The neural autoregressive distribution estimator

Hugo Larochelle and Iain Murray

CS 598 presentation by Varun Kelkar

Outline

- Motivation
 - What is the paper trying to do?
 - Why is the problem important?
 - Why is the problem difficult?
- Prior approaches
 - Mixture of Bernoullis
 - Restricted Boltzmann machines
 - Bayesian Networks
- Approach
- Numerical studies
- Summary

Motivation

• What the paper wishes to achieve:

Distribution estimation of high dimensional discrete/binary vectors.

Motivation

• What the paper wishes to achieve:

Distribution estimation of high dimensional discrete/binary vectors.

• Why is this problem important:

If one knows the joint distribution of objects, one can potentially begin to answer any question about the dependencies between them, including all of supervised learning.

Motivation

• What the paper wishes to achieve:

Distribution estimation of high dimensional discrete/binary vectors.

• Why is this problem important:

If one knows the joint distribution of objects, one can potentially begin to answer any question about the dependencies between them, including all of supervised learning.

• Why is this problem difficult:

Curse of dimensionality, the PMF is a vector in a d^n -dimensional space, where d is the number of discrete levels, n is the dimensionality of the vector.

Previous approaches

- Mixture of Bernoullis (MoB)
- Restricted Boltzmann Machines (RBMs)
- Bayesian Networks
- Fully visible sigmoid belief network (FVSBN)

Restricted Boltzmann Machines (RBMs)

 $\mathbf{h} = \mathbf{W}\mathbf{v} + \mathbf{b}$

Probabilities evaluated using the energy function:

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{v} - \mathbf{b}^{\top} \mathbf{v} - \mathbf{c}^{\top} \mathbf{h}$$
(1)

probabilities are assigned to any observation \mathbf{v} as follows:

$$p(\mathbf{v}) = \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))/Z, \qquad (2)$$

Problems:

- Computing partition function *Z* is intractable for all except the small networks. Approximations needed.
- Hence, RBMs cannot be used to model parts of a probabilistic system.
- Difficulty in evaluating the learned distribution

Bayesian networks

Strategy: Decompose the distribution using its conditionals

$$p(\mathbf{v}) = \prod_{i=1}^{D} p(v_i | \mathbf{v}_{\text{parents}(i)}), \qquad (3)$$

Example: Fully visible sigmoid belief networks

$$p(v_i | \mathbf{v}_{\text{parents}(i)}) = \text{sigm}\left(b_i + \sum_{j < i} W_{ij} v_j\right), \quad (4)$$

Converting RBMs into Bayesian networks

Rewrite the RBM PDF in terms of conditionals

$$p(\mathbf{v}) = \prod_{i=1}^{D} p(v_i | \mathbf{v}_{< i})$$
$$= \prod_{i=1}^{D} p(v_i, \mathbf{v}_{< i}) / p(\mathbf{v}_{< i})$$
$$= \prod_{i=1}^{D} \frac{\sum_{\mathbf{v}_{> i}} \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))}{\sum_{\mathbf{v}_{> i}} \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))}, \qquad (5)$$

Use a simplified model for the still intractable conditionals

$$q(v_i, \mathbf{v}_{>i}, \mathbf{h} | \mathbf{v}_{
$$\prod_{j>i} \mu_j(i)^{v_j} (1 - \mu_j(i))^{1 - v_j}$$
$$\prod_k \tau_k(i)^{h_k} (1 - \tau_k(i))^{1 - h_k},$$$$

Converting RBMs into Bayesian networks

Minimize the KL divergence by setting its gradients to 0, which gives the following. Use fixed-point iterations to find the parameters of the distribution:

$$\tau_k(i) = \operatorname{sigm}\left(c_k + \sum_{j \ge i} W_{kj} \mu_j(i) + \sum_{j < i} W_{kj} v_j\right) \quad (7)$$
$$\mu_j(i) = \operatorname{sigm}\left(b_j + \sum_k W_{kj} \tau_k(i)\right) \quad \forall j \ge i \,. \tag{8}$$

Problems:

- Can be slow to converge.
- Needs to be repeated for each component v_i

Neural autoregressive distribution estimators (NADE)

Taking inspiration from the first fixed-point iteration above, formulate the network architecture.

$$p(v_i = 1 | \mathbf{v}_{
$$\mathbf{h}_i = \operatorname{sigm} \left(\mathbf{c} + \mathbf{W}_{\cdot,$$$$

Training: Minimize the log-likelihood averaged over a training dataset

$$\frac{1}{T}\sum_{t=1}^{T} -\log p(\mathbf{v}_t) = \frac{1}{T}\sum_{t=1}^{T}\sum_{i=1}^{D} -\log p(v_i|\mathbf{v}_{< i}), \quad (11)$$

Results of experiments

Experiments comparing various baselines using the average test log-likelihood (ALL) relative to the MoB baseline

Model	ADULT	CONNECT-4	DNA	MUSHROOMS	NIPS-0-12	OCR-LETTERS	RCV1	WEB
MoB	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	± 0.10	± 0.04	± 0.53	± 0.10	± 1.12	± 0.32	± 0.11	± 0.23
RBM	4.18	0.75	1.29	-0.69	12.65	-2.49	-1.29	0.78
	± 0.06	± 0.02	± 0.48	± 0.09	± 1.07	± 0.30	± 0.11	± 0.20
RBM	4.15	-1.72	1.45	-0.69	11.25	0.99	-0.04	0.02
mult.	± 0.06	± 0.03	± 0.40	± 0.05	± 1.06	± 0.29	± 0.11	± 0.21
RBForest	4.12	0.59	1.39	0.04	12.61	3.78	0.56	-0.15
	± 0.06	± 0.02	± 0.49	± 0.07	± 1.07	± 0.28	± 0.11	± 0.21
FVSBN	7.27	11.02	14.55	4.19	13.14	1.26	-2.24	0.81
	\pm 0.04	± 0.01	\pm 0.50	± 0.05	± 0.98	± 0.23	± 0.11	± 0.20
NADE	7.25	11.42	13.38	4.65	16.94	13.34	0.93	1.77
	\pm 0.05	\pm 0.01	± 0.57	\pm 0.04	\pm 1.11	\pm 0.21	\pm 0.11	\pm 0.20
Normalization	-20.44	-23.41	-98.19	-14.46	-290.02	-40.56	-47.59	-30.16

Generative performance for binarized images

Figure 2: (Left): samples from NADE trained on a binary version of MNIST. (Middle): probabilities from which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a computer screen.

Summary

- MoBs not sufficiently expressive to model the complex dependencies in high dimensional distributions
- RBMs can have an intractable computation of the partition function, rendering it difficult to use for downstream applications
- Bayesian networks, such as fully visible sigmoid belief networks may still be less expressive than desired.
- Approaches that convert RBMs to Bayesian networks are slow to converge.
- The proposed approach outperforms other approaches because it is able to utilize the recursiveness in Bayesian network architectures to decompose a complex probability distribution to a tractable form, while still having sufficient generality in the form of the network architecture chosen.

References

- 1. Larochelle, Hugo, and Iain Murray. "The neural autoregressive distribution estimator." *Proceedings of the fourteenth international conference on artificial intelligence and statistics*. JMLR Workshop and Conference Proceedings, 2011.
- 2. Fischer, Asja, and Christian Igel. "An introduction to restricted Boltzmann machines." *Iberoamerican congress on pattern recognition*. Springer, Berlin, Heidelberg, 2012.