CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

September 7, 2021
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Introduction, Motivation

Autoregressive models: Product of conditional distributions

D
p(Xla s 7XD) = H p(Xd|X<d)
d=1

Sequential training and prediction
@ Consider the binary case

o Conditional probability tables, 2P complexity
o Conditional probability models, still sequential O(D)

Autoencoders: Parallel training and prediction

e However, do not satisfy autoregressive property
e Not valid probabilistic models

Motivation: Can the two be combined?
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Background: Autoencoders

Autoencoders learn latent representations

o Latent representation x — h(x)
o Reconstruct original h(x) — %

Example: x € {0,1}P % € [0,1]¢
h(x) = g(Wx + b)
£ =o(Vh(x)+c)

@ Training using cross-entropy loss
D
l(x) = Z —xg log Xg — (1 — x4) log(1 — X4)
d=1

Not proper likelihood, not normalized
D
a() = [[&@=%)'79, > a(x)#1
d=1 X
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AR models for Distribution Estmation

@ Chain rule (product rule) for joint distributions
p(xt,...,xp) = [ [ p(xalx<d)
d=1

@ Valid likelihood based on
Xg = p(xg = 1llx<g)  1— %4 =p(xg = 0|x<d)

e X4 only depends on x4
o Autoregressive property

@ Minimize negative log-likelihood

D
((x) = —logp(x) = _ —log p(xd|x<a)
d=1
D
= Z —Xglog Xg — (1 — xq) log(1 — X4)

d=1
4/20

Instructor: Arindam Banerjee MADE: Masked Autoencoder



Masked Autoencoders

@ Binary mask matrices to ensure autoregressive property
@ Single layer autoencoder
h(x) = g(W & MY)x 4 b)
$=0o((VeM)h(x)+c)

@ Ensuring autoregressive property
o Each hidden layer getsa me {1,...,D — 1}
o m(k),k=1,...,K: number of input units it can connect to
e Mask matrix constructed based on m(k)

1, ifmk)>d,
MYy = Logysa =4 o
fod (k)24 {0 , otherwise
e Output unit x4 can only connect to k : d’ > m(k)

1 if d > m(k)
MY = 1gamiy =13 ’
.k '>mik) {0 , otherwise
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Properties, Variations

e Output-input connectivity MYV-W = MY MW
° M;/’dlfv: # paths between output xy and input xy

o MV:W is strictly lower diagonal
e For d’' < d,

K K
MC‘,/,:ZV = Z MQ//,,(M;% = Z larsm)lmxy=a =0
=1 k=1

@ Only need to assign m(k) to each hidden unit k
o Sample i.i.d. from a uniform distribution over {1,...,D — 1}
@ Residual connections from input to output

o Output x4/ can connect to input x4, d < d’
e Mask matrix M4 is lower triangular

$=a((Ve Mh(x)+ (A MY)x +c)
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Deep MADE

o Extend to L hidden layers, weight matrices W* , Wt

@ For each unit, assign maximum number of connected inputs
o m'(k): max # connected inputs for k™ unit in /*" layer
o As before, sample uniformly y
o Avoid unconnected units, m'(k) > min; m'~1(k)

@ Mask connecting any layer / to previous layer
1, i ml(K) = mT(k),

M / == ’ /—1 =
g k ml(k)zm'= (k) 0, otherwise
o Input layer: [ =0, m°(d) = d, W': Weights of first layer

L,
0, otherwise

@ Mask connecting output to last layer L
if d > mt(k),
MY = Lgsme() {
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Deep MADE (Contd.)

o For layers / =1,..., L, parameters (W' b/)
h'(x) = g((W' © MY)R'"1(x) + b)
o Layer / = 0 is the input, h/(x) = x
@ Output layer, parameters (V,c)
$=0o((VoM)ht(x) + )
@ Mini-batch (adaptive) first-order training, e.g., SGD, Adam, etc.
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Deep MADE

P(11\12713) P(ﬂb‘z) p(-’L'B‘-'L'Q)

x1 T2 T3
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Deep MADE Algorithm

Algorithm 1 Computation of p(x) and learning gradients
for MADE with order and connectivity sampling. D is the
size of the input, Z the number of hidden layers and K the
number of hidden units.

Input: training observation vector x
Output: p(x) and gradients of — log p(x) on parameters

# Sampling m! vectors
m® ¢ shuffle([L,....., D])
for I from 1 to L do
for k from 1 to k' do
m!(k) + Uniform([minj m!~1(¥),...., D—1])
end for
end for

# Constructing masks for each layer
for I from 1 to L do
MY i
end for -
MY 1osme

# Computing p(x)
hO(x) ¢ x

for I from 1 to L do .
hi(x) + g(b' + (W' o MW )h'~1(x))
end for
% sigm(c + (V © MV)h¥ (x))
p(x)  exp (L2, alogZa+ (1-2a) log(1-22))

# Computing gradients of — log p(x)

tmp X —x

be + tmp

5V « (tmp bk (x)T) oMV

tmp « (tmp' (Vo MVY))T

for  from L to 1 do
tmp « tmp ® g (b' + (W! & MW )bt~ (x))
&bl + tmp
W (tmp h~1(x)T) ¢
tmp « (tmpT (W @ MW'))T

end for

return p(x), 5bl, ..., 3b%, GW1, ..., 6WE, bc, 5V

MW
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Order-agnostic Training

@ Training assumes a fixed ordering of input

D
p(xi,...,xp) = H p(xd|x<q)
d=1

@ Order agnostic: Training with different (all) orderings
e Sampling an ordering before each mini-batch update
o Set m® =[m°(1),..., m°(D)] as permutation of [1,..., D]
o First hidden layer matrix can be created based on m°

o (Potential) Advantages

e Ensemble of AR models, over different orderings
o Missing/occluded input can be ordered with missing at the end
e Avoid specific order dependent artifacts
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Connectivity-agnostic Training

Masks in each layer choose specific connectivity

Connectivity constraints m/(k) chosen at random

o Connectivity-agnostic: Resample m/(k) before each mini-batch
o Creating masks is easy to parallelize
o Sample m’, construct MW’ = Lt > mi-1

Distinguish between no connection vs. connection with zero-valued
unit
h'(x) = g((W' © MY’ () + (U'© M1 4-b)

e Empirically not always helpful

Sampling masks for every example: over-regularization
o Choose a fixed set of masks, cycle through the list
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Related Work

@ Variant of single layer MADE [Bengio & Bengio, 2000]
@ Neural Autoregressive Distribution Estimator (NADE) [Larochelle
& Murray, 2011]
@ Deep extension to NADE [Uria et al., 2014]
o Still needs D steps to ensure AR property
@ Deep Autoregressive Networks (DARN) [Gregor et al., 2014]

e Training time is same as autoencoders
o Representation: binary stochastic units
e Evaluation of probability needs summing over configurations
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Complexity of Different Models

Table 1. Complexity of the different models in Table 6, to compute
an exact test negative log-likelihood. R is the number of orderings
used, D is the input size, and K is the hidden layer size (assuming
equally sized hidden layers).

Model ONLL

RBM 25 CD steps O(min(2” K, D2¥))
DARN 0(2% D)
NADE (fixed order) O(DK)
EoNADE 1hl, R ord. O(RDK)
EoNADE 2hl, R ord. O(RDK?)
MADE Ihl, 1 ord. O(DK +D?)
MADE 2hl, 1 ord. O(DK+K*+D?)
MADE 1hl, R ord. O(R(DK +D?))

MADE 2hl, R ord. O(R(DK+K?+D?))
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Results: UCI Datasets

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult  Connect4 DNA  Mushrooms NIPS-0-12  OCR-letters RCV1 ‘Web
MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 27137 43.05 48.88 29.38
FVSBN 13.17 12.39 83.04 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.)  13.19 12.58 8231 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ~28.17 ~46.10 ~28.83
MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling  13.13 11.90 79.66 9.69 27728 30.04 46.74 28.25
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Results: Binarized MNIST

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model —logp
RBM (500 h, 25 CD steps) ~86.34
DBM 2hl ~ 8462 =
DBN 2hl ~ 8455 g
DARN nx=500 ~ 8471 5
DARN n,=500, adaNoise ~84.13 ~—
MoBernoullis K=10 168.95
MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EONADE 1hl (128 orderings)  87.71 =
EoNADE 2hl (128 orderings) 85.10 §
MADE 1hl (1 mask) 88.40 &
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64
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MNIST Results: Samples
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Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.
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MNIST Results: Impact of Number of Masks
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Figure 2. Impact of the number of masks used with a single hidden
layer, 500 hidden units network, on binarized MNIST.
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Conclusions

Motivation: Avoid sequential nature of AR models
Challenging for high-dimensional input

MADE: models high-d probability

Probability computation is one-pass through autoencoder

Avoids sequential computation in AR, keeps AR property
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