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Motivation

● What the paper wishes to achieve:

Distribution estimation of high dimensional discrete/binary vectors.

● Why is this problem important:

If one knows the joint distribution of objects, one can potentially begin to 
answer any question about the dependencies between them, including all of 
supervised learning.

● Why is this problem difficult:

Curse of dimensionality, the PMF is a vector in a dn-dimensional space, where 
d is the number of discrete levels, n is the dimensionality of the vector.  



Previous approaches

● Mixture of Bernoullis (MoB)
● Restricted Boltzmann Machines (RBMs)
● Bayesian Networks
● Fully visible sigmoid belief network (FVSBN)



Restricted Boltzmann Machines (RBMs)

Probabilities evaluated using the energy function:

Problems:
● Computing partition function Z is intractable for all except the small networks. Approximations needed.
● Hence, RBMs cannot be used to model parts of a probabilistic system.
● Difficulty in evaluating the learned distribution



Bayesian networks

Strategy: Decompose the distribution using its conditionals

Example: Fully visible sigmoid belief networks



Converting RBMs into Bayesian networks
Rewrite the RBM PDF in terms of conditionals

Use a simplified model for the still intractable conditionals



Converting RBMs into Bayesian networks

Minimize the KL divergence by setting its gradients to 0, which gives the following. 
Use fixed-point iterations to find the parameters of the distribution:

Problems:

● Can be slow to converge.
● Needs to be repeated for each component vi



Neural autoregressive distribution estimators (NADE)

Taking inspiration from the first fixed-point iteration above, 
formulate the network architecture.

Training: Minimize the log-likelihood averaged over a 
training dataset



Results of experiments

Experiments comparing various baselines using the average test log-likelihood 
(ALL) relative to the MoB baseline 



Generative performance for binarized images



Summary

● MoBs not sufficiently expressive to model the complex dependencies in high 
dimensional distributions

● RBMs can have an intractable computation of the partition function, rendering 
it difficult to use for downstream applications

● Bayesian networks, such as fully visible sigmoid belief networks may still be 
less expressive than desired.

● Approaches that convert RBMs to Bayesian networks are slow to converge.
● The proposed approach outperforms other approaches because it is able to 

utilize the recursiveness in Bayesian network architectures to decompose a 
complex probability distribution to a tractable form, while still having sufficient 
generality in the form of the network architecture chosen.
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