in the M −1 dimensional simplex
as shown in the figure. The mixing weights P (z|d) correspond to
the coordinates of a document in that sub-simplex.

• Dimensionality of the sub-simplex is K − 1 as opposed to M − 1 for
the complete probability simplex. This can be seen as dimensionality
reduction.



Cross Entropy Minimization

• Say the empirical co-occurrence frequencies are P̂ (x, y) = n(x, y)/N .

• The complete data likelihood is

N∏
n=1

P (xn, yn, an) =
N∏

n=1

P (xn)
∑
a∈A

P (an|xn)P (yn|an)

. The log-likelihood is

L(S, θ) = log[
∏

x∈X

∏
y∈Y

P (x)
∑
a∈A

P (a|x)P (y|a)

n(x,y)

]

=
∑
x,y

n(x, y) · log[P (x)
∑
a

P (a|x)P (y|a)]

. Hence
1

N
L(S, θ) =

∑
x,y

P̂ (x, y)log[P (x)
∑
a

P (a|x)P (y|a)]
.
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Cross Entropy Minimization

• Separating out terms gives

1

N
L(S, θ) =

∑
x

P̂ (x)

logP (x) +
∑
y

P̂ (y|x)log
∑
a

P (a|x)P (y|a)

 .

• The estimation of P (x) can be done independently.

• Therefore, maximum likelihood estimation of the above is equivalent
to minimizing the sum over cross entropies between empirical condi-
tional distributions and model distributions weighted by occurrence
frequencies.

• This is the same as minimizing the Kullback-Leibler divergence be-
tween the two distributions.
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One-Sided Clustering Model

• In this model, latent classes are introduced for objects in one of the

spaces (X or Y ).

• Consider latent variables C(x) over C = {c1, c2, . . . , cK}. A realization

of these latent variables partitions the space X.

• In the aspect model, identical observations can have different latent

classes. In contrast, in this clustering model, we can have multiple

objects belonging to the same latent class. Notice that the partition

is on objects and not observations.

• The authors show that the clustering model can be derived as a

constrained aspect model.
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Constraints on the aspect model

A one-sided clustering model

• Introduce additional latent clustering variables where latent variable
states for clusters and aspects are identified, ck

∼= ak. Consistency
constraints on the aspect variables are

P (a|x, c) ≡ P{An = a|Xn = x, C(x) = c} = δac.

• P (a|x, c) are not free parameters because of the above constraints.
They are therefore not shown in the above graphical model.
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Complete data likelihood

• The complete data likelihood for the one-sided model is

P (S, c) =
∏

x∈X

P (C(x))
∏

y∈Y

[P (x)P (y|c(x))]n(x,y).

• Marginalizing with respect to the clustering variables gives

P (S) =
∏

x∈X

P (Sx) where,

P (Sx) =
∑
c∈C

P (c)
∏

y∈Y

[P (x)P (y|c)]n(x,y).

• Co-occurrences in Sx are not independent for given parameters, but

are coupled by the latent variable C(x).
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One-sided model corresponds to Naive Bayes’

• The E-step in the EM algorithm for update of posterior probabilities

is

P{C(x) = c|Sx, θ} =
P (c)

∏
y∈Y P (y|c)n(x,y)∑

c′ P (c′)
∏

y∈Y P (y|c′)n(x,y)
.

• Doing away with the normalization term, this can be written as

P{C(x) = c|Sx, θ} ∝ P (c)exp

−n(x)

− ∑
y∈Y

P̂ (y|x)logP (y|c)

 .

• Compare the above with a Gaussian Mixture model. If we interpret

Y as a feature space for x ∈ X, then the one-sided model can be

viewed as an unsupervised version of Naive Bayes’ classifier.
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Two-sided clustering model

A two-sided clustering model

• This model is defined by

P (x, y|c, d) ≡ P{Xn = x, Y n = y|C(x) = c, D(x) = d} = P (x)P (y)φ(c, d).

• Prior probabilities are P (c, d) = [
∏

x P (c(x))] · [
∏

y P (d(y))].

• The two-sided clustering model can also be interpreted as a con-
strained aspect model as earlier.
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• Imposing the constraints, we (rather, the authors !) get

P (x, y|C(x) = c, D(y) = d) = P (x)P (y)
∑
a,b

δacδbd
P (a, b)

P (a)P (b)
.

• Comparing the two, we see that the cluster association parameters

φ(c, d) correspond to the ratio of aspect probabilities and the product

of marginal probabilities.

• φ(c, d) can also be seen as cluster association strengths. They con-

trol the probability of observing the dyad (x, y) relative to the model

with an unconditional independence assumption.



Hierarchical clustering model

A hierarchical clustering model

• Hierarchical models here are defined combining aspects and clusters.

• Aspects are identified with nodes of a hierarchy, clusters are identi-
fied with terminal nodes only.

• Compatibility constraints

P (a|x, c) ≡ P{An = a|Xn = x, C(x) = c} = 0,

if a is not on the path from root to c .
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One-sided model vs hierarchical model

• The one-sided model is a degenerate hierarchical with only terminal

nodes.

• The structure for a hierarchical model is less constrained as com-

pared to the one-sided model. The clustering structure does not

completely define the aspect variables. Thus, there are more pa-

rameters in the hierarchical model.
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Putting it all together

Model P (y|x, S)

Aspect
∑

a P (a|x)P (y|a)
One-sided clustering

∑
c P{C(x) = c|S}P (y|c)

Hierarchical clustering
∑

c P{C(x) = c|S}
∑

a P (a|x, c)P (y|a)
Two-sided clustering

∑
c P{C(x) = c|S}P (y)

∑
d P{D(y) = d|S}φ(c, d)

• Aspect model is the most general (least constrained), two-sided

model is the most constrained.

• P (·) are parameters different from the posterior probabilities P{·}.
P{C(x) = c|S} asymptotically approach Boolean values while this

does not hold for P (a|x). Thus, the parameters in the aspect model

are free and it is less constrained that other models.
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Results (1/2)

Texture segmentation results

• The segmentation is done using the one-sided clustering model de-
scribed in the paper. Looks fairly good.

• The paper does not mention how the number of latent clusters
are chosen. If this is input by a human, then one of the hardest
problems in image segmentation is circumvented. Given the number
of clusters, according to my experience, other approaches will be
able to do equally well.
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Results(2/2)

Segmentation results

• Segmentation using the one-sided clustering model for an outdoor

scene. Again, the results are good, however, if the number of clus-

ters are known, then it is not as useful.
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Concluding Remarks

• The paper proposes statistically sound models for modeling dyadic
data.

• The approach can be used for prediction or discovering latent struc-
ture in the data.

• Since the model is completely probabilistic, many powerful methods
can be directly used for parameter estimation.

• It is not very clear (to me) how these models actually benefit pre-
dictive performance, or structure discovery as compared to other
models.

• Specifically for the zero-frequency problem, I cannot see why models
described in this paper excel as compared to others. Inputs ?
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Questions?? Comments ??
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Thank You!
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