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Problem Statement and Motivation

● Model distribution of high-dimensional data
● Expressive, tractable and scalable
● Papers focus on images: high-dimensional and highly structured
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Related Ideas in Generative Modelling

● Stochastic latent variable models (VAE) doesn’t compute proper probability 
distributions + reconstruction loss leads to blurry generations

● Adversarial learning models (GAN) produce sharper outputs but are unstable 
during training

● Techniques that model joint distributions as product of conditionals (NADE) 
lack highly expressive sequence models (RNN)

● Modifying VAE to output conditional probabilities (MADE) parralizes inference 
but doesn’t improve model performance (scalability)
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PixelRNN Model

● Model joint probability distribution 
as a product of conditionals

● In PixelRNN model, each pixel is 
conditionally dependent on 
previous pixels from top to bottom 
and left to right

● Additionally, each channel RGB is 
conditionally dependent on 
previous channel
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PixelRNN Model
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PixelRNN Generation 
Process
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PixelRNN Generation 
Process
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PixelRNN Generation 
Process
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Training vs generation

● Generation is extremely slow because of generating pixel-by-pixel and 
channel-by-channel sequentially

● However, training can be done quickly in parallel since all the conditional 
inputs are already present
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PixelRNN Model

● Always start with 7x7 masked convolution
● The “Block” in the diagram can be convolutions, RowLSTM, Diagonal BiLSTM
● All the above blocks contain residual connections
● Final output is 256 value softmax giving probability for each channel
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● Output layer has n x n x 3 x 256 shape
● Each 256 channel is normalized via 

softmax and represents multinomial 
probability distribution for pixel values

● Experimentally, this produced better 
results than continuous distribution



Sanchit Vohra (sv4)    CS 598 BAN

PixelCNN

● In PixelCNN each block is Masked 
3x3 convolution

● Mask exists to protect (RGB) 
inter-channel dependencies

● Advantage: Parallel computation
● Disadvantage: Small Receptive Field 
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PixelCNN Masking

● Mask A only used for first 7x7 
convolutional layer

● Mask B used for subsequent 
layers

● h features for each input 
position in subsequent layers 
is 3-dimensional (RGB)

● Mask B relaxes Mask A and 
allows channel (RGB) hidden 
state to be used as input 
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PixelRNN Model
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PixelRNN Model

Mask A for R channel
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PixelRNN Model

Mask A for G channel
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PixelRNN Model

Mask A for B channel
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PixelRNN Model

Mask B for R channel
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PixelRNN Model

Mask B for G channel
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PixelRNN Model

Mask B for B channel
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RNN Recap

● Recurrent Neural Network (RNN) unit takes 
current input and previous hidden state as 
input

● In practice, vanilla RNN’s have trouble learning 
long-term dependencies in sequences

● This is where LSTM come into play
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LSTM Recap

● Forget-gate(f), input-gate(i), 
output-gate(o), cell-state(c), 
hidden-state(h)

● Lots of literature on the intuition behind 
different gates and their purpose

● Better at modelling long-term 
dependencies than RNNs
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Convolutional LSTM

● Replace fully-connected weights in 
LSTM with convolutional layer
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Row LSTM

● Row LSTM processes features row by row from top to bottom computing 
features for whole row at once

● convolution with k x 1 kernel size where k ≥ 3
● Pre-compute entire input-to-state Kis component of LSTM
● Compute state-to-state Kss sequentially using previous hidden states
● Kis convolution uses Mask B to protect RGB inter-dependencies
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Row LSTM
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Row LSTM
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Row LSTM
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Row LSTM
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Row LSTM
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Row LSTM
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Row LSTM
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Row LSTM

● Advantage: Compute state for entire row at once
● Disadvantage: Triangular receptive field
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Diagonal BiLSTM

● Goal: capture entire available context
● Convolution scans diagonals of image from two directions
● Input-to-state is simple 1x1 convolution
● State-to-state is 2x1 convolution that operates on skewed image
● Convolutional outputs from two directions added together for final output
● Kis convolution uses Mask B to protect RGB inter-dependencies
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM
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Diagonal BiLSTM

● Advantage: Receptive field captures all available context
● Disadvantage: Slower than Row LSTM
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Residual Connections

● Enables training PixelRNN up to twelve layers of depth
● Increases both convergence speed and propagates signals more directly 

through the network
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Residual Connections
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Multi-Scale PixelRNN

● Unconditional network generates smaller s x s scale image
● Subsequent conditional network(s) use smaller s x s image as an additional 

input and generate larger n x n image
● Smaller image is upsampled using deconvolutional layers and added to 

input-to-state map of corresponding conditional network
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Multi-Scale PixelRNN
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Gated PixelCNN

● PixelRNN are outperforming PixelCNN because:
○ PixelRNN models capture larger receptive fields
○ LSTM cells contain multiplicative units that model more complex interactions

● Fix receptive field using horizontal and vertical stacking convolutions
● Replace ReLU activation with gated activation unit to add more sophistication
● Now PixelCNN match PixelRNN performance while requiring half the training 

time
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PixelCNN Receptive Field Blind Spot

● Because of kernel masking, the receptive field of PixelCNN contains a 
growing blind spot

● To fix this blind spot, single convolution operation is broken down into 
horizontal and vertical stack convolution

● Vertical stack in unmasked and captures entire receptive field in the above 
rows

● Horizontal stack is masked and uses pixel to the left + vertical stack as inputs
● This fixes the receptive field problem 
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PixelCNN Receptive Field Blind Spot
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PixelCNN Receptive Field Blind Spot
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Gated Convolutional Layers

● Replace ReLU activation with gated activation
● Two separate convolutions with half the feature maps
● Each convolution is followed by two non-linear activations
● Both outputs multiplied element-wise for final output
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Gated Convolutional Layers
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Conditional PixelCNN

● Given image description in high-dimensional latent vector h
● Goal: model conditional distribution of image given h
● h can contain information about objects in image e.g. one-hot encoding of 

objects in ImageNet sample
● h can only specify what is in the image but cannot control where in the image 

the object will appear
● Also developed a location dependent variant using deconvolution network m() 

map spatial representation of object as s = m(h) which has same height and 
width as image but arbitrary feature maps
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Conditional PixelCNN
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Empirical Results
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Empirical Results
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Empirical Results
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Conditional Generation Examples
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