Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Radford M. Neal, University of Toronto, Ontario, Canada

Presented by Colin DeLong

Outline

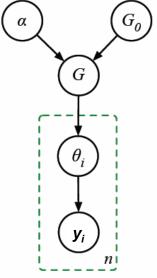
- Introduction
- Dirichlet process mixture models
- Gibbs sampling w/ conjugate priors
 - Algorithms 1, 2, and 3
- Methods for handling non-conjugate priors
 - Algorithm 4
- Metropolis-Hastings and partial Gibbs
 - Algorithms 5, 6, and 7
- Gibbs sampling w/ auxiliary parameters
 - Algorithm 8
- Experiments (well, one)

Introduction

- Some problems are more accurately represented with non-conjugate priors
 - Audio interpolation (Godsill & Rayner, 1995)
 - Climatology opinion quantification (Al-Awadhi & Garthwaite, 2001)
 - Financial risk assessment (Siu & Yang, 1999)
- Non-conjugate priors + Gibbs = headache.
 - Update integrals are nasty to compute
- Solution? Metropolis-Hastings + partial Gibbs.

- Basic idea
 - Given data y₁,...,y_n ind. drawn from an unknown distribution (y_i may be multivariate)
 - Model the unknown distribution as being drawn from of a mixture of distributions $F(\theta)$, w/ mixing distribution over θ being G.
 - Let prior for G be a Dirichlet process w/ concentration parameter α and base distribution G_0 .
 - Then you have:

 $y_i \mid \theta_i \sim F(\theta_i)$ $\theta_i \mid G \sim G$ $G \sim D(G_0, \alpha)$



Integrate over G in previous model, giving a representation of the prior distribution of θ_i in terms of previous θ's:

$$\theta_i \mid \theta_1, \dots, \theta_{i-1} \sim \frac{1}{i-1+\alpha} \sum_{j=1}^{i-1} \delta(\theta_j) + \frac{\alpha}{i-1+\alpha} G_0$$

- $\delta(\theta)$ is distribution concentrated at point θ .
- You might notice the "Chinese Restaurant Process" at work here

You can also get here by letting K (# of components) go to ∞...

 $y_i \mid c, \phi \sim F(\phi_{c_i})$ $c_i \mid p \sim \text{Discrete}(p_1, \dots, p_K)$ $\phi_c \sim G_0$ $p_1, \dots, p_K \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$

- c_i is the latent class associated with y_i
- The parameters φ_c determine the distribution of observations from c

 Integrate over mixing proportions p_c to write prior of c_i as follows:

$$P(c_i = c \mid c_1, ..., c_{i-1}) = \frac{n_{i,c} + \alpha/K}{i - 1 + \alpha}$$

• Where $n_{i,c}$ is the number of c_j for j < i equal to c. Letting K go to ∞ , we get c_i 's prior as: $P(c_i = c \mid c_1, \dots, c_{i-1}) \rightarrow \frac{n_{i,c}}{i-1+\alpha}$

$$P(c_i \neq c_j \text{ for all } j < i \mid c_1, \dots, c_{i-1}) \rightarrow \frac{\alpha}{i-1+\alpha}$$

Gibbs sampling w/ conjugate priors

- Exact computation of posterior for DP mixture models not feasible, so use Monte Carlo approaches
- Sample from posterior of $\theta_1, \ldots, \theta_n$ by simulating a Markov chain with this posterior as its equilibrium distribution
- Gibbs sampling is the natural approach here for conjugate priors
- 3 main ways of doing this

Algorithm 1 (Escobar, 1994)

Algorithm 1: Let the state of the Markov chain consist of $\theta_1, \ldots, \theta_n$. Repeatedly sample as follows:

• For i = 1, ..., n: Draw a new value from $\theta_i \mid \theta_{-i}, y_i$ as defined by equation (7).

$$\theta_i \mid \theta_{-i}, y_i \sim \sum_{j \neq i} q_{i,j} \,\delta(\theta_j) + r_i H_i$$

• Where H_i is the posterior for θ based on the prior G_0 and y_i , having likelihood $F(y_i, \theta)$ and:

$$q_{i,j} = b F(y_i, \theta_j)$$

$$r_i = b \alpha \int F(y_i, \theta) dG_0(\theta)$$

• Convergence may be slow due to groups of observations that are highly probably to be associated with the same θ

Algorithm 2 (West, Muller, & Escobar, 1994)

Algorithm 2: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For i = 1, ..., n: If the present value of c_i is associated with no other observation (ie, $n_{-i,c_i} = 0$), remove ϕ_{c_i} from the state. Draw a new value for c_i from $c_i | c_{-i}, y_i, \phi$ as defined by equation (11). If the new c_i is not associated with any other observation, draw a value for ϕ_{c_i} from H_i and add it to the state.
- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$.

If
$$c = c_j$$
 for some $j \neq i$: $P(c_i = c \mid c_{-i}, y_i, \phi) = b \frac{n_{-i,c}}{n-1+\alpha} F(y_i, \phi_c)$
 $P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}, y_i, \phi) = b \frac{\alpha}{n-1+\alpha} \int F(y_i, \phi) dG_0(\phi)$
(11)

Algorithm 3 (Neal, 1992)

Algorithm 3: Let the state of the Markov chain consist of c_1, \ldots, c_n . Repeatedly sample as follows:

• For i = 1, ..., n: Draw a new value from $c_i \mid c_{-i}, y_i$ as defined by equation (12).

If
$$c = c_j$$
 for some $j \neq i$: $P(c_i = c \mid c_{-i}, y_i) = b \frac{n_{-i,c}}{n-1+\alpha} \int F(y_i, \phi) dH_{-i,c}(\phi)$
 $P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}, y_i) = b \frac{\alpha}{n-1+\alpha} \int F(y_i, \phi) dG_0(\phi)$
(12)

Methods for handling nonconjugate priors

- If *G*₀ is not the conjugate prior for *F*, the integrals for sampling from the posterior might not be feasible to compute.
- West, Muller, and Escobar suggested a Monte Carlo approximation to compute the integral (1994).
 - Slower convergence
 - New values of c_i are likely to be discarded during following Gibbs iteration, leading to wrong distribution.

Algorithm 4 (MacEachern & Muller, 1998)

Algorithm 4: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

For i = 1,...,n: Let k⁻ be the number of distinct c_j for j≠i, and let these c_j have values in {1,...,k⁻}. If c_i ≠ c_j for all j≠i, then with probability k⁻/(k⁻+1) do nothing, leaving c_i unchanged. Otherwise, label c_i as k⁻+1 if c_i ≠ c_j for all j≠i, or draw a value for φ_{k⁻+1} from G₀ if c_i = c_j for some j≠i. Then draw a new value for c_i from {1,...,k⁻+1} using the following probabilities:

$$P(c_i = c \mid c_{-i}, y_i, \phi_1, \dots, \phi_{k^-+1}) = \begin{cases} b n_{-i,c} F(y_i, \phi_c) & \text{if } 1 \le c \le k^- \\ b [\alpha/(k^-+1)] F(y_i, \phi_c) & \text{if } c = k^-+1 \end{cases}$$

where b is the appropriate normalizing constant. Change the state to contain only those ϕ_c that are now associated with an observation.

• For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.

Problem with Algorithm 4

- Algorithm 4 has a problem in that assigning c_i to a new component is reduced by a factor of k⁻ + 1.
- However, something similar without this problem is possible.

Metropolis-Hastings and partial Gibbs

- Use Metropolis-Hastings approach to update the c_i using the conditional prior as the proposal distribution.
- Draw a candidate state, compute its acceptance probability. If it's accepted, use the candidate state, else leave as is.
- We can apply this to the finite model from slide 6, again integrating out *p_c*

Algorithm 5 (Neal, 1998)

Algorithm 5: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For i = 1,...,n, repeat the following update of c_i R times: Draw a candidate, c_i^{*}, from the conditional prior for c_i given by equation (16). If a c_i^{*} not in {c₁,..., c_n} is proposed, chose a value for φ_{c_i^{*}} from G₀. Compute the acceptance probability, a(c_i^{*}, c_i), as in equation (15), and set the new value of c_i to c_i^{*} with this probability. Otherwise let the new value of c_i be the same as the old value.
- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.

$$a(c_i^*, c_i) = \min\left[1, \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})}\right] \quad \text{If } c = c_j \text{ for some } j \neq i: P(c_i = c \mid c_{-i}) = \frac{n_{-i,c}}{n-1+\alpha}$$
$$P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}) = \frac{\alpha}{n-1+\alpha}$$

Algorithm 6 (Neal, 1998)

Algorithm 6: Let the state of the Markov chain consist of $\theta_1, \ldots, \theta_n$. Repeatedly sample as follows:

• For i = 1, ..., n, repeat the following update of $\theta_i R$ times: Draw a candidate, θ_i^* , from the following distribution:

$$\frac{1}{n-1+\alpha}\sum_{j\neq i}\,\delta(\theta_j) + \frac{\alpha}{n-1+\alpha}G_0$$

Compute the acceptance probability

$$a(\theta_i^*, \theta_i) = \min[1, F(y_i, \theta_i^*) / F(y_i, \theta_i)]$$

Set the new value of θ_i to θ_i^* with this probability; otherwise let the new value of θ_i be the same as the old value.

Algorithm 7 (Neal, 1998)

Algorithm 7: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

• For i = 1, ..., n, update c_i as follows: If c_i is a not a singleton (ie, $c_i = c_j$ for some $j \neq i$), let c_i^* be a newly-created component, with $\phi_{c_i^*}$ drawn from G_0 . Set the new c_i to this c_i^* with probability

$$a(c_i^*, c_i) = \min\left[1, \frac{\alpha}{n-1} \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})}\right]$$

Otherwise, when c_i is a singleton, draw c_i^* from c_{-i} , choosing $c_i^* = c$ with probability $n_{-i,c} / (n-1)$. Set the new c_i to this c_i^* with probability

$$a(c_i^*, c_i) = \min\left[1, \frac{n-1}{\alpha} \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})}\right]$$

If the new c_i is not set to c_i^* , it is the same as the old c_i .

• For i = 1, ..., n: If c_i is a singleton (ie, $c_i \neq c_j$ for all $j \neq i$), do nothing. Otherwise, choose a new value for c_i from $\{c_1, ..., c_n\}$ using the following probabilities:

$$P(c_i = c \mid c_{-i}, y_i, \phi, c_i \in \{c_1, \dots, c_n\}) = b \frac{n_{-i,c}}{n-1} F(y_i, \phi_c)$$

where b is the appropriate normalizing constant.

• For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.

Gibbs sampling w/ auxiliary parameters

- More flexible.
 - Basic idea is that we sample from a distribution π_x for x by sampling from distribution π_{xy} for (x, y).
 - Idea extendable to accommodate auxiliary variables which can be created/discarded during Markov chain simulation.
 - A variable y can be introduced temporarily:
 - Draw a value for y from its conditional given x
 - Perform an update of (x, y) leaving π_{xy} invariant
 - Discard y, leaving x.
 - This technique can be used to update c_i for the DPM without having to integrate w.r.t. G₀

Algorithm 8 (Neal, 1998)

Algorithm 8: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

For i = 1,...,n: Let k⁻ be the number of distinct c_j for j≠i, and let h = k⁻ + m. Label these c_j with values in {1,...,k⁻}. If c_i = c_j for some j≠i, draw values independently from G₀ for those φ_c for which k⁻ < c ≤ h. If c_i ≠ c_j for all j≠i, let c_i have the label k⁻ + 1, and draw values independently from G₀ for those φ_c for which k⁻ + 1 < c ≤ h. Draw a new value for c_i from {1,...,h} using the following probabilities:

$$P(c_{i} = c \mid c_{-i}, y_{i}, \phi_{1}, \dots, \phi_{h}) = \begin{cases} b \frac{n_{-i,c}}{n-1+\alpha} F(y_{i}, \phi_{c}) & \text{for } 1 \le c \le k^{-1} \\ b \frac{\alpha/m}{n-1+\alpha} F(y_{i}, \phi_{c}) & \text{for } k^{-1} < c \le h \end{cases}$$

where $n_{-i,c}$ is the number of c_j for $j \neq i$ that are equal to c, and b is the appropriate normalizing constant. Change the state to contain only those ϕ_c that are now associated with one or more observations.

• For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.

The Experiment

	ne per iteration microseconds	Autocorrelation time for k	$\begin{array}{c} Autocorrelation \\ time \ for \ \theta_1 \end{array}$
Alg. 4 ("no gaps")	7.6	13.7	8.5
Alg. 5 (Metropolis-Hastings, $R = 4$)	8.6	8.1	10.2
Alg. 6 (M-H, $R = 4$, no ϕ update)	8.3	19.4	64.1
Alg. 7 (mod M-H & partial Gibbs)	8.0	6.9	5.3
Alg. 8 (auxiliary Gibbs, $m = 1$)	7.9	5.2	5.6
Alg. 8 (auxiliary Gibbs, $m = 2$)	8.8	3.7	4.7
Alg. 8 ($m = 30$, approximates Alg. 2	2) 38.0	2.0	2.8

- k is the number of distinct c_i , θ_1 is the parameter associated with y_1
- Algorithm 8 with m=1 superior to algorithm 4 ("no gaps")
- Performance much worse for algorithm 6, where no updates for φ_c are included
- With m=30, algorithm 8 takes longer, but performance is great.