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INTRODUCTION
● Problem Statement
● Related Works
● Basics

○ Quantile Regression



Problem Statement

● Notations
○ Space 
○ Random variable
○ Distribution                       and cumulative distribution function (CDF)
○ Inverse CDF (Quantile function)

● Problem: Modeling 

● Simplest Solution: Discretization into separate values,
and parameterize the approximate                                      .
○ Typically, the parameter are optimized to minimize the KL divergence



Related Works

Bayesian Networks and Autoregressive Models (ARs):
● Factorize the density as a product of conditional distributions.
● Let                                 , then for any permutation of the dimensions

● Examples: PixelRNN/PixelCNN, NADE, MADE, etc.
● Limitations:

○ Need powerful conditioning to avoid having to order the dimensions
○ Essentially use KL divergence as the loss function
○ Slow in generation



Related Works

Variational Autoencoders (VAEs):
● Represent the density as the marginalization over a latent random variable.
● Let              , then maximize the ELBO

● Straightforward to implement and optimize; Effective at capturing the 
structure in high-d spaces. However, often misses fine-grained details, and 
also uses KL divergence.



Related Works

Generative Adversarial Networks (GANs):
● Pose the problem of learning the generative model as a two-player zero-sum 

game between a discriminator and a generator. The generator is an implicit 
latent variable model that reparameterized samples to      .

● Limitations
○ Cannot estimate the probability of a sample point
○ Essentially minimizing a lower-bound on Jensen-Shannon divergence (a function of KL 

divergence)



Basics - Quantile

Example: Let                         ,                                   ,                                   .

Let      be a r.v. random variable with CDF                                          . The 𝜏-th quantile of      is given by



Basics - Quantile Regression

● The sign of the error term indicates the direction of correction.
○ + for underestimation, - for overestimation.

● Instead of the square of error used in most linear regression, the quantile loss is 
asymmetric.
○ For underestimation, +, the weight of penalty is 𝜏.
○ For overestimation, -, the weight of penalty is (𝜏 - 1).

Given datasets              , and a quantile                   , approximate the conditional quantile function 
at 𝜏:                                  , with the quantile loss function:

where the error                              .



● Suppose we are trying to give an estimate of the delivery time of an order on UberEats.
● The function is obviously dependent on the distance of delivery.
● Try to make sure most users could get their meal in the time range.

○ A Solution: Give an estimate between times where 10% and 90% of people received their order.

Basics - Quantile Regression



METHOD
● Autoregressive Quantiles
● Density Function
● PixelIQN



Modeling

● Let                                                                                  be n-dim r.v.
● How do we extend the Quantile function?

○ If the CDFs all rely on the same 𝜏, we need comonotonic property to ensure 
invertibility. Two r.v.s are comonotonic iff can be expressed as non-decreasing 
functions of a single r.v.
■ Assumption is too strong to be useful more broadly

○ Use a separate value 𝜏 for each component.
■ Independence assumption too restrictive for many domains



Modeling

● Fixing an ordering of n dimensions, if the density function could be expressed as a 
product of conditional likelihoods, then the joint c.d.f. is:

● We could then write the quantile function as:

● Denote                                         , let                             be the space of ‘partial’ data points.
We can define the autoregressive implicit quantiles as a function.

For generation, we can iteratively get the next partial component                                     .



Divergence and Metrics

● The expected quantile loss over the data distribution for a prediction q.



● The relative loss between q and ground truth quantile function

Divergence and Metrics



Divergence and Metrics

● Take the expectation over 𝜏, we found that relative quantile loss between a quantile function Q 
and the quantile function of P leads us to a new divergence between P and Q.



Divergence and Metrics

● If P and Q are univariate distributions,
○ Red line segment is the 1-Wasserstein metric



Divergence and Metrics

● Minimizing quantile loss indeed minimizes some divergence between distributions.
● Take the gradient of quantile loss w.r.t. parameters  is an unbiased estimate of the gradient of the 

divergence.

● Use Huber quantile loss instead, because the gradient scales with the magnitude of the error.



Reparameterization

● Previously, the source of randomness comes from                       .
● Now, we sample from Quantile function, the source of randomness comes 

from                         . 



● IQN does not directly model the log-likelihood of the data distribution
● But we can query the implied density at a point:

● A single step of back-propagation calculates the above formula
● Getting general likelihoods is inefficient because it would require finding the 

value of 𝜏 that produces the closest approximation to the query point.

Querying the Density Function



PixelIQN

Gated PixelCNN PixelIQN

● The location-dependent conditioning was used to condition on class 
labels in Gated PixelCNN. Used to condition on 𝜏 in PixelIQN.

● PixelIQN directly output 3 color channels without the final softmax 
activation in Gated PixelCNN.



RESULTS ● Dataset and Metrics
● Experiments



Datasets & Metrics

● Datasets: CIFAR-10 and ImageNet 32x32
● Metrics:

○ Fréchet inception distance (FID): Squared Wasserstein metric between two 
multidimensional Gaussian distributions. Lower is better.

○ Inception Score (IS): KL-divergence between similar label distribution and marginal 
distribution. Higher is better.

Credit to https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a



Experiments



Experiments



Experiments



CONCLUSION
KL-Divergence

Most existing works 
use KL-divergence

Replace the 
reparameterization 
and merge with more 
existing models.

Borrow the quantile 
loss, modeling CDFs, 
and derive a 
divergence on CDFs.

ApplicationQuantile 
Regression

01 02 03



Summary

● Joint-quantile function are factorized as products of conditional quantile functions
● Replace KL-divergence with Quantile loss
● Reparameterization is now on 
● The technique can also be used in VAEs:

○ Let                             and                             be the encoder 
and decoder. Let        be an AIQN on the space        .

○ Loss: 
○ Decoding process:

● Limitations:
○ Sampling is slow, similar to PixelRNN/PixelCNN
○ Querying density is possible, but not easy to find

corresponding 𝜏.
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