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Motivation
 Non-parametric Bayesian models seem to be

the right idea:
 Do not fix the number of mixture components

 Dirichlet process is an elegant and principled
way to “automatically” set the components

 Need to explore new methods that cope
intractable nature of marginalization or
conditional

 MCMC sampling methods widely used in this
context, but there are other ideas



Motivation
 Variational inference have proved to be

faster and more predictable
(deterministic) than sampling

 The basic idea
 Reformulate as an optimization problem
 Relax the optimization problem
 Optimize (find a bound of the original

problem)



Background
 Dirichlet process mixture is a measure

on measures
 Multiples representations and

interpretations:
 Ferguson Existent theorem
 Blackwell-MacQueen urn scheme
 Chinese restaurant process
 Stick-breaking construction



Dirichlet process mixture
model

 Base distribution
 Positive scaling parameter
         exhibit a clustering effect
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The DP mixture has a natural interpretation as a flexible
mixture model in which the number of components is
random and grows as new data are observed



Stick-breaking representation
 Two infinite collections of independent

random variables
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For i = {1,2,…}

 Stir-breaking representation of G
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 G is discrete!



Sticking-breaking rep.
 The data can be described as arriving

from
1) Draw
2) Draw
3) For the n-th data point

1) Draw
2) Draw
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DP mixture for exponential
families
 Observable data drawn from exponential family, the

base distribution is the conjugate



Variational inf.  for DP mix.
 In DP, our goal

 But complex

 Variational inference uses a proposal
distribution that breaks the dependency
among latent variables



Variational inf.  for DP mix.
 In general, consider a model with

hyperparameters    , latent variables
                                and observations x =

 The posterior distribution:

Difficult!



Variational inf.  for DP mix
 This is difficult

Because latent variables become dependent when
conditioning on observed data

 We reformulate the problem using the
mean-field method, which optimizes the
KL divergence with respect to a
variational distribution.



Variational inf.  for DP mix
 This is, we aim to minimize the KL

divergence between            and

 Or equivalently, we try to maximize the
lower bound



Mean field of exponential fam.
 For each latent variable, the conditional

is a member of a exponential family:

 Where                     is the natural
parameter of wi when conditioned on
the remaining latent variables

 Here the family of distributions is

Variational parameters



Mean-field of exponential family

 The optimization of KL divergence

after derivation (see Apendix)

 Notice:
 Gibbs sampling, we draw wi from p(wi|w-I,x,θ)
 Here, we update vi  to set it equal E[ gi(w-I,x,θ)]



DP mixtures
 The latent variables are stick lengths,

atoms, and cluster assignment

 The hyper parameters are the scaling
and conjugate base distribution

 And the bound now is



Relaxation of optimization
 To exploit this bound, with family q we

need to approximate G
 G is an infinite-dimensional random

measure.
 An approximation is to truncate the stick-

breaking representation!



 Fix value T and q(vT = 1)=1, then
are equal to zero for t>T

 (remember from                         )
 Propose,

 Beta distributions
 Exponential family distributions
 Multinomial distributions

Relaxation of optimization



Optimization
 The optimization is performed by

coordinate ascent algorithm
 From,

Infinite!



Optimization
 But,
Then

Where



Optimization
 Finally, the mean-field coordinate

ascent algorithm boils down to updates:



Predictive distribution



Empirical comparison



Conclusion
 Faster than sampling for particular problems
 Unlikely, that one method will dominate

another  both have their pros and cons
 This is the simplest variational method

(mean-field). Other methods are worth
exploring.

 Check www.videolectures.net


