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i Motivation

= Non-parametric Bayesian models seem to be
the right idea:

= Do not fix the number of mixture components

= Dirichlet process is an elegant and principled
way to “automatically” set the components

= Need to explore new methods that cope
intractable nature of marginalization or
conditional

= MCMC sampling methods widely used in this
context, but there are other ideas




i Motivation

= Variational inference have proved to be
faster and more predictable
(deterministic) than sampling

= The basic idea
= Reformulate as an optimization problem
= Relax the optimization problem

= Optimize (find a bound of the original
problem)




i Background

= Dirichlet process mixture is a measure
on measures

= Multiples representations and
interpretations:

= Ferguson Existent theorem
=« Blackwell-MacQueen urn scheme
= Chinese restaurant process
= Stick-breaking construction




Dirichlet process mixture

i model

G, = Base distribution
o. = Positive scaling parameter
{n,,....,Mn,_+ exhibit a clustering effect

The DP mixture has a natural interpretation as a flexible
mixture model in which the number of components is
random and grows as new data are observed




i Stick-breaking representation

= [wo Iinfinite collections of independent
random variables

V. ~ Beta(l,a)
N, ~G,
= Stir-breaking representatlon of G

Fori={1,2,...}

7w, (V) = vl_[(l V)

G = En(v)&
s G is discrete!



i Sticking-breaking rep.

The data can be described as arriving
from

Draw V. la ~ Beta(l,at), 1=112,...}
Draw 1. 1G,~G, i={12,.}
For the n-th data point
Draw Z, |1{v,,v,,...} ~ Mult(;t(v))
Draw X, |z ~ p(x, In;)




DP mixture for exponential

i families

= Observable data drawn from exponential family, the
base distribution is the conjugate

o O

i A
o - T
0 1[zn=1]
P(Tn | 20, M7, M55 - - H( o) exp{n;” zp — a(m)})

=1

p(n* | A) = h(n*) exp{A{ n* + Aa(—a(n*)) — a(A)}

~.



i Variational inf. for DP mix.

= In DP, our goal
p(x|xy,..., zn,a,Go) :/p(a:|77)p(77|:1:1 ..... zN,a, Gg)dn.

s But Complex p(n|z1,...,xN,Go, )

= Variational inference uses a proposal
distribution that breaks the dependency
among latent variables



i Variational inf. for DP mix.

= In general, consider a model with
hyperparameters ¢ , latent variables

W = {W......Wy} and observations x =

{_J.'l, R }‘

= [he posterior distribution:

p(w|x,60) =exp{logp(x,w|#) —logp(x|6)}

/'

Difficult!



i Variational inf. for DP mix

= This is difficult

log p(x|#) = log /p(w. X | 0)dw

Because latent variables become dependent when
conditioning on observed data

= We reformulate the problem using the
mean-field method, which optimizes the
KL divergence with respect to a
variational distribution.



i Variational inf. for DP mix

= This s, we aim to minimize the KL
divergence between ¢, (w) and p(w|x.6)

D(q,(w)||p(w | x.0)) = E, [logq,(W)] — E, [log p(W.x | 0)] +logp(x|6)

= Or equivalently, we try to maximize the
lower bound

logp(x|6) > E,[logp(W.x|0)] — E, [log ¢, (W)]



i Mean field of exponential fam.

s For each latent variable, the conditional
IS a member of a exponential family:

)T

}-}(U-’;‘_ ‘ W_;. X, Q) =/ (tpi) exp{gi(w—i? X, 6 wy — {_E'(gi(w—'i? X, Q) )}

= Where ¢;(w_,.x.6) Is the natural
parameter of w, when conditioned on
the remaining latent variables

= Here the family of distributions is

_ B o T v ={v .o, ....up}
quv(W) = Hexp{l/i wi — a(w;)} Variational parameters
1=1



i Mean-field of exponential family

= The optimization of KL divergence

Vi = Eq [g;{(w_g. x. 9)]
after derivation (see Apendix)

= Notice:
= Gibbs sampling, we draw w;from p(w]|w_,x,6)
= Here, we update v; to set it equal E[ g(w_,x,0)]



i DP mixtures

= [he latent variables are stick lengths,
atoms, and cluster assignment
W ={V.n*.Z}
= The hyper parameters are the scaling
and conjugate base distribution

6 = {(1 /\}
= And the bound now Is

logp(x a.\) = E, [l()_jp{V o)) + E, [logp(n™ | A)]

—|—Z l(}_jp Zn VH E, [1(.153_-’{})(-1'11 Zn)])

n=1
—E,[logq(V.n*.Z)].



i Relaxation of optimization

= To exploit this bound, with family g we
need to approximate G

= G is an Iinfinite-dimensional random
measure.

= An approximation is to truncate the stick-
breaking representation!




i Relaxation of optimization

» Fix value T and q(v+= 1)=1, then 7+(v)
are equal to zero for t>T__1

= (remember from =(v)=w [J(1 - )

71=1
= Propose, | ; N
q(v.n*.z) = ] a(o0) [ T am i) ] 90 (20)
t=1 t=1 n=1

4v.(vt) = Beta distributions
qr, (n7) = Exponential family distributions
496, (zn) & Multinomial distributions



i Optimization

= The optimization is performed by
coordinate ascent algorithm

= From,

o8 (x| ) 2 By logp(V ) + E; Pog(n” | )

+ Z (1 10%1’(271 ‘V)] + Eq [lo [l p(rn ‘Zn)])

~ By flog (V. 1" z>1\

b 9 = )]

Infinite!



i Optimization

O But,

E,[log(l1 = Vy)] =0and ¢(z, >1)=0.

Then

zn > 0)Eq [log(1 = Vi)] + q(zn = §)Eq [log V]

= On.i

T .

= Zj:i—l Pn,j

— lIJ(’“..f’-.a'_.l) — lI’(".:--’-.a'.l + ’“}"’f-_.z)
= ‘I’(”;"-a'_.z) - ‘P(".:-‘-a'._l + "?*"'f-_-2)'



i Optimization

= Finally, the mean-field coordinate
ascent algorithm boils down to updates:

Tt = I+ Zn O t

. _ , T y
't2 = @ Zﬂ Zj:t—l Pn.j
Ff‘l — A:I_ + Zn "/."?“)H.t*['*ﬂ

Tt2 = A2+ Zn On t -

Onp X exp(Sy).
for t e {1..... Tyand ne{l..... | N}

St = Eq [1‘3’5—’; ‘t] + Z: i Eq [log(l - ‘z)] + Eq ["if ]T Xn — Eq [a-("lf )]



Predictive distribution

T
planer|x.a.0) = D By [m( V)] Eq [plenr [07)]

t—=1

where ¢ depends implicitly on x, «, and A



Empirical comparison
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.



i Conclusion

= Faster than sampling for particular problems

= Unlikely, that one method will dominate
another = both have their pros and cons

= This is the simplest variational method
(mean-field). Other methods are worth
exploring.

= Check www.videolectures.net




