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Sparse Transformers: Background

e Autoregressive sequence generation problem: model high-dimensional data
as product of conditional probabilities

e Transformers are powerful but expensive: computation and memory grows
quadratically with sequence length because each self-attention layer has a
global receptive field

e Main ldea: Sparse factorization of the attention matrix to reduce computation
and memory complexity to O(n+/n)

p(x) = HP($7;|LU1, wory L1 )
i=1
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Sparse Transformers: Attention Visualization

Analyze learned attention patterns for 128-layer dense transformer network
on CIFAR-10

Early layers: Attention pattern resembles convolution

Layers 19-20: Row and column attention

Data dependent global access patterns

Layers 64-128: extremely sparse attention

Most attention patterns are sparse!

Sanchit Vohra CS 598 BAN: AR3



Sparse Transformers: Attention Visualization

Early layers: Attention pattern resembles convolution
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Sparse Transformers: Attention Visualization

Layers 19-20: Row and column attention
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Sparse Transformers: Attention Visualization

Data dependent global access patterns
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Sparse Transformers: Attention Visualization

Layers 64-128: extremely sparse attention
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Sparse Transformers: Factorized Self-Attention

e Sis connectivity pattern Attend(X, S) = (a(xi, S;) )
where S; represents i€{l,...,n}
input indices which i'th
output vector attends a(xi, Si) — softmax (

e For vanilla transformer,

each S; ={j:j <i}

(qui)Kg‘; Ve
V&i i

Ks, = (Wix; ) Vs, = (Wox; )

JES;

JES;
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Sparse Transformers: Factorized Self-Attention

e Top images indicate which
positions each attention head
receive as input

e Rightimage indicates

connectivity matrix for these

attention heads

Sanchit Vohra
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Sparse Transformers: Factorized Self-Attention

e Factorized self Attend(X, S) = (a(xi, Sz))

attention has p ie{l,...,n}

separate heads
e Each head defines a a(Xq;, Si) — gsoftmax (

Vd

subset of indices
A™ c {jj <)

e We chose efficient
choices of of A so that Ks, = ( Wix; )jGSi

AT™) o ¢/m.

WXi KT_
(Wyxi) SZ>VSi

VSi — (WvXj)

JES:
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Sparse Transformers: Factorized Self-Attention

e Valid choices of A are where all input positions are connected to all future
output positions across the p steps of attention

e This criteria along with ones on previous slide, enable sparse, factorized
attention units that can propagate any input to any output while reducing
effective computation to O(n ¥/n)

e Next slides we will see some 2-dimensional (p=2) factorized attention
examples which can easily be extended to higher dimensions
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Sparse Transformers: Strided Attention Pattern

| = stride and chosen to be close to vn

p=1 head attends to previous [locations

p=2 head attends to every [th location

This formulation works well if data naturally has a structure that aligns with
the stride, like images or some types of music

e For data without a periodic structure like text, this formulation fails to properly
route information

Formally, AZ(-I) = btk L,ui) Tor t = max(0,3— 1)

and A,EQ) = {j : (i — 7) mod I = 0}. This pattern can be
visualized in Figure 3(b).
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Sparse Transformers: Strided Attention Pattern

e Top images indicate which
positions each attention head
receive as input

e Rightimage indicates
connectivity matrix for these
attention heads
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Sparse Transformers: Fixed Attention Pattern

e For data without a periodic structure like text, use fixed pattern instead

Formally, Agl) ={j:(lj/l] = |i/l])}, where the brackets

denote the floor operation, and Az(.z) = {j : jmodl €
{t,t +1,...,1}, where t = [ — ¢ and c is a hyperparameter.
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Sparse Transformers: Fixed Attention Pattern

e Top images indicate which
positions each attention head
receive as input

e Rightimage indicates
connectivity matrix for these
attention heads
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Sparse Transformers: Factorized Self-Attention

e Technique 1: one attention type per residual block interleaved sequentially
attention(X) = W, - attend(X, A" mod P))
e Technique 2: single self attention head that has pixels of all factorized heads
attention(X) = W, - attend (X, LpJ Alm))
m=1

e Technique 3: use multi-head attention with the separate, merged or
interleaved heads

attention(X) = W, (attend(X , A)(i)) |
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Sparse Transformers: Recompute Attention

e When backpropagating gradients, results from forward pass are stored in
memory

e However, for sparse attention, memory usage >>> computation cost
especially when sequences become long

e Recompute forward layers to enable networks with hundred of layers and
sequence lengths of 16384 (128 x 128)
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Sparse Transformers: Scaling to deep networks

e Transformers are difficult to train with many layers; change architecture to
enable deeper transformers

Hy = embed(X, W,) a(H) = dropout(attention(norm(H)))

Hj, = Hy_1 + resblock(Hy_1) b(H) = dropout(ff(norm(H + a(H))))
y = softmax(norm(H n )W) resblock(H) = a(H) + b(H)
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Sparse Transformers: Scaling to deep networks

e Add learned embeddings which either encoded structure (data embeddings)
or factorized attention patterns (attention embeddings)

e Forimages, data embeddings work better and for text, audio two-dimensional
attention embeddings work better

Nembd
embed(X,W,) = | x,W, + Z 0§J)Wj
j=1

x; €X

e 0 is encoded position in data/attention

Sanchit Vohra
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Sparse Transformers: Recompute Attention

Sanchit Vohra
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Figure 4. Diagram depicting one residual block of the Sparse Trans-
former. The shaded background indicates tensors which are check-
pointed (Chen et al., 2016) and stored in GPU memory. The other
tensors, including the attention weights and feedforward network
activations, are recomputed during the calculation of gradients,
reducing memory usage substantially.
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Sparse Transformers: Results
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Sparse Transformers: Results

Table 1. Summary of our findings for density modeling tasks. Re- ~ Table 2. Sparse patterns showed increased speed and also better

sults are reported in bits per byte, which is equivalent to bits per ~ loss on the datasets where we could compare both, which may

dim for image tasks. M refers to millions of parameters. point to a useful inductive bias in the patterns we learned or an
underlying optimization issue with full attention.

Model Bits per byte
Model Bits per byte  Time/Iter
CIFAR-10
PixelCNN (Oord et al., 2016) 3.03 Enwik8 (12,288 context)
Pixel CNN++ (Salimans et al., 2017) 2:92 Dense Attention 1.00 1.31
Irpage Transformer (Parmar et al., 2018) 2.90 Sparse Transformer (Fixed) 0.99 0.55
PixelSNAIL (Chen et al., 2017) 2.85 Sparse Transformer (Strided) 113 0.35
Sparse Transformer S9M (strided) 2.80
. CIFAR-10 (3,072 context)

Enwik8

. Dense Attention 2.82 0.54
Deeper Self-Attention (Al-Rfou et al., 2018) 1.06 Sparse Transformer (Fixed) 2.85 047
Transformer-XL 88M (Dai et al., 2018) 1.03 Sparse Transformer (Strided) 2.80 0.38
Transformer-XL 277M (Dai et al., 2018) 0.99
Sparse Transformer 95M (fixed) 0.99
ImageNet 64x64
PixelCNN (Oord et al., 2016) 3:57
Parallel Multiscale (Reed et al., 2017) 3.7
Glow (Kingma & Dhariwal, 2018) 3.81
SPN 150M (Menick & Kalchbrenner, 2018) 3.52
Sparse Transformer 152M (strided) 3.44

Classical music, 5 seconds at 12 kHz
Sparse Transformer 152M (strided) 1.97
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An image is 16x16 words: Background

e Despite success of transformer in NLP (BERT, GPT), in computer vision,
convolutional patterns remain dominant

e Naively applying pixel-to-pixel attention scales quadratically and becomes
unrealistic for reasonable image sizes

e Models that replace convolutions with self-attention (Sparse Transformers)
are hard to scale on hardware acceleration due to use of specialized attention
patterns

e Apply standard transformer encoder on images directly with the fewest
possible changes
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An image is 16x16 words: Background

e When trained on mid-size datasets, the transformer model’s performance is a
few points lower than ResNets of comparable size

e This is expected since transformers lack inductive bias of convolutions:
translation equivariance and locality

e However, on large datasets (14M-300M images), the transformer overcomes
these inductive biases and achieves SOTA performance on classification task
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An image is 16x16 words: Architecture

e Divide image into flattened patches of size (P, P) -> P*2

e Linearly project flattened patched into D dimensions

e Add learned 1-D positional encoding to inputs

e Append class embedding to the input, whose output is the classifier input

e Attach MLP classifier and classify image
Zy — [Xclass; XglgE; XIQ)E; Tty XIJQVE] -+ Epos; E € R(PQ.C)XDa Epos = R(N_H)XD
Z,g = MSA(LN(Zg_l)) + &1 B =il ull

Zy = MLP(LN(Z/g)) + Z’g, =i

y = LN(z})
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An image is 16x16 words: Architecture

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

l

* Extra learnable
L1near PI‘O_]eCtIOIl of Flattened Patches

[class] embedding
SN B \ | | | | |

- iy ;
d s

Sanchit Vohra

Transformer Encoder
A

MLP |
| I

Norm

[ Multi-Head
Attention

L

Norm

- J

[ Embedded
Patches

CS 598 BAN: AR3



An image is 16x16 words: Inductive Bias

e As mentioned Earlier, ViT has much less image-specific inductive bias when
compared to CNN

e Convolutions exploit locality, two-dimensional neighborhood structure, and
translation equivariance

e In VIiT, multi-head self attention layers are global!

e Two-dimensional structure is only used during the beginning when image is
split into patches (P, P)

e Even positional embeddings are learned in 1-D
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An image is 16x16 words: Hybrid Architecture

e Instead of using patches from image, use patches from output of CNN
feature map

e Linearly project CNN patches using learned embedding + learned 1-D
positional embedding

e (Can use spatial 1x1 patches by flattening features

e Everything else remains the same
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An image is 16x16 words: Results

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Sanchit Vohra

Table 1: Details of Vision Transformer model variants.
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An image is 16x16 words: Results

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61+0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+0.23 76.28+0.46 72.72+0.21 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported
in Touvron et al. (2020).
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An image is 16x16 words: Results
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CS 598 BAN: AR3



An image is 16x16 words: Results
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An image is 16x16 words: Results

First Layer: Visualize Filters

RGB embedding filters
first 28 principal components)
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ResNet-101: DenseNet-121:
64x3x7x7 64x3x7x7 64x3x7x7

AlexNet:
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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