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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

e Markov Chain Monte Carlo (MCMC)
e Variational Inference (VI)

Expectation Maximization

Dynamical Models
o Filtering, Prediction, Smoothing
e Examples: HMMs, KFs, DBNs
Losses and Representation

o Losses from generalized linear models
e Beyond linear representations

Scoring rules, Calibration
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Probability Basics

@ Sample space Q of events
@ Each "event” w € Q has an associated “measure”
o Probability of the event P(w)

Axioms of Probability:
o Yw, P(w) € [0,1]
o P(2)=1
° P(wl UWQ) = P(wl) + P(UJQ) — P(wl ﬂUJQ)

Note: We are being informal

Some good references
e Oliver Knill's book, great introduction: https://abel.math.
harvard.edu/~knill/books/KnillProbability.pdf
e David Williams' book, great exposure to the advanced stuff:
https://www.amazon.com/
Probability-Martingales-Cambridge-Mathematical-Textbooks/

dp/0521406056
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Random Variables

e Random variables are mappings of events (to real numbers)
e Mapping X : Q — R
e Any event w maps to X(w)

o Example:

e Tossing a coin has two possible outcomes
o Denoted by {H, T} — {1,0}
e Fair coin has uniform probabilities

e Random variables (r.v.s) can be

o Discrete, e.g., Bernoulli
e Continuous, e.g., Gaussian
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Distribution, Density

@ For a continuous r.v.
e Distribution function F(x) = P(X < x)
e Corresponding density function f(x), f(x)dx = dF(x)
o Note that

@ For a discrete r.v.
e Probability mass function f(x) = P(X = x) = p(x)
o We will call this the probability of a discrete event
e Distribution function F(x) = P(X < x)
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Joint Distributions, Marginals

@ For two continuous r.v.s X1, X5
e Joint distribution F(Xl,XQ) = P(X1 < xp, Xo < XQ)
e Joint density function f(xi, x2) can be defined as before
e The marginal probability density

) = / T i )dv

Xp=—00

@ For two discrete r.v.s X1, X5

e Joint probability f(Xl,Xz) = P(X1 = X1,X2 = XQ) = p(Xl,XQ)
e The marginal probability

P(Xl :Xl) = ZP(XI :Xl,X2 :X2)

X2

@ Can be extended to joint distribution over several r.v.s

@ Many hard problems involve computing marginals /108



Expectation

@ The expected value of a r.v. X

e For continuous r.v.s E[X] = [ xp(x)dx
o For discrete r.v. E[X] =", xip;

@ Expectation is a linear operator
E[aX 4+ bY + c| = aE[X] + bE[Y] + ¢

@ Expectation of a function of a r.v. X

BIF(X)] = | F(plx)dx

X

7/108

Instructor: Arindam Banerjee



Independence

e Joint probability P(X1 = x1, X2 = x2)
o Xi, X, are different dice
e Xj denotes if grass is wet, Xo denotes if sprinkler was on
@ Two r.v.s are independent if
P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2)

e Two different dice are independent
o If sprinkler was on, then grass will be wet = dependent
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Conditional Probability, Bayes Rule

Grass Wet  Grass Dry
Sprinkler On 0.4 0.1
Sprinkler Off 0.2 0.3

@ Inference problems:
o Given ‘grass wet' what is P(‘sprinkler on’|'grass wet')
o Given ‘symptom’ what is P('disease’|'symptom’)
e For any r.v.s X, Y, the conditional probability (forward model)
P(x.y)
P(x|y) =
S =)
@ Since P(x,y) = P(y|x)P(x), posterior probability (inference)
P(xly)P(y)
p —
(v = 2

@ Expressing ‘posterior’ in terms of ‘conditional’: Bayes Rule
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Product Rule & Independence

@ Product Rule:
o For X17X2, P(Xl,Xg) = P(Xl)P(X2|X1)
e For X]_,X2, X3, P(X]_7X2, X3) = P(Xl)P(X2‘X1)P(X3|X1,X2)
o In general, the chain rule

P(Xy, -+, Xa) = [[ P(Xil X1, -, Xia)
i=1

@ Example: Joint distribution of n Boolean variables
e Specification requires 2" — 1 parameters

@ Recall Independence:
o For X1, Xz, P(X1,X2) = P(X1)P(X2)
o In general

PO+ X = ][ PIX)

@ Independence reduces specification to n parameters 10/108
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Independence
] Cavity
Cavity decomposssinto \Toothache Catch
Toothache  Catch #

Weather

o Consider 4 variables: Toothache, Catch, Cavity, Weather

@ Independence implies
P( Toothache,Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity) P(Weather)

@ Absolute independence helpful but rare
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Conditional Independence

@ X and Y are conditionally independent given Z
P(X,Y|Z) = P(X]|2)P(Y|Z)

o Example:
P( Toothache,Catch| Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)

o Conditional Independence simplifies joint distributions
e Often reduces from exponential to linear in n

P(X,Y,Z)=P(Z)P(X|Z)P(Y|Z)
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Naive Bayes Model

o If Xq,...,X, are independent given Y
P(Y, X1,....Xs) = P(Y) ] P(Xi|Y)

@ Example:
P(Cavity, Toothache, Catch)

= P(Cavity)P( Toothache|Cavity ) P( Catch| Cavity)

@ More generally

P(Cause, Effecty, . . ., Effect,) = P(Cause) H P(Effect;| Cause)
i=1

Com) Comer)
<o &
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

@ Syntax

e A set of nodes, one per variable

e A directed, acyclic graph (link implies direct influence)

e A conditional distribution for each node given its parents
e Conditional distributions

e For each X;, P(X;|Parents(X;))

o In the form of a conditional probability table (CPT)

@ Distribution of X; for each combination of parent values
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Example

Topology of network encodes conditional independence assertions

D @

@ Weather is independent of the other variables

@ Toothache, Catch are conditionally independent given Cavity
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I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it's set off by minor earth-
quakes. Is there a burglar?

@ Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
@ Network topology reflects “causal” knowledge

e A burglar can set the alarm off

e An earthquake can set the alarm off

e The alarm can cause Mary to call

e The alarm can cause John to call
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Example (Contd.)

P(B)

Burglary

.001

P(A|B,E)

T |w

MM A|m

.95
.94
.29
.001

P(E)

Earthquake 002

A | PUJIA)
T| .90
F| .05

P(MIA)

.70
.01
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Je
@ﬁ@

@ A CPT for Boolean X; with k Boolean parents
o 2K rows for the combinations of parent values
e Each row requires one number

@ Each variable has no more than k parents

o The complete network requires O(n - 2X) numbers
o Grows linearly with n
o Full joint distribution requires O(2")

o Example: Burglary network

o Full joint distribution requires 2° — 1 = 31 numbers

o Bayes net requires 10 numbers
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Global semantics

o Full joint distribution
e Can be written as product of local conditionals
o Example:
P(j, m,a,—b,—~e) = P(—=b)P(—e)P(a|—b,—e)P(j|a)P(m]|a)
@ Example:

P(j,—~m,a, b,—e) = P(b)P(—e)P(a|b,—e)P(j|a)P(—m|a)

e Can we compute P(b|j,—m)?
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Local semantics

Each node is conditionally independent of its nondescendants given
its parents
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Markov blanket

Each node is conditionally independent of all others given its Markov
blanket, i.e., parents + children + children’s parents
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Conditional Independence in BNs

® () () ©
(a) (b) (c) (d)

Which BNs support x; L xz|x3
e For (a), x1, x2 are dependent, x3 is a collider
e For (b)-(d), x1 L x2|x3
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Conditional Independence (Contd.)

@ @
@\@/@ %/@ @\@/@ 0
(2)
(=) () (©) ()

Which BNs support x L y|z
e For (a)-(b), z is not a collider, so x L y|z
@ For (c), z is a collider, so x and y are conditionally dependent

e For (d), w is a collider, and z is a descendent of w, so x and y are
conditionally dependent
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d-connection, d-separation

e Definition (d-connection): X, Y, Z be disjoint sets of vertices in a
directed graph G. X, Y is d-connected by Z iff 3 an undirected
path U between some x € X,y € Y such that

o for every collider C on U, either C or a descendent of C isin Z, and
@ no non-collider on U isin Z

@ Otherwise X and Y are d-separated by Z

o If Z d-separates X and Y, then X L Y|Z for all distributions
represented by the graph
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Conditional Independence (Contd.)

Examples
e For (a), a L e|b; but a, e are dependent given {b, d}

@ For (b) a and e are dependent given b; ¢ and e are
unconditionally dependent
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Conditional Independence: More Examples

(a) (b)

@ For(a),Isalcle? Isa le|lb? Isal e|c?
@ For(b),Isaleld?Isalelc?Isalclb
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Constructing Bayesian networks

@ Hard problem in general: Structure learning

@ Choose an ordering of variables Xi,..., X,
@ Fori=1ton

o Add X; to the network
o Select parents from X, ..., X;_1 such that

P(X,-|Parents(X,-)) = P(X,'|X1, - ,X,’,l)
This choice of parents guarantees global semantics

n
P(X1,....Xs) = [[PXilX, ... Xi21)
i=1

= H P(X;|Parents(X;))
i=1
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Example: Burglary Network, Causal Order

P(B) P(E)

001 Earthquake 002

Burglary

B E |P(ABE)
T T| 9

T F| 9

F T| 29

F F| .o01

A | PUIA) A |P(M]A)

F| .05 F| .01
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Example: Burglary Network, Other Orders

Burglary
Earthquake

()

MaryCalls

Earthquake

(

Burglary

(b)
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Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
broken broke

broke
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Inference

P(E)

P@®)
.001 .002

Burglary

B__E |P(ABE)
T T| 9

T F| 9

F T| .29

F F| .o01

PQIA) A [P(M]A)

F| .05 F| .01

How can we compute P(b|j,~m)?
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Graphical Models: Two (Three) Problems of Interest

nn—H|w
LER L

[A JP(MIA)Y
;
@ Structure learning

e Given samples, find undirected/directed dependency structure
o Not causality, but statistical (in)dependence

o Parameter (conditional probability) estimation

e Given samples and structure, estimate conditional probabilities
o ‘Easy’ without latent variables

@ Inference
o Given observed samples or components
e Infer properties of latent variable distribution
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

e Markov Chain Monte Carlo (MCMC)
o Variational Inference (VI)

Expectation Maximization

Dynamical Models
o Filtering, Prediction, Smoothing
e Examples: HMMs, KFs, DBNs
Losses and Representation

o Losses from generalized linear models
e Beyond linear representations

Scoring rules, Calibration
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Inference and Estimation Problems

e Joint distribution of a latent variable model (LVM)
po(x,z) = po(z)po(x|2) ,

e x denotes the observed variable
o z denotes the latent variable
e 0 denotes the parameters

@ Problems of interest
e Compute marginal or conditional distributions

po(x) = /pe(x,z)dz po(z]x) = po(x,z)

o Estimate 6 by optimizing a function of py(x)
@ Problems need to (approximately) compute high-d integrals
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Monte Carlo Principle

Target density p(x) on a high-dimensional space

Draw i.i.d. samples {x;}7_; from p(x)

Construct empirical point mass function

=36
i=1

@ One can approximate integrals/sums by

fo, =2 I(f) = / f(x)p(x)dx

Unbiased estimate /,,(f) converges by strong law

For finite a%, central limit theorem implies

V(ln(f) = I(f)) = N(0,0%)
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Rejection Sampling

Target density p(x) is known, but hard to sample
Use an easy to sample proposal distribution q(x)
q(x) satisfies p(x) < Mq(x), M < o0
Algorithm: For i=1,--- ,n

o Sample x; ~ g(x) and u ~ U(0,1)

o Ifu< I\Zc(])gx)) accept x;, else reject

Issues:

e Tricky to bound p(x)/q(x) with a reasonable constant M
e If M is too large, acceptance probability is small
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Rejection Sampling (Contd.)

Mt]()(“)

. Reject region

Y

X~ q(x) X
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Importance Sampling

@ For a proposal distribution g(x), with w(x) = p(x)/q(x)

/(f)—/xf(x)w(x)q(x)dx

@ w(x) is the importance weight
@ Monte Carlo estimate of /(f) based on samples x; ~ g(x)
In(F) =Y Fxi)w(x)
i=1
@ The estimator is unbiased, and converges to /(f) a.s.
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Importance Sampling (Contd.)

e Choose g(x) that minimizes variance of /()
varg(f(x)w(x)) = Eqlf?(x)w?(x)] - I*(f)

@ Applying Jensen's and optimizing, we get
. f(x)|p(x
0 = 10le)
J1f()|p(x)dx
e Efficient sampling focuses on regions of high |f(x)|p(x)

@ Super efficient sampling, variance lower than even g(x) = p(x)
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Markov Chains

Use a Markov chain to explore the state space

Markov chain in a discrete space is a process with

p(xi|xi—1,...,x1) = T(xi|xi—1)

After t steps, probability of being in state x;

pt XI Zpt 1 X/ XI‘XI )

A chain is homogenous if T is invariant over time Vi

MC has reached stationary distribution if p:(x;) = pr—1(x;i), Vi
MC will stabilize into a stationary distribution if

o lIrreducible, transition graph is connected
e Aperiodic, does not get trapped in cycles
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Markov Chains (Contd.)

Sufficient condition to ensure p(x) is the stationary distribution
p(xir) T(xilxir) = p(xi) T (xir[xi)

@ Detailed balance equation implies invariant (stationary)
distribution
Z p(X,-/)T(X,"X,'/) = Z p(X,‘)T(X,'/‘X,') = p(X,‘)
Xt Xt

MCMC samplers, stationary distribution = target distribution

Design T(-|-) to get stationary distribution p(x)

Sampling from p(x) by running the MC to convergence
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Markov Chains (Contd.)

@ Random walker on the web

o Irreducibility, should be able to reach all pages
e Aperiodicity, do not get stuck in a loop

o PageRank used T=L+ E

e L = link matrix for the web graph
e E = uniform random matrix, to ensure irreducibility, aperiodicity

e Invariant distribution p(x) represents rank of webpage x

@ Continuous spaces, T becomes an integral kernel K
| PlidK Gl = (i)

e Stationary p(x) is the corresponding eigenfunction
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The Metropolis-Hastings Algorithm

@ Most popular MCMC method
@ Based on a proposal distribution g(x*|x)
e Algorithm: For i =0,...,(n—1)

e Sample u~1(0,1)

e Sample x* ~ g(x*|x;)
e Then

o — x* if u < A(xi, x*) = min {1, %}
X; otherwise
@ The transition kernel is
Kmr (Xi1]xi) = q(xip1|xi)A(Xi, Xit1) + 0x; (Xit1)r(xi)

where r(x;) is the term associated with rejection

r(x;) = / q(x|xi)(1 — A(x;, x))dx

X

44/108

Instructor: Arindam Banerjee



The Metropolis-Hastings Algorithm (Contd.)

0.1 i=100 0.1 ‘ i=500

sl g 0 ol i b
-10 0 10 20 -10 0 10 20
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The Metropolis-Hastings Algorithm (Contd.)

By construction
p(xi) Kmr(Xit1]xi) = p(xiv1) Kmr(xilxit1)

Implies p(x) is the invariant distribution

Basic properties
o Irreducibility, ensure support of g contains support of p
e Aperiodicity, ensured since rejection is always a possibility

Independent sampler: g(x*|x;) = g(x*) so that

A(x;,x*) = min {1, Q’EX*)‘M}

x
*
~—
o
—_
=
~
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The Metropolis-Hastings Algorithm (Contd.)

Target distribution
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Mixtures of MCMC Kernels

Powerful property of MCMC: Combination of Samplers

Let K1, K> be kernels with invariant distribution p

o Mixture kernel aKi + (1 — a)Ka, « € [0, 1] converges to p
e Cycle kernel K; K, converges to p

Mixtures can use global and local proposals

o Global proposals explore the entire space (with probability «)
o Local proposals discover finer details (with probability (1 — «))

@ Example: Target has many narrow peaks

o Global proposal gets the peaks
o Local proposals get the neighborhood of peaks (random walk)
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Cycles of MCMC Kernels

Split a multi-variate state into blocks
Each block can be updated separately

Convergence is faster if correlated variables are blocked

Transition kernel is given by
Kuricyere(xU D [x(1) = H KMH(j)(Xt();+1)|X1(3;):X(,’[—i[;jl]))

/+1 { (i4+1) (i+1) (i) }
b Vb by b"b

Trade-off on block size

o If block size is small, chain takes long time to explore the space
o If block size is large, acceptance probability is low

@ Gibbs sampling effectively uses block size of 1
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The Gibbs Sampler

@ For a d-dimensional vector x, assume we know

p(xj|x—;) = p(Xj|X1, - -\ Xj—1, Xj41, -+ Xd)

Gibbs sampler uses the following proposal distribution

w1 (1) i . ()
q(x*\X(i)) _ P(XJ- |X—j) if Xt = x1)
0 otherwise

The acceptance probability

A(x), x*) = min {17 pO<)a(]x) } =1

p(xD)q(x*|x(D)

Deterministic scan: All samples are accepted
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The Gibbs Sampler (Contd.)

o Initialize x(°). For i =0,...,(N —1)
e Sample Xl(iH) ~ p(x1|X§i),x3(i) e ,x‘(ji))
e Sample X2(i+1) ~ p(x1|xfi+1), X§i) . ,Xg))
o Sample x{™) ~ p(xg |\, x{TD)
@ Possible to have MH steps inside a Gibbs sampler
@ For d =2, Gibbs sampler is the data augmentation algorithm
o For Bayes nets, the conditioning is on the Markov bIanket
p(x1xj) o< P(xj1xpagy) [ POklpalk
kEch( )
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Simulated Annealing: Finding Modes

Problem: To find global maximum of p(x)

Initial idea: Run MCMC, estimate p(x), compute max
Issue: MC may not come close to the mode(s)
Simulate a non-homogenous Markov chain

Invariant distribution at iteration i is p;(x) oc p*/ Ti(x)

Sample update follows

x* if U<A(Xi,x*):min{]_’p.(x*)q(xix*)}
p i (xi)a(x*|xi)

- -

-

Xit1 =
X; otherwise

T; decreases following a cooling schedule, lim;,,, T; =0

Cooling schedule needs proper choice, e.g., T; = m
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Simulated Annealing (Contd.)

0.2 0.2

0.2 0.2
o1 i=1000 01 i=5000
0 Q
-10 0 10 20 -10 0 10 20
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Latent Variable Models, Redux

e Joint distribution of a latent variable model (LVM)
po(x,z) = po(z)po(x|2) ,

e x denotes the observed variable
o z denotes the latent variable
e 0 denotes the parameters

@ Problems of interest
e Compute marginal or conditional distributions

po(x) = /pe(x,z)dz po(z]x) = po(x,z)

o Estimate 6 by optimizing a function of py(x)
@ Problems need to compute high-d integrals
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Variational Inference (VI): Warm Up

Construct a distribution gy(z|x) with parameters ¢

Choose family g and parameters ¢ to approximate true posterior
qp(2z|x) = po(z[x)

Ideally: Choose g to minimize some divergence D(q,(z[x), pp(z|x))
o Challenge: Do not know py(z|x) explicitly
@ Inference model gy (z|x)

o Also called recognition model, or encoder
e ¢ are called the variational parameters

Generative model pg(x|z), also called decoder
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Evidence Lower Bound (ELBO)

log pg(x) = Eq, (z1x) ['0gpe( )]
po(x,z
= Faep |10 <P9 z|x)>}
[ Po(x,z) qs(z|x )ﬂ
=E, (215 [lo
q4(2[x) i g<q¢ |x)p9
[ [ po(x, Z)ﬂ [ (%(Z!X))]
Eg (215 |lo +Eq 21k
q4(z|x) i g <q¢ (z]%) q4(z[x) po(2]x)
cgy(ﬁ(x) (ELBO) Dki(q4(z[x)llpo(2[x))

Maximize the ELBO, lower bound to log py(x)

Lo,s(x) =

E%(Z‘X)[Iog po(x,z) — log q4(z|x)]
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Mean Field VI

Inference is done based on a dataset {x;,i =1,...,n}

Mean field VI assumes a tractable inference model
n
as(2x) = [ [ ge:(zilx)
i=1

o Naive mean field, fully factorized distribution over {z;}

@ Each component typically belongs to some exponential family

@ Optimize over the free variational parameters {¢;,i =1,...,n}
o Need to optimize each ¢;, can be slow for large datasets

@ The fully-factorized assumption may be inaccurate
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Stochastic and Amortized VI

@ Stochastic VI based on stochastic optimization
o Update variational parameter by optimizing expectation
e Use stochastic mini-batch instead of full-batch gradient descent
e Work with noisy unbiased gradients
e More discussions on gradient computation soon
@ Amortized VI
o Challenge: optimize ¢; foreach i=1,...,n
o Instead learn a mapping ¢; = £,(x;)
e More generally, posterior approximations with inference networks

9o (zilxi) = ar, () (zi]xi)
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Simple LVMs: Finite Mixture Models

p(x) 4

4
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Mixture of Gaussians

@ The probability density function is given by

p(x|©) = Zﬁk/\/ X| ks Z)

@ Set of parameters © = {{ﬂk}, {,uk}, {Zk}}
@ 7 is a discrete distribution: relative proportions of each component

0<m <1 Zwkzl

@ Each component is a multi-variate Gaussian

1
N (X|pk, Ek) = (27)3 25| exp (*(X — ) T (x— Mk))
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Generative Model Perspective

@ To generate a sample x from the mixture model
e Sample mixture component z ~
o Sample x € RY from the z*" component x ~ N (j,, X ,)

@ An alternative viewpoint: z is a 1-of-K binary vector
K
p(x) =D p(2)p(x[z) = > mN (x|pks T)
z k=1

@ The posterior distribution
p(zk ) p(x|zk TN (X ek, Tk
,D(Zk|X): ( k) ( ‘ ) _ . ( ’ )
p(x) > i1 MN (X[, )
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Maximum Likelihood Estimation

Let X = {x1,...,x,} be drawn i.i.d. from MoG
The log-likelihood of the observations

N K
log p(X|m, p, X) = Z log {Zwk/\/(xnm;ﬁ Zk)}
i=1 k=1

Optimizing directly w.r.t. (7, u, X) is difficult
e log works on sum, not on individual Gaussians
o Closed form solution cannot be obtained

Expectation Maximization (EM)

o Powerful family of iterative update algorithm
o Applicable for learning mixture models
e Has applications beyond mixture models
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EM for Gaussian Mixtures

@ At the optimum, gradient w.r.t. (m, i, X) should vanish
@ Taking derivative w.r.t. uy and setting it to 0

ey TN (%l s L)
0 = Yk (xn
ZZ Zk 17 (Xn|MJv 7)

- Z P(zic[xn) Xk (xn = 1k)
n=1

@ A direct simplification gives (let Ny = Z,’Yzl p(zk|xn))

N
1
He= 5 Zl p(2kxn)%n
n—=

— k)
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EM for Gaussian Mixtures (Contd.)

@ Taking derivative w.r.t. >
N
1
Y= Ne > p(zilxn) (X = i) (xn — 1) "
n=1

o Constrained optimization for 7, with Lagrangian

K
log p(X |7, j1, £) + A (Z Th — 1)
k=1
@ A direct calculation gives
Ny
T = —-

N
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EM for Gaussian Mixtures: Algorithm

o Initialize m, u, >
@ Till Convergence
E-step Evaluate the posterior probabilities
N (X s Zk)
P(zlxn) = =x

21:1 TN (X[, Zj)

M-step Update the parameter values

1 N
A ; P(2Zk|Xn)%n
1 N
Y = ﬁk ZP(Zk|Xn)(Xn — puic)(Xn — Uk)T
n=1
_ M
T — N
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EM on Gaussian Mixtures Example
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EM on Gaussian Mixtures Example
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EM on Gaussian Mixtures Example
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EM on Gaussian Mixtures Example
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EM on Gaussian Mixtures Example
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An Alternative View of EM

@ Maximum likelihood in presence of latent variable

log p(X0) = log {Z p(X, ZW)}

The marginal cannot be obtained in closed form

{X, Z} is the complete data, {X} is the incomplete data
@ Main Idea

o We dont know Z, hence dont know p(X, Z|6)
o We know p(Z|X,6)
o Use expected value of p(X, Z|6), expectation over p(Z|X,6)

Expected value of the complete likelihood
Q(0,6°) = > p(Z|X,6°) log p(X, Z|0)
Compute 6" by maximizizng Q(6, 6°)
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The General EM Algorithm

@ Choose initial value of parameters §°¢

o Till convergence

E-step Evaluate p(Z|X, 6°) [Recall: Inference network gy (z|x)]
M-step Evaluate 0" given by

0" = argmax, Z p(Z|X,0°) log p(X, Z|0)

o Update g/ < gnew

74/108

Instructor: Arindam Banerjee



Gaussian Mixtures Revisited

@ E-step evaluates the probabilities
N (x| ik, k)

S MmN (K, T))

@ M-step computes the new parameters

p(2k[xn) =

1 N
Mk = ,\Tk ;P(Zﬂxn)xn
1 N
Y = ,\Tk ZP(Zk|Xn)(Xn — k) (xn — Mk)T
n=1
_ N
T =
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Analysis of the EM Algorithm

e For any distribution g(Z)
log p(X|0) = L(q.,0) + KL(q|p)

L(g,0) = Y a(2) |0g{p(§(’zz)|9)}

KL(qllp) = ) _a(Z)log {p(;(\?@)}

@ Since KL(ql||p) > 0, we have a lower bound
log p(X|0) = L(q,0) = Eqllog p(X, Z|0)] + H(q)

@ Main ldea: Lower bound maximization

where
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Analysis of EM

y Y
KL(ql|p)
v a
L(q,0) In p(X16)
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Analysis of the EM Algorithm (Contd.)

o log p(X|0) = L(q,0) + KL(ql[p)
@ The current parameter estimate §°/¢
@ The E-step:
Maximize £(q,0) w.r.t. q
e The solution is q(Z) = p(Z]| X, 0)
o We have KL(q||p) = 0, so that log p(X|6°) = L(q, 6°'%)
@ The M-step:
Maximize £(q,0) w.r.t. 6

e The new solution 6"
e The current g is not the optimal distribution, so KL(g||p) >0
]

However,

log p(X[07) > £(q,6"*) > £(q,6°) = log p(X|6°")
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The E-step

KL(q|lp) =0

L(q,0°) In p(X[6°'9)
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KL(ql|p)

SRR N DN A

C(q, OneW) lnp(X|0neW)
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Variational EM

o log p(X|0) = Eqlog p(X, Z|6)] + H(q) + KL(ql|p)

@ The E-step:

Maximize £(q,0) w.r.t. q

e The solution is g(Z) = p(Z|X, 6)

o For some models, p(Z|X,#) cannot be obtained in closed form
o Example: Latent Dirichlet Allocation, Bayesian Models, etc.

@ Variational E-step:

o Pick a parameterized family q4(Z)
o Choose variational parameter ¢ to minimize KL(qy||p)
e Same as maximizing lower bound to true the likelihood

log p(X[6) = Eq,[log p(X, Z|0)] + H(qs)

o KL(qe||p) does not becomes zero, but progress is made
@ M-step optimizes lower bound over 6

@ Variational EM: Getting widely used for statistical models
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Auxiliary Function Viewpoint of EM

601d enew
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

e Markov Chain Monte Carlo (MCMC)
o Variational Inference (VI)

Expectation Maximization

Dynamical Models
o Filtering, Prediction, Smoothing
e Examples: HMMs, KFs, DBNs
Losses and Representation

o Losses from generalized linear models
e Beyond linear representations

Scoring rules, Calibration
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Dynamical Models: Outline

@ Time and uncertainty
@ Inference: filtering, prediction, smoothing

@ Examples: Hidden Markov Models (HMMs), Kalman Filters (KFs),
Dynamic Bayesian Networks (DBNs)
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Time and uncertainty

The world changes

o Rational agent needs to track and predict
e Example: Car diagnosis Vs Diabetes

Consider state and evidence variables over time

X: = set of unobservable state variables at time t
o Example: BloodSugar,;, StomachContents;, etc.

E; = set of observable evidence variables at time t
o Example: MeasuredBloodSugar;:, FoodEaten;, etc.

Time can be discrete or continuous
Notation: X,.p = X5, Xa41, -+, Xb—1, Xp
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Markov Processes (Markov Chains)

Construct a Bayes net from these variables: Parents?

Markov Assumption X; depends on bounded subset of Xp.;_1
o First-order: P(Xt|X0;t7]_) = P(Xt|Xt71)
o Second-order: P(X¢|Xo.t—1) = P(Xe| Xe—2, Xi—1)

i —E DD~~~

Second-order @'@'0'@'@

Sensor Markov assumption: P(E:|Xo.t, Eo:t—1) = P(E¢| Xt)
Stationary process:

o Transition model P(X;|X;_1) fixed for all t
e Sensor model P(E;|X;) fixed for all t
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Ri-1

P(Rt)

0.7
0.3

)

Umbrella;_;

o First-order Markov assumption often not true in real world

@ Possible fixes:

Umbrella;

o Increase order of Markov process

e Augment state, e.g., add Temp;, Pressure,

@ Example: Robot Motion

e Augment position and velocity with Battery;
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Filtering: P(X:|ei:+)
o Belief state is input to the decision process

Prediction: P(X;i|ei.+) for k >0
o Evaluation of possible state sequences
o Like filtering without the evidence

Smoothing: P(Xklei.t) for 0 < k <t
o Better estimate of past states
e Essential for learning

Most likely explanation: arg max, , P(x1:t|e1:+)
o Example: Speech recognition, Decoding from noisy channel
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@ Aim: A recursive state estimation algorithm
P(Xev1lerer1) = f(ets1, P(Xelew:t))

@ From Bayes rule
P(Xit1lertr1) = P(Xerilewt,err1)
= aP(ety1|Xer1,ere) P(Xeraler:)
= aP(er1|Xer1) P(Xev1ler:)
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Filtering (Contd.)

o We have
P(Xt+1’elzt+1) = aP(etJrl’XtJrl)P(XH»l‘el:t)

@ First term P(e;41|X¢41) is evidence conditional probability (known)

@ Expanding the second term
P(Xt+1 \61:t+1) = OéP(et+1|Xt+1) Z P(Xt+1|Xt-/ el:t)'D(Xt|e1:t)

Xt

= aP(eH_l\XHl)ZP(Xt+1|xt)P(xt|e1;t)
Xt
@ Recursive filtering
o p(x¢ler.) is the previous filtering term (recursion, known)
o p(Xiy1|xt) is state transition probability (known)
o Need to do marginalization > --- (high-d integration)
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Prediction is similar to filtering
e Without new evidence

Filtering does one step prediction

For prediction
P(Xerksilere) = D P(Xerkr1 [ Xer k) P(Xesklere)

Xt+k
How far in the future can we predict?
After evidence stops, prediction is running a Markov Chain
limg— 0o P(Xtik|e1:r) converges to the stationary distribution
Prediction gets harder, uncertainty increases
Example: Weather forecasting for 2 days, 1 week, 4 weeks
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Umbrella Example

Ri-1| P(Ry)
]E 0.7
0.3
Rain; _; Rain; Rain; .4
R | P(UY)
t 0.9
f 0.2

Umbrella; _; @ Umbrella;
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C~CD—=-—~ -~

@ Divide evidence ey.; into eq.x, €xy1:t
P(Xklert) = P(Xklewk,ext1:t)
= aP(Xklerk)P(ekr1:c| Xk, erx)
= aP(Xklerk)P(exr1:¢|Xk)

= afy.ubrii

@ Forward message fy.j is filtering
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Smoothing (Contd.)

@ Backward message computed by a backwards recursion:
Plersr:el Xi) = Y Pleryreel X xiep1) P(xur1|X)

Xk+1

= > Plewtrelir) P(ir1lXe)

Xk+1
= D Plersrxui1) P(ersaexurn) POxkra| Xe)
Xk+1
@ byy1.t = Pexs1:¢|Xk) = aBackward(bgio:t, €x+1)
@ The smoothed probability
P(Xkle1:t) = afi:kbki1:e
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Most Likely Explanation

@ Most likely sequence # sequence of most likely states

@ Most likely path to each X1
max P(X17 ceey Xt7 Xf+1’e1:t+1)

X1...X¢

= P(et+1|Xt+]_) mxax <P(Xt+]_Xt) max P(Xl, ey th]_, Xt|e]_;t)>

X1 X¢—1

o Identical to filtering, except f1.; replaced by
mi.+ = mMmax P(X].a"'vthl:Xt‘el:t)*,

X1...Xt—1
@ my.+(/) gives the probability of the most likely path to state /.

o Update has sum replaced by max, giving the Viterbi algorithm:
Mitr1 = P(ery1|Xer1) max (P(Xey1|Xe)mie)
Xt
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

e Markov Chain Monte Carlo (MCMC)
o Variational Inference (VI)

Expectation Maximization

Dynamical Models
o Filtering, Prediction, Smoothing
e Examples: HMMs, KFs, DBNs
Losses and Representation

o Losses from generalized linear models
e Beyond linear representations

Scoring rules, Calibration
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Losses and Representations: Warm Up

Typically work with a set of samples {(x;,y;),i =1,...,n}
e Samples assumed to be i.i.d.

Many problems we will consider
n
i L(y;, fa(x;
i 3 L0 ()

@ L is the loss, e.g., square loss, log loss, hinge loss, etc.

o Losses as surrogates to target risk, e.g., hinge loss, log loss

o Losses from statistical assumptions, e.g., square loss, log loss
@ fy(+) is the predictor, with suitable representation

o Classical (linear) approach: fy(x) = 07x

o Modern approach: deep representations
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Least Squares Regression

@ Objective function
n

min Z(y,- — fy(x;))?

0 <
i=1

e Statistical modeling assumptions: P(Y|x)
o Conditional expectation is (a function of) the predictor

E[Y[X] = fy(x)

e Responses drawn from this conditional Gaussian, with fixed variance

yi ~ N(E[Y[xi],0%) = N(fy(xi), 0%)

@ Maximum likelihood estimation = least squares objective

98/108

Instructor: Arindam Banerjee



Logistic Regression

@ For 2-class classification with y; € {0, 1}, objective function
n
min ifo(xi) — log(1 + exp(fo(xi
jn 3 {o) — g1+ oot |
e Statistical modeling assumptions: P(Y | x)
e Conditional expectation is a function of the predictor

log /;E(l)li) =fo(x) = P(1x) =E[Y|x] = o(fp(x)), o(a) = H%p(fa)

—

e Response drawn from this conditional Bernoulli

yi ~ Bern(E[Y|x;]) = Bern(o(fp(x;)))

@ Maximum likelihood estimation = log-loss (cross-entropy) objective
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Exponential Family, Link Function

Exponential family distributions
Pn(y) = exp({y,n) — ¥(n))p(y)

Examples: Gaussian, Bernoulli, gamma, categorical, Dirichlet,
Poisson, ...

1 is the log-partition function, convex, differentiable
Expectation: E[Y] = V(n), the link function A(-)
Example: for Bernoulli, 1(n) = log(1 + exp(n)), so

B _exp(n) !
EY1=Vo0n) = oo =~ T ex(n

e For logistic regression, model Y|x with n = fy(x), so
E[YX] = o(fs(x))

)= a(n)
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Generalized (Linear) Models

Conditional distribution of response y given covariates x

Po(yx) = exp((y,1(x)) = ¥(n(x)))p(y[x)

Examples: least squares regression (continous), logistic regression
(categorical, classification), Poisson regression (count), ...
Representation: 7(x) = fp(x)

o Classical GLMs: n(x) = 07x
Statistical modeling assumptions: P(Y | x)

o Conditional expectation is the link function A of the predictor

E[Y M = V(n(x)) = A(f(x)

o Response drawn from this conditional exponential family
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Overview: Probabilistic Models

Probability Overview

Bayesian Networks, Graphical Models

Approximate Inference:

e Markov Chain Monte Carlo (MCMC)
e Variational Inference (VI)

Expectation Maximization

Dynamical Models
o Filtering, Prediction, Smoothing
e Examples: HMMs, KFs, DBNs
Losses and Representation

o Losses from generalized linear models
e Beyond linear representations

Scoring rules, Calibration

102/108

Instructor: Arindam Banerjee



Scoring Rules

Scoring rules measure accuracy of probabilistic forecasts
o Example: Weather forecast, 25% chance of rain

@ Probabilistic forecast P, true outcome x, scoring rule S(P, x)
o Higher S(P, x) means more accurate
True outcome X ~ @, expected score S(P, Q) = Ex..q[S(P, X)]
Scoring rule is proper if S(Q, Q) > S(P, Q), for all P, Q
e Forecaster should try to use P = Q for the forecasts
Expected loss (or divergence): d(P, Q) = S(Q, Q) — S(P, Q)

o For proper scoring rules, d(P,Q) >0
o "Better” forecasts P have smaller loss (or divergence)
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Fitting Models using Scoring Rules

Fitting parametric model Py given samples Xi,..., X,

Measure goodness-of-fit by mean score

Sn(0) = % D S(Py, Xi)
i=1

Choose a suitable (strictly) proper scoring rule, and estimate
. 1«
0, = arg;nax e ZS(PQ,X{)
i=1
@ Compare with maximum likelihood estimation:

o 1<
0, = nzllogpg(X,-)
i

Question: Is S(Py, Xj) = log pp(X;) a proper scoring rule?
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Scoring Rule: Examples (1 of 3)

@ Quadratic or Brier score: Discrete distribution with m possible

- ’J *2P: ZPJ -1
Z > =lp—al3

Ms

@ Spherical score: For any a > 1 (special case a = 2)
a—1
. P; Pi
S(p, 1) = ’ < >
’ m g\ (@ 1/a) pll2
(57 e) ol
1/
& [e Z’ 1Pan ' < >
dpa) =[S a)| - b (el =20
=1 (E:f:1Q?>
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Scoring Rule: Examples (2 of 3)

@ Logarithmic score:
5(p, i) = log pi

m
o
d(p,a) =Y g log - = KL(a.P)
j=1 ’

e Continuous ranked probability score (CRPS): Forecast distribution
F,Z,Z ~F

CRPS(F,x) = /

—00

d(F,G) = /_Oc (F(z) — G(2))%dz

o 1
(F(z) — 1[z > x])?dz = iEF‘Z —Z'| = Ef|Z — x|
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Scoring Rule: Examples (3 of 3)

@ Hyvarinen score: Based on gradient of log-likelihood w.r.t. location

&, rather than model parameter 6:

dlog p(&;9)
061
Y(£;0) = Velogpy(§) = :
dlog p(&:0)
9p

e For data distribution P, score ¢y (&) = V¢ log py()
@ The loss or divergence:

d(Py, P) = 5Ep, [[[0(6,6) — (€)IB]

° [ 2logp(¢;0) | 1 (Dlogp(é:0))>
Z{ 02 +2< 06 )H

i=1

=Ep,
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Calibrated Forecasts

Assessing quality of probabilistic forecasts
o Example: 25% chance of rain
Sequential probabilistic forecasts

o Forecaster observes a sequence of events y; € K, e.g.,
K=1{1,2,...,m}
o They predict pr1 € A(K) (simplex), may depend on y;.;

Calibration: probability predictions match the outcome frequency
o Consider all (past) days with “25% chance of rain” forecast
o Estimate the fraction of these days it rained
e Fraction should be ~ 0.25

Should be true for all predicted probabilities
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