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Introduction
Some problems are more accurately represented 
with non-conjugate priors

Audio interpolation (Godsill & Rayner, 1995)
Climatology opinion quantification (Al-Awadhi & 
Garthwaite, 2001)
Financial risk assessment (Siu & Yang, 1999)

Non-conjugate priors + Gibbs = headache.
Update integrals are nasty to compute

Solution?  Metropolis-Hastings + partial Gibbs.



Dirichlet process mixture 
models

Basic idea
Given data y1,…,yn ind. drawn from an unknown distribution (yi
may be multivariate)
Model the unknown distribution as being drawn from of a mixture 
of distributions F(θ), w/ mixing distribution over θ being G.
Let prior for G be a Dirichlet process w/ concentration parameter 
α and base distribution G0.
Then you have:

yi



Dirichlet process mixture 
models

Integrate over G in previous model, giving a 
representation of the prior distribution of θi in 
terms of previous θ’s:

δ(θ) is distribution concentrated at point θ.
You might notice the “Chinese Restaurant 
Process” at work here



Dirichlet process mixture 
models

You can also get here by letting K (# of 
components) go to ∞…

ci is the latent class associated with yi
The parameters φc determine the distribution 
of observations from c



Dirichlet process mixture 
models

Integrate over mixing proportions pc to write 
prior of ci as follows:

Where ni,c is the number of cj for j < i equal to 
c.  Letting K go to ∞, we get ci’s prior as:



Gibbs sampling w/ conjugate 
priors

Exact computation of posterior for DP mixture 
models not feasible, so use Monte Carlo 
approaches
Sample from posterior of θ1,…,θn by 
simulating a Markov chain with this posterior 
as its equilibrium distribution
Gibbs sampling is the natural approach here 
for conjugate priors
3 main ways of doing this



Algorithm 1 (Escobar, 1994)

Where Hi is the posterior for θ based on the prior G0 and yi, 
having likelihood F(yi, θ) and:

Convergence may be slow due to groups of observations that are 
highly probably to be associated with the same θ



Algorithm 2 (West, Muller, & 
Escobar, 1994)



Algorithm 3 (Neal, 1992)



Methods for handling non- 
conjugate priors

If G0 is not the conjugate prior for F, the 
integrals for sampling from the posterior 
might not be feasible to compute.
West, Muller, and Escobar suggested a 
Monte Carlo approximation to compute the 
integral (1994).

Slower convergence
New values of ci are likely to be discarded during 
following Gibbs iteration, leading to wrong 
distribution.



Algorithm 4 (MacEachern & 
Muller, 1998)



Problem with Algorithm 4

Algorithm 4 has a problem in that assigning ci
to a new component is reduced by a factor of 
k- + 1.
However, something similar without this 
problem is possible.



Metropolis-Hastings and 
partial Gibbs

Use Metropolis-Hastings approach to update 
the ci using the conditional prior as the 
proposal distribution.
Draw a candidate state, compute its 
acceptance probability.  If it’s accepted, use 
the candidate state, else leave as is.
We can apply this to the finite model from 
slide 6, again integrating out pc



Algorithm 5 (Neal, 1998)



Algorithm 6 (Neal, 1998)



Algorithm 7 (Neal, 1998)



Gibbs sampling w/ auxiliary 
parameters

More flexible.
Basic idea is that we sample from a distribution πx for x by 
sampling from distribution πxy for (x, y).
Idea extendable to accommodate auxiliary variables which 
can be created/discarded during Markov chain simulation.
A variable y can be introduced temporarily:

Draw a value for y from its conditional given x
Perform an update of (x, y) leaving πxy invariant
Discard y, leaving x.

This technique can be used to update ci for the DPM 
without having to integrate w.r.t. G0



Algorithm 8 (Neal, 1998)



The Experiment

k is the number of distinct ci, θ1 is the parameter associated with y1
Algorithm 8 with m=1 superior to algorithm 4 (“no gaps”)
Performance much worse for algorithm 6, where no updates for φc
are included
With m=30, algorithm 8 takes longer, but performance is great.
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