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Probabilistic Models: Introduction
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

August 24, 2021

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Probability Basics

Sample space Ω of events

Each “event” ω ∈ Ω has an associated “measure”

Probability of the event P(ω)

Axioms of Probability:

∀ω,P(ω) ∈ [0, 1]
P(Ω) = 1
P(ω1 ∪ ω2) = P(ω1) + P(ω2)− P(ω1 ∩ ω2)

Note: We are being informal

Some good references

Oliver Knill’s book, great introduction: https://abel.math.

harvard.edu/~knill/books/KnillProbability.pdf

David Williams’ book, great exposure to the advanced stuff:
https://www.amazon.com/

Probability-Martingales-Cambridge-Mathematical-Textbooks/

dp/0521406056

Instructor: Arindam Banerjee Probabilistic Models: Introduction

https://abel.math.harvard.edu/~knill/books/KnillProbability.pdf
https://abel.math.harvard.edu/~knill/books/KnillProbability.pdf
https://www.amazon.com/Probability-Martingales-Cambridge-Mathematical-Textbooks/dp/0521406056
https://www.amazon.com/Probability-Martingales-Cambridge-Mathematical-Textbooks/dp/0521406056
https://www.amazon.com/Probability-Martingales-Cambridge-Mathematical-Textbooks/dp/0521406056
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Random Variables

Random variables are mappings of events (to real numbers)

Mapping X : Ω 7→ R
Any event ω maps to X (ω)

Example:

Tossing a coin has two possible outcomes
Denoted by {H,T} 7→ {1, 0}
Fair coin has uniform probabilities

P(X = 0) =
1

2
P(X = 1) =

1

2

Random variables (r.v.s) can be

Discrete, e.g., Bernoulli
Continuous, e.g., Gaussian

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Distribution, Density

For a continuous r.v.

Distribution function F (x) = P(X ≤ x)
Corresponding density function f (x), f (x)dx = dF (x)
Note that

F (x) =

∫ x

t=−∞
f (t)dt

For a discrete r.v.

Probability mass function f (x) = P(X = x) = p(x)
We will call this the probability of a discrete event
Distribution function F (x) = P(X ≤ x)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Joint Distributions, Marginals

For two continuous r.v.s X1,X2

Joint distribution F (x1, x2) = P(X1 ≤ x1,X2 ≤ x2)
Joint density function f (x1, x2) can be defined as before
The marginal probability density

f (x1) =

∫ ∞
x2=−∞

f (x1, x2)dx2

For two discrete r.v.s X1,X2

Joint probability f (x1, x2) = P(X1 = x1,X2 = x2) = p(x1, x2)
The marginal probability

P(X1 = x1) =
∑
x2

P(X1 = x1,X2 = x2)

Can be extended to joint distribution over several r.v.s

Many hard problems involve computing marginals

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Expectation

The expected value of a r.v. X

For continuous r.v.s E[X ] =
∫
x

xp(x)dx
For discrete r.v. E[X ] =

∑
i xipi

Expectation is a linear operator

E[aX + bY + c] = aE[X ] + bE[Y ] + c

Expectation of a function of a r.v. X

E[f (X )] =

∫
x

f (x)p(x)dx

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Independence

Joint probability P(X1 = x1,X2 = x2)

X1,X2 are different dice
X1 denotes if grass is wet, X2 denotes if sprinkler was on

Two r.v.s are independent if

P(X1 = x1,X2 = x2) = P(X1 = x1)P(X2 = x2)

Two different dice are independent
If sprinkler was on, then grass will be wet ⇒ dependent

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Conditional Probability, Bayes Rule

Grass Wet Grass Dry

Sprinkler On 0.4 0.1
Sprinkler Off 0.2 0.3

Inference problems:

Given ‘grass wet’ what is P(‘sprinkler on’|‘grass wet’)
Given ‘symptom’ what is P(‘disease’|‘symptom’)

For any r.v.s X ,Y , the conditional probability (forward model)

P(x |y) =
P(x , y)

P(y)

Since P(x , y) = P(y |x)P(x), posterior probability (inference)

P(y |x) =
P(x |y)P(y)

P(x)

Expressing ‘posterior’ in terms of ‘conditional’: Bayes Rule

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Product Rule & Independence

Product Rule:
For X1,X2, P(X1,X2) = P(X1)P(X2|X1)
For X1,X2,X3, P(X1,X2,X3) = P(X1)P(X2|X1)P(X3|X1,X2)
In general, the chain rule

P(X1, · · · ,Xn) =
n∏

i=1

P(Xi |X1, . . . ,Xi−1)

Example: Joint distribution of n Boolean variables
Specification requires 2n − 1 parameters

Recall Independence:
For X1,X2, P(X1,X2) = P(X1)P(X2)
In general

P(X1, · · · ,Xn) =
n∏

i=1

P(Xi )

Independence reduces specification to n parameters

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Independence

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

Consider 4 variables: Toothache, Catch, Cavity, Weather

Independence implies
P(Toothache,Catch,Cavity ,Weather)

= P(Toothache,Catch,Cavity)P(Weather)

Absolute independence helpful but rare

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Conditional Independence

X and Y are conditionally independent given Z

P(X ,Y |Z ) = P(X |Z )P(Y |Z )

Example:

P(Toothache,Catch|Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)

Conditional Independence simplifies joint distributions

Often reduces from exponential to linear in n

P(X ,Y ,Z ) = P(Z )P(X |Z )P(Y |Z )

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Naive Bayes Model

If X1, . . . ,Xn are independent given Y

P(Y ,X1, . . . ,Xn) = P(Y )
n∏

i=1

P(Xi |Y )

Example:
P(Cavity ,Toothache,Catch)

= P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)

More generally

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
n∏

i=1

P(Effecti |Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax

A set of nodes, one per variable
A directed, acyclic graph (link implies direct influence)
A conditional distribution for each node given its parents

Conditional distributions

For each Xi , P(Xi |Parents(Xi ))
In the form of a conditional probability table (CPT)

Distribution of Xi for each combination of parent values

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example

Topology of network encodes conditional independence assertions

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache,Catch are conditionally independent given Cavity

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor earth-
quakes. Is there a burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge

A burglar can set the alarm off
An earthquake can set the alarm off
The alarm can cause Mary to call
The alarm can cause John to call

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example (Contd.)

.001

P(B)
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P(E)
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MaryCallsJohnCalls

Burglary
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Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Compactness

B E

J

A

M

A CPT for Boolean Xi with k Boolean parents

2k rows for the combinations of parent values
Each row requires one number

Each variable has no more than k parents

The complete network requires O(n · 2k) numbers
Grows linearly with n
Full joint distribution requires O(2n)

Example: Burglary network

Full joint distribution requires 25 − 1 = 31 numbers
Bayes net requires 10 numbers

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Global semantics

Full joint distribution

Can be written as product of local conditionals

Example:

P(j ,m, a,¬b,¬e) = P(¬b)P(¬e)P(a|¬b,¬e)P(j |a)P(m|a)

Example:

P(j ,¬m, a, b,¬e) = P(b)P(¬e)P(a|b,¬e)P(j |a)P(¬m|a)

Can we compute P(b|j ,¬m)?

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Local semantics

Each node is conditionally independent of its nondescendants given
its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Markov blanket

Each node is conditionally independent of all others given its Markov
blanket, i.e., parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Conditional Independence in BNs

Which BNs support x1 ⊥ x2|x3
For (a), x1, x2 are dependent, x3 is a collider

For (b)-(d), x1 ⊥ x2|x3

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Conditional Independence (Contd.)

Which BNs support x ⊥ y |z
For (a)-(b), z is not a collider, so x ⊥ y |z
For (c), z is a collider, so x and y are conditionally dependent

For (d), w is a collider, and z is a descendent of w , so x and y are
conditionally dependent

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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d-connection, d-separation

Definition (d-connection): X ,Y ,Z be disjoint sets of vertices in a
directed graph G . X ,Y is d-connected by Z iff ∃ an undirected
path U between some x ∈ X , y ∈ Y such that

for every collider C on U, either C or a descendent of C is in Z , and
no non-collider on U is in Z

Otherwise X and Y are d-separated by Z

If Z d-separates X and Y , then X ⊥ Y |Z for all distributions
represented by the graph

Instructor: Arindam Banerjee Probabilistic Models: Introduction



25/108

Conditional Independence (Contd.)

Examples

For (a), a ⊥ e|b; but a, e are dependent given {b, d}
For (b) a and e are dependent given b; c and e are
unconditionally dependent

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Conditional Independence: More Examples

(a) (b)

For (a), Is a ⊥ c |e? Is a ⊥ e|b? Is a ⊥ e|c?

For (b), Is a ⊥ e|d? Is a ⊥ e|c? Is a ⊥ c |b

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Constructing Bayesian networks

Hard problem in general: Structure learning

Choose an ordering of variables X1, . . . ,Xn

For i = 1 to n

Add Xi to the network
Select parents from X1, . . . ,Xi−1 such that

P(Xi |Parents(Xi )) = P(Xi |X1, . . . ,Xi−1)

This choice of parents guarantees global semantics

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |X1, . . . ,Xi−1)

=
n∏

i=1

P(Xi |Parents(Xi ))

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example: Burglary Network, Causal Order

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T
T
F
F

E

T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A

T
F

.90

.05

P(J|A) A

T
F

.70

.01

P(M|A)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example: Burglary Network, Other Orders

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

Instructor: Arindam Banerjee Probabilistic Models: Introduction



30/108

Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example: Car insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Inference
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How can we compute P(b|j ,¬m)?

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Graphical Models: Two (Three) Problems of Interest
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Structure learning

Given samples, find undirected/directed dependency structure
Not causality, but statistical (in)dependence

Parameter (conditional probability) estimation

Given samples and structure, estimate conditional probabilities
‘Easy’ without latent variables

Inference

Given observed samples or components
Infer properties of latent variable distribution

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Inference and Estimation Problems

Joint distribution of a latent variable model (LVM)

pθ(x, z) = pθ(z)pθ(x|z) ,

x denotes the observed variable
z denotes the latent variable
θ denotes the parameters

Problems of interest

Compute marginal or conditional distributions

pθ(x) =

∫
z

pθ(x, z)dz pθ(z|x) =
pθ(x, z)

pθ(x)

Estimate θ by optimizing a function of pθ(x)

Problems need to (approximately) compute high-d integrals

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Monte Carlo Principle

Target density p(x) on a high-dimensional space

Draw i.i.d. samples {xi}ni=1 from p(x)

Construct empirical point mass function

pn(x) =
1

n

n∑
i=1

δxi (x)

One can approximate integrals/sums by

In(f ) =
1

n

n∑
i=1

f (xi )
a.s.−−−→

n→∞
I (f ) =

∫
x

f (x)p(x)dx

Unbiased estimate In(f ) converges by strong law

For finite σ2f , central limit theorem implies√
n(In(f )− I (f )) =⇒

n→∞
N (0, σ2f )

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Rejection Sampling

Target density p(x) is known, but hard to sample

Use an easy to sample proposal distribution q(x)

q(x) satisfies p(x) ≤ Mq(x),M <∞
Algorithm: For i = 1, · · · , n

Sample xi ∼ q(x) and u ∼ U(0, 1)

If u < p(xi )
Mq(xi )

, accept xi , else reject

Issues:

Tricky to bound p(x)/q(x) with a reasonable constant M
If M is too large, acceptance probability is small

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Rejection Sampling (Contd.)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Importance Sampling

For a proposal distribution q(x), with w(x) = p(x)/q(x)

I (f ) =

∫
x

f (x)w(x)q(x)dx

w(x) is the importance weight

Monte Carlo estimate of I (f ) based on samples xi ∼ q(x)

În(f ) =
n∑

i=1

f (xi )w(xi )

The estimator is unbiased, and converges to I (f ) a.s.

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Importance Sampling (Contd.)

Choose q(x) that minimizes variance of În(f )

varq(f (x)w(x)) = Eq[f 2(x)w2(x)]− I 2(f )

Applying Jensen’s and optimizing, we get

q∗(x) =
|f (x)|p(x)∫
|f (x)|p(x)dx

Efficient sampling focuses on regions of high |f (x)|p(x)

Super efficient sampling, variance lower than even q(x) = p(x)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Markov Chains

Use a Markov chain to explore the state space

Markov chain in a discrete space is a process with

p(xi |xi−1, . . . , x1) = T (xi |xi−1)

After t steps, probability of being in state xi

pt(xi ) =
∑
xi′

pt−1(xi ′)T (xi |xi ′)

A chain is homogenous if T is invariant over time ∀i

MC has reached stationary distribution if pt(xi ) = pt−1(xi ), ∀i

MC will stabilize into a stationary distribution if

Irreducible, transition graph is connected
Aperiodic, does not get trapped in cycles

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Markov Chains (Contd.)

Sufficient condition to ensure p(x) is the stationary distribution

p(xi ′)T (xi |xi ′) = p(xi )T (xi ′ |xi )

Detailed balance equation implies invariant (stationary)
distribution∑

xi′

p(xi ′)T (xi |xi ′) =
∑
xi′

p(xi )T (xi ′ |xi ) = p(xi )

MCMC samplers, stationary distribution = target distribution

Design T (·|·) to get stationary distribution p(x)

Sampling from p(x) by running the MC to convergence

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Markov Chains (Contd.)

Random walker on the web

Irreducibility, should be able to reach all pages
Aperiodicity, do not get stuck in a loop

PageRank used T = L + E

L = link matrix for the web graph
E = uniform random matrix, to ensure irreducibility, aperiodicity

Invariant distribution p(x) represents rank of webpage x

Continuous spaces, T becomes an integral kernel K∫
xi

p(xi )K (xi+1|xi )dxi = p(xi+1)

Stationary p(x) is the corresponding eigenfunction

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The Metropolis-Hastings Algorithm

Most popular MCMC method

Based on a proposal distribution q(x∗|x)

Algorithm: For i = 0, . . . , (n − 1)

Sample u ∼ U(0, 1)
Sample x∗ ∼ q(x∗|xi )
Then

xi+1 =

{
x∗ if u < A(xi , x

∗) = min
{

1, p(x
∗)q(xi |x∗)

p(xi )q(x∗|xi )

}
xi otherwise

The transition kernel is

KMH(xi+1|xi ) = q(xi+1|xi )A(xi , xi+1) + δxi (xi+1)r(xi )

where r(xi ) is the term associated with rejection

r(xi ) =

∫
x

q(x |xi )(1− A(xi , x))dx

Instructor: Arindam Banerjee Probabilistic Models: Introduction



45/108

The Metropolis-Hastings Algorithm (Contd.)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The Metropolis-Hastings Algorithm (Contd.)

By construction

p(xi )KMH(xi+1|xi ) = p(xi+1)KMH(xi |xi+1)

Implies p(x) is the invariant distribution

Basic properties

Irreducibility, ensure support of q contains support of p
Aperiodicity, ensured since rejection is always a possibility

Independent sampler: q(x∗|xi ) = q(x∗) so that

A(xi , x
∗) = min

{
1,

p(x∗)q(xi )

q(x∗)p(xi )

}
Metropolis sampler: symmetric q(x∗|xi ) = q(xi |x∗)

A(xi , x
∗) = min

{
1,

p(x∗)

p(xi )

}

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The Metropolis-Hastings Algorithm (Contd.)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Mixtures of MCMC Kernels

Powerful property of MCMC: Combination of Samplers

Let K1,K2 be kernels with invariant distribution p

Mixture kernel αK1 + (1− α)K2, α ∈ [0, 1] converges to p
Cycle kernel K1K2 converges to p

Mixtures can use global and local proposals

Global proposals explore the entire space (with probability α)
Local proposals discover finer details (with probability (1− α))

Example: Target has many narrow peaks

Global proposal gets the peaks
Local proposals get the neighborhood of peaks (random walk)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Cycles of MCMC Kernels

Split a multi-variate state into blocks

Each block can be updated separately

Convergence is faster if correlated variables are blocked

Transition kernel is given by

KMHCycle(x (i+1)|x (i)) =

nb∏
j=1

KMH(j)(x
(i+1)
bj
|x (i)

bj
, x

(i+1)
−[bj ] )

x
(i+1)
−[bj ] = {x (i+1)

b1
, . . . , x

(i+1)
bj−1

, x
(i)
bj+1

, . . . , x
(i)
bnb
}

Trade-off on block size

If block size is small, chain takes long time to explore the space
If block size is large, acceptance probability is low

Gibbs sampling effectively uses block size of 1

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The Gibbs Sampler

For a d-dimensional vector x , assume we know

p(xj |x−j) = p(xj |x1, . . . , xj−1, xj+1, · · · , xd)

Gibbs sampler uses the following proposal distribution

q(x∗|x (i)) =

{
p(x∗j |x

(i)
−j ) if x∗−j = x

(i)
−j

0 otherwise

The acceptance probability

A(x (i), x∗) = min

{
1,

p(x∗)q(x (i)|x∗)
p(x (i))q(x∗|x (i))

}
= 1

Deterministic scan: All samples are accepted

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The Gibbs Sampler (Contd.)

Initialize x (0). For i = 0, . . . , (N − 1)

Sample x
(i+1)
1 ∼ p(x1|x (i)

2 , x
(i)
3 . . . , x

(i)
d )

Sample x
(i+1)
2 ∼ p(x1|x (i+1)

1 , x
(i)
3 . . . , x

(i)
d )

· · ·
Sample x

(i+1)
d ∼ p(xd |x (i+1)

1 , . . . , x
(i+1)
d−1 )

Possible to have MH steps inside a Gibbs sampler

For d = 2, Gibbs sampler is the data augmentation algorithm

For Bayes nets, the conditioning is on the Markov blanket

p(xj |x−j) ∝ p(xj |xpa(j))
∏

k∈ch(j)

p(xk |pa(k))

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Simulated Annealing: Finding Modes

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p̂(x), compute max

Issue: MC may not come close to the mode(s)

Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is pi (x) ∝ p1/Ti (x)

Sample update follows

xi+1 =

x∗ if u < A(xi , x
∗) = min

{
1, p

1
Ti (x∗)q(xi |x∗)

p
1
Ti (xi )q(x∗|xi )

}
xi otherwise

Ti decreases following a cooling schedule, limi→∞ Ti = 0

Cooling schedule needs proper choice, e.g., Ti = 1
C log(i+T0)

Instructor: Arindam Banerjee Probabilistic Models: Introduction



53/108

Simulated Annealing (Contd.)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Latent Variable Models, Redux

Joint distribution of a latent variable model (LVM)

pθ(x, z) = pθ(z)pθ(x|z) ,

x denotes the observed variable
z denotes the latent variable
θ denotes the parameters

Problems of interest

Compute marginal or conditional distributions

pθ(x) =

∫
z

pθ(x, z)dz pθ(z|x) =
pθ(x, z)

pθ(x)

Estimate θ by optimizing a function of pθ(x)

Problems need to compute high-d integrals

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Variational Inference (VI): Warm Up

Construct a distribution qφ(z|x) with parameters φ

Choose family q and parameters φ to approximate true posterior

qφ(z|x) ≈ pθ(z|x)

Ideally: Choose q to minimize some divergence D(qφ(z|x), pθ(z|x))

Challenge: Do not know pθ(z|x) explicitly

Inference model qφ(z |x)

Also called recognition model, or encoder
φ are called the variational parameters

Generative model pθ(x|z), also called decoder

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Evidence Lower Bound (ELBO)

log pθ(x) = Eqφ(z|x) [log pθ(x)]

= Eqφ(z|x)

[
log

(
pθ(x, z)

pθ(z|x)

)]
= Eqφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

qφ(z|x)

pθ(z|x)

)]
= Eqφ(z|x)

[
log

(
pθ(x, z)

qφ(z|x)

)]
︸ ︷︷ ︸

Lθ,φ(x) (ELBO)

+Eqφ(z|x)

[
log

(
qφ(z|x)

pθ(z|x)

)]
︸ ︷︷ ︸

DKL(qφ(z|x)‖pθ(z|x))

Maximize the ELBO, lower bound to log pθ(x)

Lθ,φ(x) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]

Instructor: Arindam Banerjee Probabilistic Models: Introduction



57/108

Mean Field VI

Inference is done based on a dataset {xi , i = 1, . . . , n}
Mean field VI assumes a tractable inference model

qφ(z|x) =
n∏

i=1

qφi (zi |xi )

Naive mean field, fully factorized distribution over {zij}
Each component typically belongs to some exponential family

Optimize over the free variational parameters {φi , i = 1, . . . , n}
Need to optimize each φi , can be slow for large datasets

The fully-factorized assumption may be inaccurate

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Stochastic and Amortized VI

Stochastic VI based on stochastic optimization

Update variational parameter by optimizing expectation
Use stochastic mini-batch instead of full-batch gradient descent
Work with noisy unbiased gradients
More discussions on gradient computation soon

Amortized VI

Challenge: optimize φi for each i = 1, . . . , n
Instead learn a mapping φi = fγ(xi )
More generally, posterior approximations with inference networks

qφi (zi |xi ) = qfγ(xi )(zi |xi )

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Simple LVMs: Finite Mixture Models

x

p(x)

Instructor: Arindam Banerjee Probabilistic Models: Introduction



61/108

Mixture of Gaussians

The probability density function is given by

p(x|Θ) =
K∑

k=1

πkN (x|µk ,Σk)

Set of parameters Θ = {{πk}, {µk}, {Σk}}
π is a discrete distribution: relative proportions of each component

0 ≤ πk ≤ 1
K∑

k=1

πk = 1

Each component is a multi-variate Gaussian

N (x|µk ,Σk) =
1

(2π)d/2|Σk |
exp

(
−(x− µk)TΣ−1k (x− µk)

)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Generative Model Perspective

To generate a sample x from the mixture model

Sample mixture component z ∼ π
Sample x ∈ Rd from the z th component x ∼ N (µz ,Σz)

An alternative viewpoint: z is a 1-of-K binary vector

p(x) =
∑
z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk)

The posterior distribution

p(zk |x) =
p(zk)p(x|zk)

p(x)
=

πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Maximum Likelihood Estimation

Let X = {x1, . . . , xn} be drawn i.i.d. from MoG

The log-likelihood of the observations

log p(X|π, µ,Σ) =
N∑
i=1

log

{
K∑

k=1

πkN (xn|µk ,Σk)

}
Optimizing directly w.r.t. (π, µ,Σ) is difficult

log works on sum, not on individual Gaussians
Closed form solution cannot be obtained

Expectation Maximization (EM)

Powerful family of iterative update algorithm
Applicable for learning mixture models
Has applications beyond mixture models

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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EM for Gaussian Mixtures

At the optimum, gradient w.r.t. (π, µ,Σ) should vanish

Taking derivative w.r.t. µk and setting it to 0

0 = −
N∑

n=1

∑K
k=1 πkN (xn|µk ,Σk)∑

j

∑K
k=1 πjN (xn|µj ,Σj)

Σk(xn − µk)

= −
N∑

n=1

p(zk |xn)Σk(xn − µk)

A direct simplification gives (let Nk =
∑N

n=1 p(zk |xn))

µk =
1

Nk

N∑
n=1

p(zk |xn)xn

Instructor: Arindam Banerjee Probabilistic Models: Introduction



65/108

EM for Gaussian Mixtures (Contd.)

Taking derivative w.r.t. Σk

Σk =
1

Nk

N∑
n=1

p(zk |xn)(xn − µk)(xn − µk)T

Constrained optimization for πk with Lagrangian

log p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
A direct calculation gives

πk =
Nk

N

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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EM for Gaussian Mixtures: Algorithm

Initialize π, µ,Σ

Till Convergence

E-step Evaluate the posterior probabilities

p(zk |xn) =
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

M-step Update the parameter values

µk =
1

Nk

N∑
n=1

p(zk |xn)xn

Σk =
1

Nk

N∑
n=1

p(zk |xn)(xn − µk)(xn − µk)T

πk =
Nk

N

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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EM on Gaussian Mixtures Example

(a)−2 0 2

−2

0

2

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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EM on Gaussian Mixtures Example

(b)−2 0 2

−2

0

2

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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EM on Gaussian Mixtures Example

(c)

L = 1

−2 0 2

−2

0

2
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EM on Gaussian Mixtures Example

(d)

L = 2

−2 0 2

−2

0

2
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EM on Gaussian Mixtures Example

(e)

L = 5

−2 0 2

−2

0

2
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EM on Gaussian Mixtures Example

(f)

L = 20

−2 0 2

−2

0

2

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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An Alternative View of EM

Maximum likelihood in presence of latent variable

log p(X |θ) = log

{∑
z

p(X ,Z |θ)

}
The marginal cannot be obtained in closed form

{X ,Z} is the complete data, {X} is the incomplete data

Main Idea

We dont know Z , hence dont know p(X ,Z |θ)
We know p(Z |X , θ)
Use expected value of p(X ,Z |θ), expectation over p(Z |X , θ)

Expected value of the complete likelihood

Q(θ, θold) =
∑
z

p(Z |X , θold) log p(X ,Z |θ)

Compute θnew by maximizing Q(θ, θold)

Instructor: Arindam Banerjee Probabilistic Models: Introduction



74/108

The General EM Algorithm

Choose initial value of parameters θold

Till convergence

E-step Evaluate p(Z |X , θold) [Recall: Inference network qφ(z|x)]
M-step Evaluate θnew given by

θnew = argmaxθ
∑
z

p(Z |X , θold) log p(X ,Z |θ)

Update θold ← θnew

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Gaussian Mixtures Revisited

E-step evaluates the probabilities

p(zk |xn) =
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

M-step computes the new parameters

µk =
1

Nk

N∑
n=1

p(zk |xn)xn

Σk =
1

Nk

N∑
n=1

p(zk |xn)(xn − µk)(xn − µk)T

πk =
Nk

N

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Analysis of the EM Algorithm

For any distribution q(Z )

log p(X |θ) = L(q, θ) + KL(q||p)
where

L(q, θ) =
∑
z

q(Z ) log

{
p(X ,Z |θ)

q(Z )

}
KL(q||p) =

∑
z

q(Z ) log

{
q(Z )

p(Z |X , θ)

}
Since KL(q||p) ≥ 0, we have a lower bound

log p(X |θ) ≥ L(q, θ) = Eq[log p(X ,Z |θ)] + H(q)

Main Idea: Lower bound maximization

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Analysis of EM

ln p(X|θ)L(q, θ)

KL(q||p)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Analysis of the EM Algorithm (Contd.)

log p(X |θ) = L(q, θ) + KL(q||p)

The current parameter estimate θold

The E-step:

Maximize L(q, θ) w.r.t. q
The solution is q(Z ) = p(Z |X , θ)
We have KL(q||p) = 0, so that log p(X |θold) = L(q, θold)

The M-step:

Maximize L(q, θ) w.r.t. θ
The new solution θnew

The current q is not the optimal distribution, so KL(q||p) ≥ 0
However,

log p(X |θnew ) ≥ L(q, θnew ) ≥ L(q, θold) = log p(X |θold)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The E-step

ln p(X|θold)L(q, θold)

KL(q||p) = 0

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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The M-step

ln p(X|θnew)L(q, θnew)

KL(q||p)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Variational EM

log p(X |θ) = Eq[log p(X ,Z |θ)] + H(q) + KL(q||p)

The E-step:

Maximize L(q, θ) w.r.t. q
The solution is q(Z ) = p(Z |X , θ)
For some models, p(Z |X , θ) cannot be obtained in closed form
Example: Latent Dirichlet Allocation, Bayesian Models, etc.

Variational E-step:

Pick a parameterized family qφ(Z )
Choose variational parameter φ to minimize KL(qφ||p)
Same as maximizing lower bound to true the likelihood

log p(X |θ) ≥ Eqφ [log p(X ,Z |θ)] + H(qφ)

KL(qφ||p) does not becomes zero, but progress is made

M-step optimizes lower bound over θ

Variational EM: Getting widely used for statistical models

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Auxiliary Function Viewpoint of EM

θold θnew

L (q, θ)

ln p(X|θ)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration
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Dynamical Models: Outline

Time and uncertainty

Inference: filtering, prediction, smoothing

Examples: Hidden Markov Models (HMMs), Kalman Filters (KFs),
Dynamic Bayesian Networks (DBNs)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Time and uncertainty

The world changes

Rational agent needs to track and predict
Example: Car diagnosis Vs Diabetes

Consider state and evidence variables over time

Xt = set of unobservable state variables at time t

Example: BloodSugart , StomachContentst , etc.

Et = set of observable evidence variables at time t

Example: MeasuredBloodSugart , FoodEatent , etc.

Time can be discrete or continuous

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Markov Processes (Markov Chains)

Construct a Bayes net from these variables: Parents?

Markov Assumption Xt depends on bounded subset of X0:t−1
First-order: P(Xt |X0:t−1) = P(Xt |Xt−1)
Second-order: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: P(Et |X0:t ,E0:t−1) = P(Et |Xt)

Stationary process:

Transition model P(Xt |Xt−1) fixed for all t
Sensor model P(Et |Xt) fixed for all t

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Example

tRain

tUmbrella

Raint −1

Umbrellat −1

Raint +1

Umbrellat +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption often not true in real world

Possible fixes:

Increase order of Markov process
Augment state, e.g., add Tempt , Pressuret

Example: Robot Motion

Augment position and velocity with Batteryt

Instructor: Arindam Banerjee Probabilistic Models: Introduction



88/108

Inference Tasks

Filtering: P(Xt |e1:t)
Belief state is input to the decision process

Prediction: P(Xt+k |e1:t) for k > 0

Evaluation of possible state sequences
Like filtering without the evidence

Smoothing: P(Xk |e1:t) for 0 ≤ k < t

Better estimate of past states
Essential for learning

Most likely explanation: arg maxx1:t P(x1:t |e1:t)
Example: Speech recognition, Decoding from noisy channel

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Filtering

Aim: A recursive state estimation algorithm

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t))

From Bayes rule

P(Xt+1|e1:t+1) = P(Xt+1|e1:t , et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)
= αP(et+1|Xt+1)P(Xt+1|e1:t)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Filtering (Contd.)

We have

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

First term P(et+1|Xt+1) is evidence conditional probability (known)

Expanding the second term

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt , e1:t)P(xt |e1:t)

= αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt)P(xt |e1:t)

Recursive filtering

p(xt |e1:t) is the previous filtering term (recursion, known)
p(Xt+1|xt) is state transition probability (known)
Need to do marginalization

∑
xt
· · · (high-d integration)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Prediction

Prediction is similar to filtering

Without new evidence

Filtering does one step prediction

For prediction

P(Xt+k+1|e1:t) =
∑
xt+k

P(Xt+k+1|Xt+k)P(Xt+k |e1:t)

How far in the future can we predict?

After evidence stops, prediction is running a Markov Chain
limk→∞ P(Xt+k |e1:t) converges to the stationary distribution
Prediction gets harder, uncertainty increases
Example: Weather forecasting for 2 days, 1 week, 4 weeks

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Umbrella Example

tRain

tUmbrella

Raint −1

Umbrellat −1

Raint +1

Umbrellat +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f
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Smoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k , ek+1:t

P(Xk |e1:t) = P(Xk |e1:k , ek+1:t)

= αP(Xk |e1:k)P(ek+1:t |Xk , e1:k)

= αP(Xk |e1:k)P(ek+1:t |Xk)

= αf1:kbk+1:t

Forward message f1:k is filtering

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Smoothing (Contd.)

Backward message computed by a backwards recursion:

P(ek+1:t |Xk) =
∑
xk+1

P(ek+1:t |Xk , xk+1)P(xk+1|Xk)

=
∑
xk+1

P(ek+1:t |xk+1)P(xk+1|Xk)

=
∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)

bk+1:t = P(ek+1:t |Xk) = αBackward(bk+2:t , ek+1)

The smoothed probability

P(Xk |e1:t) = αf1:kbk+1:t

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Most Likely Explanation

Most likely sequence 6= sequence of most likely states

Most likely path to each Xt+1

max
x1...xt

P(X1, . . . ,Xt ,Xt+1|e1:t+1)

= P(et+1|Xt+1) max
xt

(
P(Xt+1|Xt) max

x1...xt−1

P(X1, . . . ,Xt−1,Xt |e1:t)
)

Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(X1, . . . ,Xt−1,Xt |e1:t),

m1:t(i) gives the probability of the most likely path to state i .

Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1) max
xt

(P(Xt+1|Xt)m1:t)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration
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Losses and Representations: Warm Up

Typically work with a set of samples {(xi , yi ), i = 1, . . . , n}
Samples assumed to be i.i.d.

Many problems we will consider

min
θ

n∑
i=1

L(yi , fθ(xi ))

L is the loss, e.g., square loss, log loss, hinge loss, etc.

Losses as surrogates to target risk, e.g., hinge loss, log loss
Losses from statistical assumptions, e.g., square loss, log loss

fθ(·) is the predictor, with suitable representation

Classical (linear) approach: fθ(x) = θT x
Modern approach: deep representations

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Least Squares Regression

Objective function

min
θ

n∑
i=1

(yi − fθ(xi ))2

Statistical modeling assumptions: P(Y |x)

Conditional expectation is (a function of) the predictor

E[Y |x] = fθ(x)

Responses drawn from this conditional Gaussian, with fixed variance

yi ∼ N (E[Y |xi ], σ2) = N (fθ(xi ), σ
2)

Maximum likelihood estimation ≡ least squares objective

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Logistic Regression

For 2-class classification with yi ∈ {0, 1}, objective function

min
θ

n∑
i=1

{
yi fθ(xi )− log(1 + exp(fθ(xi )))

}
Statistical modeling assumptions: P(Y | x)

Conditional expectation is a function of the predictor

log
P(1|x)

P(0|x)
= fθ(x) ⇒ P(1|x) = E[Y |x] = σ(fθ(x)) , σ(a) =

1

1 + exp(−a)

Response drawn from this conditional Bernoulli

yi ∼ Bern(E[Y |xi ]) = Bern(σ(fθ(xi )))

Maximum likelihood estimation ≡ log-loss (cross-entropy) objective

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Exponential Family, Link Function

Exponential family distributions

pη(y) = exp(〈y , η〉 − ψ(η))p(y)

Examples: Gaussian, Bernoulli, gamma, categorical, Dirichlet,
Poisson, ...

ψ is the log-partition function, convex, differentiable

Expectation: E[Y ] = ∇ψ(η), the link function λ(·)
Example: for Bernoulli, ψ(η) = log(1 + exp(η)), so

E[Y ] = ∇ψ(η) =
exp(η)

1 + exp(η)
=

1

1 + exp(−η)
= σ(η)

For logistic regression, model Y |x with η = fθ(x), so

E[Y |x] = σ(fθ(x))

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Generalized (Linear) Models

Conditional distribution of response y given covariates x

pη(y |x) = exp(〈y , η(x)〉 − ψ(η(x)))p(y |x)

Examples: least squares regression (continous), logistic regression
(categorical, classification), Poisson regression (count), ...

Representation: η(x) = fθ(x)

Classical GLMs: η(x) = θT x

Statistical modeling assumptions: P(Y | x)

Conditional expectation is the link function λ of the predictor

E[Y |x] = ∇ψ(η(x)) = λ(fθ(x))

Response drawn from this conditional exponential family

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)

Expectation Maximization

Dynamical Models

Filtering, Prediction, Smoothing
Examples: HMMs, KFs, DBNs

Losses and Representation

Losses from generalized linear models
Beyond linear representations

Scoring rules, Calibration

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Scoring Rules

Scoring rules measure accuracy of probabilistic forecasts

Example: Weather forecast, 25% chance of rain

Probabilistic forecast P, true outcome x , scoring rule S(P, x)

Higher S(P, x) means more accurate

True outcome X ∼ Q, expected score S(P,Q) = EX∼Q [S(P,X )]

Scoring rule is proper if S(Q,Q) ≥ S(P,Q), for all P,Q

Forecaster should try to use P = Q for the forecasts

Expected loss (or divergence): d(P,Q) = S(Q,Q)− S(P,Q)

For proper scoring rules, d(P,Q) ≥ 0
“Better” forecasts P have smaller loss (or divergence)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Fitting Models using Scoring Rules

Fitting parametric model Pθ given samples X1, . . . ,Xn

Measure goodness-of-fit by mean score

Sn(θ) =
1

n

n∑
i=1

S(Pθ,Xi )

Choose a suitable (strictly) proper scoring rule, and estimate

θ̂n = argmax
θ

1

n

n∑
i=1

S(Pθ,Xi )

Compare with maximum likelihood estimation:

θ̂n =
1

n

n∑
i=1

log pθ(Xi )

Question: Is S(Pθ,Xi ) = log pθ(Xi ) a proper scoring rule?

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Scoring Rule: Examples (1 of 3)

Quadratic or Brier score: Discrete distribution with m possible

S(p, i) = −
m∑
j=1

(pj − δij)2 = 2pi −
m∑
j=1

p2
j − 1

d(p, q) =
m∑
j=1

(pj − qj)
2 = ‖p− q‖22

Spherical score: For any α > 1 (special case α = 2)

S(p, i) =
pα−1i(∑m

j=1 pαj

)(α−1)/α) (
pi

‖p‖2

)

d(p, q) =

 m∑
j=1

qαj

1/α

−
∑m

i=1 pjq
α−1
j(∑m

j=1 qαj

)α−1/α (
‖q‖2 −

〈p, q〉
‖q‖2

)

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Scoring Rule: Examples (2 of 3)

Logarithmic score:

S(p, i) = log pi

d(p, q) =
m∑
j=1

qj log
qj

pj
= KL(q, p)

Continuous ranked probability score (CRPS): Forecast distribution
F , Z ,Z ′ ∼ F

CRPS(F , x) = −
∫ ∞
−∞

(F (z)− 1[z ≥ x ])2dz =
1

2
EF |Z − Z ′| − EF |Z − x |

d(F ,G ) =

∫ ∞
−∞

(F (z)− G (z))2dz

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Scoring Rule: Examples (3 of 3)

Hyvarinen score: Based on gradient of log-likelihood w.r.t. location
ξ, rather than model parameter θ:

ψ(ξ; θ) = ∇ξ log pθ(ξ) =


∂ log p(ξ;θ)

∂ξ1
...

∂ log p(ξ;θ)
∂ξp


For data distribution Px, score ψx(ξ) = ∇ξ log px(ξ)

The loss or divergence:

d(Pθ,Px) =
1

2
EPx

[
‖ψ(ξ, θ)− ψx(ξ)‖22

]
= EPx

[
p∑

i=1

{
∂2 log p(ξ; θ)

∂ξ2i
+

1

2

(
∂ log p(ξ; θ)

∂ξi

)2
}]

Instructor: Arindam Banerjee Probabilistic Models: Introduction
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Calibrated Forecasts

Assessing quality of probabilistic forecasts

Example: 25% chance of rain

Sequential probabilistic forecasts

Forecaster observes a sequence of events yt ∈ K , e.g.,
K = {1, 2, . . . ,m}
They predict pt+1 ∈ ∆(K ) (simplex), may depend on y1:t

Calibration: probability predictions match the outcome frequency

Consider all (past) days with “25% chance of rain” forecast
Estimate the fraction of these days it rained
Fraction should be ≈ 0.25

Should be true for all predicted probabilities

Instructor: Arindam Banerjee Probabilistic Models: Introduction


