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Problem Statement

e Notations
O Space X
o Randomvariable X € X
o Distribution px € P (X)and cumulative distribution function (CDF) Fx
o Inverse CDF (Quantile function) Qx = Fx!

e Problem: Modeling p (z1,...,Zp)

e Simplest Solution: Discretization into separate values, z1,...,2, € X

and parameterize the approximate py (x;) o< exp (6;).
o Typically, the parameter are optimized to minimize the KL divergence

0" = argming Dy, (px||pe)



Related Works

Bayesian Networks and Autoregressive Models (ARs):
e Factorize the density as a product of conditional distributions.
® letX=(Xy,...,X,),thenforany permutation of the dimensions ¢ : N,, = N,

px(z) = | | Px, e @o|Tor), - -, o))
=1

e Examples: Pixe[RNN/PixelCNN, NADE, MADE, etc.

e [imitations:
o Need powerful conditioning to avoid having to order the dimensions
o  Essentially use KL divergence as the loss function
o Slow in generation



Related Works

Variational Autoencoders (VAEs):
® Represent the density as the marginalization over a latent random variable.

e |et Z e Z then maximize the ELBO

log pe(z) > —Dxkr (qe(2]x)||p(2)) + E [log pe(z|2)]

e Straightforward to implement and optimize; Effective at capturing the
structure in high-d spaces. However, often misses fine-grained details, and
also uses KL divergence.




Related Works

Generative Adversarial Networks (GANs):
e Pose the problem of learning the generative model as a two-player zero-sum
game between a discriminator and a generator. The generator is an implicit
latent variable model that reparameterized samples to X.

argming supp [Ex (D (X)) + Ezlog (1 - D (G(2)))]

e [imitations
o  Cannot estimate the probability of a sample point

o  Essentially minimizing a lower-bound on Jensen-Shannon divergence (a function of KL
divergence) M = 0.5(P 4 Q) : JSD(P||Q) = 0.5 (DkL(P||M) + Dgr(Q| M))



Basics - Quantile

Let X be arv. random variable with CDF Fx(z) = P(X < x). The z-th quantile of Xis given by
Qx (1) :F)zl( ) =inf, {Fx(x) > 7}, where 7 € (0,1)

Example: Let X ~ N (5,3), Qx(0.1) ~ 1.155, Qx(0.9) ~ 8.845.

Gaussian X ~ N(5, 3) - PDF Gaussian X ~ N(5, 3) - CDF Gaussian X ~ N(5, 3) - Quantile Function
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Basics - Quantile Regression

Given datasets (X,Y), and a quantile 7 € (0,1), approximate the conditional quantile function
att: Qy|x(7) = XB;, with the quantile loss function:

pT(u){(T_l)u u<0

U u >0

wheretheerroru =Y — X§,.

e Thesign of the error term indicates the direction of correction.
o +forunderestimation, - for overestimation.
e Instead of the square of error used in most linear regression, the quantile loss is
asymmetric.
o Forunderestimation, +, the weight of penalty is 7.
o  Foroverestimation, -, the weight of penalty is (7 - 1).



Basics - Quantile Regression

e Suppose we are trying to give an estimate of the delivery time of an order on UberEats.
e Thefunction is obviously dependent on the distance of delivery.

e Tryto make sure most users could get their meal in the time range.
o  ASolution: Give an estimate between times where 10% and 90% of people received their order.
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Modeling

o letX=(Xy,...,X,)eX;x---x X, =X ben-dimr.v.
e How do we extend the Quantile function?

o Ifthe CDFs all rely on the same r, we need comonotonic property to ensure
invertibility. Two r.v.s are comonotonic iff can be expressed as non-decreasing
functions of a single r.v.

m  Assumption is too strong to be useful more broadly
Fx'(1) = (Fx, (1), Fx, (7), ..., Fx, (7))

o Use aseparate value 7 for each component.

m Independence assumption too restrictive for many domains

Fx'(P) = (Fx. (), Fx, (12), - - -, Fx. (7))



Modeling

Fixing an ordering of n dimensions, if the density function could be expressed as a
product of conditional likelihoods, then the joint c.d.f. is:

FX(:U) :]P)(Xl Sx'l)?Xn an)

n
= H FXilXi—l ,,,,, X1 (l‘z)

i=1

We could then write the quantile function as:
P (i) = (FRHm), -2 P, (7))

Denote &y, = &1 x -+ x X, let X := U, X1.; be the space of ‘partial’ data points.
We can define the autoregressive implicit quantiles as a function.

Qo: X x[0,1]" = X
For generation, we can iteratively get the next partial component z1.; = Qo(1:i-1, 7).



Divergence and Metrics

e Theexpected quantile loss over the data distribution for a prediction g.
gT(Q) =Ex.p [pT (X - Q>]
q 00
~ [ @06 - D@+ [ @-arfr)s
N q

~ [ a-op@ie+ [ @-grse@is
= q/ fr(x)dz —/ zfp(x)de + (Exp[X] —q) T
= qFp(q) — ([:UFp(x)]_oo — /_qoo Fp(a:)da:> + (Ex~p[X]—q) T

= /_ " Fo()dn+ (Exep [X] — )7



Divergence and Metrics

e Therelative loss between g and ground truth quantile function



Divergence and Metrics

Take the expectation over 7, we found that relative quantile loss between a quantile function Q
and the quantile function of P leads us to a new divergence between P and Q.

1 F§1(T)
K (o) [gr (Fél(T)) -9, (Flgl(T))] = /0 /F—l( | (Fp(x) — 7)dz| dr
. 1 . Fgl(r) ]
) [9- (Fg'(1))] = /0 /F . (Fp(z) — 7)dz| dr

A 7

Quantile div;rrgence q(P,Q)
+ \@Emu([o,l]) 9 (Flgl (7'))1

~
does not depend on Q




Divergence and Metrics

If P and Q are univariate distributions,
o Red line segmentis the 1-Wasserstein metric

0 Probability 7 1



Divergence and Metrics

Minimizing quantile loss indeed minimizes some divergence between distributions.
Take the gradient of quantile loss w.r.t. parameters is an unbiased estimate of the gradient of the

divergence.

VolEr (0,1 [gT (QO(T))]
= E, o, )Ex~p [VHP (X - QG(T))]

= Vaq (P7 QO)
Use Huber quantile loss instead, because the gradient scales with the magnitude of the error.

(w) = (r—1Du u<0 () = %uQ lu| < k
Pr o u>0 & 7 —T{u < 0} (Ju| — &) otherwise



Reparameterization

e Previously, the source of randomness comes from e ~ N (0, 1).
e Now, we sample from Quantile function, the source of randomness comes
from 7 ~ U([0, 1]).

Gaussian X ~ N(5, 3) - Quantile Function




Querying the Density Function

IQN does not directly model the log-likelihood of the data distribution
But we can query the implied density at a point:

FX ( ) Dx (F)El(T))

or

A single step of back-propagation calculates the above formula
Getting general likelihoods is inefficient because it would require finding the
value of 7 that produces the closest approximation to the query point.



PixellQN

Cated PixelCNN PixellQON
R R o
Qu(7) € R*™ Qu(7)i = Qx(nilziz, .. .)
ZDKL iy PC1T1, - Ti1) an — Qx(1ilzict,...))

The location-dependent conditioning was used to condition on class
labels in Gated PixelCNN. Used to condition on 7 in PixellQN.

PixellQN directly output 3 color channels without the final softmax
activation in Gated PixelCNN.
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Datasets & Metrics

e Datasets: CIFAR-10 and ImageNet 32x32

e Metrics:
o  Fréchetinception distance (FID): Squared Wasserstein metric between two
multidimensional Gaussian distributions. Lower is better.
o Inception Score (IS): KL-divergence between similar label distribution and marginal
distribution. Higher is better.

High KL divergence Medium KL divergence Low KL divergence Low KL divergence
\ ’_H

Ideal label distribution

Ideal situation Generated images are Generated images are Generator lacks
not distinctly one not distinctly one diversity
label label

Label distribution
Ideal marginal distribution Marginal distribution

Credit to https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a



Experiments

Cifarl0 Za ImageNet 32x32 5

CIFAR-10 ImageNet (32x32) g 52 NPT . RO e 109

Method Inception | FID | Inception | FID E :g et — a0
WGAN 3.82 - - - £ o i i e
WGAN-GP | 6.5 364 | - . 2 /.:T:.;’ S = s S
DC-GAN 6.4 37.11 | 7.89 - Little PixellON .
PixelCNN | 460 | 6593 | 7.16 | 40.51 \\_.:_‘:'CL‘ RN o
PixelIQN 5.29 49.46 | 8.68 26.56 " ;2 \;\-—\. :Z
PixelIQN(I) | - - 7.29 37.62 = TR e ) it LT | TET—
PixclCNN* | - = 833 33.27 \\\____ 2 \. ...... —
PixellQN* = = 10.18 22.99 100K 150K 200K 250K 300K 100K 200K 300K 400K

Training steps Training steps

Table 1. Inception score and FID for CIFAR-10 and ImageNet.  Fjgure 4. Evaluations by Inception score (higher is better) and FID
WGAN and DC-GAN results taken from (Arjovsky et al., 2017;  (lower is better) on CIFAR-10 and ImageNet 32x32. Dotted lines

Radford et al., 2015). PixellIQN(]) is the small 15-layer version of correspond to models trained with class-label conditioning.
the model. Models marked = refer to class-conditional training.



Experiments
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Figure 5. ImageNet 32x32: Real example images (left), samples generated by PixelCNN (center), and samples generated by PixelIQN

(right). Neither of the sampled image sets were cherry-picked. More samples by PixelIQN in the Appendix.
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Experiments
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Figure 6. Small ImageNet inpainting examples. Left image is the Figure 7. Class-conditional samples from PixellQN. More samples
input provided to the network at the beginning of sampling, rightis of each class and more classes in the Appendix.

the original image, columns in between show different completions.

More examples in the Appendix.



CONCLUSION




Summary

Joint-quantile function are factorized as products of conditional quantile functions
Replace KL-divergence with Quantile loss
Reparameterization is now on 7 ~ U4(0, 1) Likelihood
The technique can also be used in VAEs:
o Lete:R® - R™andd:R™ — R" bethe encoder
and decoder. Let @, be an AIQN on the space R™.

o Loss: L(x) = Lvar(z) + E (0,117 o7 (e(z) — Q)]

Quantile Regression

p(z)

Discretization

o Decoding process: y = d(Q,) ; }'f )
e Limitations: § > i
o Samplingis slow, similar to PixelRNN/PixelCNN = :

BCE
o Querying density is possible, but not easy to find Ji_jZNN(O’” Iﬁ““l
corresponding t.
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