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Motivation
 Non-parametric Bayesian models seem to be

the right idea:
 Do not fix the number of mixture components

 Dirichlet process is an elegant and principled
way to “automatically” set the components

 Need to explore new methods that cope
intractable nature of marginalization or
conditional

 MCMC sampling methods widely used in this
context, but there are other ideas



Motivation
 Variational inference have proved to be

faster and more predictable
(deterministic) than sampling

 The basic idea
 Reformulate as an optimization problem
 Relax the optimization problem
 Optimize (find a bound of the original

problem)



Background
 Dirichlet process mixture is a measure

on measures
 Multiples representations and

interpretations:
 Ferguson Existent theorem
 Blackwell-MacQueen urn scheme
 Chinese restaurant process
 Stick-breaking construction



Dirichlet process mixture
model

 Base distribution
 Positive scaling parameter
         exhibit a clustering effect
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The DP mixture has a natural interpretation as a flexible
mixture model in which the number of components is
random and grows as new data are observed



Stick-breaking representation
 Two infinite collections of independent

random variables
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For i = {1,2,…}

 Stir-breaking representation of G
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 G is discrete!



Sticking-breaking rep.
 The data can be described as arriving

from
1) Draw
2) Draw
3) For the n-th data point

1) Draw
2) Draw
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DP mixture for exponential
families
 Observable data drawn from exponential family, the

base distribution is the conjugate



Variational inf.  for DP mix.
 In DP, our goal

 But complex

 Variational inference uses a proposal
distribution that breaks the dependency
among latent variables



Variational inf.  for DP mix.
 In general, consider a model with

hyperparameters    , latent variables
                                and observations x =

 The posterior distribution:

Difficult!



Variational inf.  for DP mix
 This is difficult

Because latent variables become dependent when
conditioning on observed data

 We reformulate the problem using the
mean-field method, which optimizes the
KL divergence with respect to a
variational distribution.



Variational inf.  for DP mix
 This is, we aim to minimize the KL

divergence between            and

 Or equivalently, we try to maximize the
lower bound



Mean field of exponential fam.
 For each latent variable, the conditional

is a member of a exponential family:

 Where                     is the natural
parameter of wi when conditioned on
the remaining latent variables

 Here the family of distributions is

Variational parameters



Mean-field of exponential family

 The optimization of KL divergence

after derivation (see Apendix)

 Notice:
 Gibbs sampling, we draw wi from p(wi|w-I,x,θ)
 Here, we update vi  to set it equal E[ gi(w-I,x,θ)]



DP mixtures
 The latent variables are stick lengths,

atoms, and cluster assignment

 The hyper parameters are the scaling
and conjugate base distribution

 And the bound now is



Relaxation of optimization
 To exploit this bound, with family q we

need to approximate G
 G is an infinite-dimensional random

measure.
 An approximation is to truncate the stick-

breaking representation!



 Fix value T and q(vT = 1)=1, then
are equal to zero for t>T

 (remember from                         )
 Propose,

 Beta distributions
 Exponential family distributions
 Multinomial distributions

Relaxation of optimization



Optimization
 The optimization is performed by

coordinate ascent algorithm
 From,

Infinite!



Optimization
 But,
Then

Where



Optimization
 Finally, the mean-field coordinate

ascent algorithm boils down to updates:



Predictive distribution



Empirical comparison



Conclusion
 Faster than sampling for particular problems
 Unlikely, that one method will dominate

another  both have their pros and cons
 This is the simplest variational method

(mean-field). Other methods are worth
exploring.

 Check www.videolectures.net


