CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

November 30, 2021

1/24

Instructor: Arindam Banerjee

Introduction

Classical ML maps vectors to vectors

e Extensions map structures to other structures
e Examples: ranking, sequence to sequence, graphs, etc.

Operators map functions to functions

Examples: integration, ODEs, PDEs, stochastic PDEs

In practice, often need to solve inverse problems
e Parameterized PDEs to model real world phenomena
e Parameters are unknown, need to be estimated
e Inverse problem, need to solve the PDE several times

Existing methods: fixed resolution, specific parameterization

2/24

Instructor: Arindam Banerjee

Learning Operators

o D C RY is bounded, A = A(D; R%), U = U(D;R%)

o A,U are Banach spaces of functions in R% R% respectively
GT: A~ U, eg., solution operator of parametric PDEs
Observations {a;, uj-}J-N:1 with u; = GT(a))

Goal: Learn a paramteric map to approximate G
G- AxO0—U = Gy: A—U ,0 €0

Suitable cost function to ensure G(-,07) = Gy ~ G'
min E,[C(G(a,0), G'(a))]

(aj, uj) are functions, need evaluations at D; = {x1,...,Xn}
e Observations aj|p, € R™% u;|p, € R

3/24

Instructor: Arindam Banerjee

Neural Operator

@ Neural operators as layer-wise transforms
e Map input a € A to high-d representation vy(x) = P(a(x))
e Sequence of maps vy — vy — -+ > v
o Map vt to output u(x) = Q(Vr(x)), Q : R% s R

Definition 1 (Iterative updates) Define the update to the representation v, — vi11 by
veyr(z) = G'(W’Ut(l') + (K(a; qb)'vt)(x)), Vee D)

where K : A x Ox — L(U(D;R%),U(D;R%)) maps to bounded linear operators on U(D; R%)
and is parameterized by ¢ € Ox, W : R* — R% is g linear transformation, and o : R — Ris a
non-linear activation function whose action is defined component-wise.

4/24

Instructor: Arindam Banerjee

Neural Operator (Contd.)

Kernel integral operator K
(K6))() = [roleoyale).ay)ly)dy . Vxe D

K R2(d+ds) |, RAvXdy s 5 deep network with parameter ¢

Specific choice of radial kernel, avoiding dependence on a
Hcﬁ(xayv a(X)7 a(y)) = FL(Z)(X - .y)

Then, (K(a; ¢)v¢)(x) is a convolution operator
o Efficiently computed as product in Fourier space

5/24

Instructor: Arindam Banerjee

Fourier Neural Operator (FNO)

Compute convolution as product in Fourier space

Fourier transform and inverse for f : D — R
(FA0 = [fge 25 o
JD

(FA050 = [fli)emH o

D

Fourier integral operator K:

(K(@)ve)() = F 7 (Ry - (Fw)) (x) . ¥x€D

o For k € D, (Fv;)(k) € C* and Ry (k) € CHx

Ry is the Fourier transform of a periodic k¢ : D — R xdy

e Allows Fourier series expansion
o Model uses finite-d representation with ky.x modes

6/24

Instructor: Arindam Banerjee

FNO Architecture

(@)
@—> Fourier layer 1 —Fourier layer 2|— @ @ @ —»|Fourier layer T
(b) — - Fourier |
e —— ourier layer
F N —
AT
AP

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network). Output w. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform F; a linear transform R on the lower Fourier modes and filters out the higher modes;
then apply the inverse Fourier transform F . On the bottom: apply a local linear transform W.

7/24

Instructor: Arindam Banerjee

FNO: Discrete setting, FFT

e Domain D C RY is discretized with n points
e Specific case: uniform grid per dimension, n = H:.j:l S;

o With v, € R™% F(v;) € C™*%
o With mode truncation R € ChmaxxdvXdv " yse F(v,) € Rhmaxds
o Computation is matrix-vector product

d,
(R']:(Vt))k,l - Z Rk,l,j(]:(vt))k,j s k= 17 ey kmax, J = 1, ey dv

j=1

@ For uniform grid, F can be replaced by Fast Fourier Transform

8/24

Instructor: Arindam Banerjee

Example: Burger's Equation

Modeling 1-d flow of viscous fluid

Opu(w,t) + Op(u?(2,1)/2) = vdpzu(z,t), x € (0,1),t € (0,1]
u(z,0) = up(z), z € (0,1)

Initial condition ug € L%er((O, 1);R)

v € Ry is the viscosity coefficient

Operator learning: initial condition to solution at t = 1

9/24

Instructor: Arindam Banerjee

Example: Navier-Stokes Equation

@ Modeling 2-d Navier-Stokes equation
Ow(z,t) + u(z, t) - Vw(z,t) = vAw(z, t) + f(z), z € (0,1)%,t € (0,T]
V-u(x,t) =0, z € (0,1)%,t€[0,T]
w(z,0) = wo(x), z e (0,1)2

@ Key components

u: the velocity field

e Wwp: initial vorticity

e f: the forcing function

o v € R, viscosity coefficient

@ Operator learning: Vorticity till t=10 to vorticity at T > 10

10/24
Instructor: Arindam Banerjee

Results: Relative Error

(a) Burger’s Equation (b) Darcy Flow (c) Navier-Stokes
0
10
—e—CN . —e—rBM || 00k ——FNO-3D
—e—GCN 10 —e—FCN ——TNO-2D
ol S— PCANN [$ PCANN ResNet
—e—GNO [—e—GNO —— U-Net
- —e—LNO L~ I~ —e—1NO _ —— TF-Net
g & MGNO e 7 —e—MGNO [§ 2
o —e—FNO b —8—FNO o
210 2 Y o o 2
5 5 5 10
= W = =
S
4
——& 9
,«J
f —e—e 00|
$oo—o 107
——— 4
L e P §
102 10
256 2048 4096 8192 85 141 211 421 0 100 200 300 400 500
Resolution Resolution Epochs

Left: benchmarks on Burgers equation; Mid: benchmarks on Darcy Flow for different resolutions; Right: the
learning curves on Navier-Stokes v = 1e—3 with different benchmarks. Train and test on the same resolution.
For acronyms, see Section@; details in Table:

11/24

Instructor: Arindam Banerjee

Results: Navier Stokes

Table 1: Benchmarks on Navier Stokes (fixing resolution 64 x 64 for both training and testing)

Parameters Time v=1e-3 v=1le—4 v=1le—4 v=1e-5
Config per T =50 T =30 T =30 T =20
epoch | N =1000 N =1000 N =10000 N = 1000
FNO-3D | 6,558,537 38.99s 0.0086 0.1918 0.0820 0.1893
FNO-2D 414,517 127.80s 0.0128 0.1559 0.0834 0.1556
U-Net 24,950,491 48.67s 0.0245 0.2051 0.1190 0.1982
TF-Net 7,451,724 47.21s 0.0225 0.2253 0.1168 0.2268
ResNet 266,641 78.47s 0.0701 0.2871 0.2311 0.2753

12/24

Instructor: Arindam Banerjee

Results: Zero-Shot Super Resolution

Initial Vorticity
Yy e
t 1

Ly VI

Prediction

\

Zero-shot super-resolution: Navier-Stokes Equation with viscosity v = le—4; Ground truth on top and
prediction on bottom; trained on 64 x 64 x 20 dataset; evaluated on 256 x 256 x 80 (see Section@).

Figure 1: top: The architecture of the Fourier layer; bottom: Example flow from Navier-Stokes.

13/24

Instructor: Arindam Banerjee

Learning Operators with DeepONets

@ Given a function u, operator G maps to function G(u)

o Realization of u represented as [u(x1) - - - u(Xm)]
o G(u) evaluated at some y, with value G(u)(y)

Goal: Deep model Gy(u,y) ~ G(u)(y) for all y
Training phase:

o Different u at sensor locations {x1,...,Xn}
o Corresponding G(u)(y) at locations y

Test phase: Given function u and y, predict Gy(u, y)

14/24

Instructor: Arindam Banerjee

Universal Approximation

Theorem 1 (Universal Approximation Theorem for Operator).
Suppose that ¢ is a continuous non-polynomial function, X is a Banach
space, K,.CX, Kx C R are two compact sets in X and]Rd, respectively,
V'is a compact set in C(K,), G is a nonlinear continuous operator,
which maps V into C(K,). Then for any € > 0, there are positive integers
n, p and m, constants cf-‘, .fg-, 91-‘, CreR w e R4, x€K,i=1,...,n,
k=1,....,pandj=1,...,m, such that

y4 n m
Gw)(y) =D do [D &ul) + 0 |o(wi-y+p)| <e
k=1 i=1 j=1 "_’t .
run
branch

()

holds for allu € V and y € K,. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm || fllcx, = maxek|f(x)|-

@ Three sources of error: approximation, optimization, generalization

o lllustrates approximation error will be small
15/24

Instructor: Arindam Banerjee

DeepONet Overview

a Inputs & output b Training data
Input function Output function G (u)
u(zl) at fixed sensors 1, ..., Ty at random location y
ul: 7 e Tm A
u! function —>| (2) éTy \ » . Y /
o 1 o \\s e
u(Tpm) * G
Network |— G(u)(y) € R . — < ,
_e L .. .
d / P m ~e___-"
y € R ;1;2
€ Stacked DeepONet d Unstacked DeepONet

Branch net; |—>(1)
u(z1) u(z1)
w(x Branch net, —> ne?
| 12 (BN] ulea) | e

e TS —
G(u)(y)
v —{ T

G(u)(y)

v — Turkna ¥]

& &%)
& 59| [5%

16/24

Instructor: Arindam Banerjee

DeepONet Architecture

Sensor locations {xi,...,xm} are the same for all functions u

e Does not need to be on a lattice
e Can be avoided by modeling u, e.g., interpolation, basis functions

Output y is d-dimensional, does not need to match u
Can feed [u(x1),...,u(x2),y]" as input

o Output is G(u)(y), train using backprop, e.g., Adam
o Used as baseline with different architectres, e.g., CNNs, Seq2Seq

@ DeepONet architecture is based on branch-trunk from
approximation result
P
G(u)(y) = Y bi(u(x), - -, u(xm)) ta(y)
k=1 v

branch trunk

o In practice, also use a bias term G(u)(y) ~ >_7_; bxtk + bo

17/24

Instructor: Arindam Banerjee

ralized Universal Approximation

Theorem 2 (Generalized Universal Approximation Theorem
for Operator). Suppose that X is a Banach space, K,cX, K, c RY
are two compact sets in X and R, respectively, V is a compact set in
C(K,). Assume that G:V — C(K,) is a nonlinear continuous opera-
tor. Then, for any € >0, there exist positive integers m, p, continuous
vector functions g: R"™ — Rf, f: RY — RP, and Xpy Xpy ey X €K,
such that

G(u)(y) — (g(ulxr), u(x2), - - -, u(xm)), f\(,@ <e

branch trunk

holds for allue 'V and y € K,, where (-,-) denotes the dot product in
R?. Furthermore, the functions g and f can be chosen as diverse classes
of neural networks, which satisfy the classical universal approxima-
tion theorem of functions, for example, (stacked/unstacked) fully con-
nected neural networks, residual neural networks and convolutional
neural networks.

@ Allows for multi-layer networks, representation in the same space

18/24

Instructor: Arindam Banerjee

Applications: Problem Types

@ Explicit operators
o Integration
o Legendre transforms
e Fraction derivatives, Laplacians

@ Implicit operators
e Determistic ODEs
o PDEs
e Stochstic PDEs

19/24

Instructor: Arindam Banerjee

Example: Anti-derivative (Integral) Operator

@ Explicit operator example

B (s00.u60.) . x € (0.1]

e Example: g(s(x), u(x),x) = u(x), anti-derivative (integral)
operator

G:ux)—s(x), s(x)=s+ !/O.X u(t)dr, x €[0,1]

20/24

Instructor: Arindam Banerjee

Results: Anti-derivative Operator

Train =1
107 Test ==
@
@
= 10°}
10°
FNN ResNet Seq2Seq Seq2Seq10x Stacked ~ Stacked ~ Unstacked Unstacked
(best) (best) (best) (best) (no bias) (bias) (no bias) (bias)
b
\ € 10? 10
107 Train
Test = = = -
Hos8
10 1070 E
< i
@ 10° 4 06
H = 10t L =
% o 3 0.4
10° L
105 b 02
0 . . = \ 108 S . o, oz 04 06 03 1o,
0 10,000 20,000 30,000 40,000 50,000 0 02 04 06 08 10
No. of iterations Correlation length

Fig. 2 | Learning explicit operators using different V spaces and different network architectures. a, Errors of different network architectures trained to
learn the antiderivative operator (linear case). The training/test errors of stacked/unstacked DeepONets with/without bias compared with the best test
error and the corresponding training error of FNNs, ResNets and Seq2Seq models. The ‘Seq2Seq 10x" is a Seg2Seq model with 10 times more training data
points. The error bars show the one standard deviation from 10 runs with different training/test data and network initialization. b, The training trajectory of
an unstacked DeepONet with bias (m.s.e., mean squared error). ¢, The error (mean and standard deviation) tested on the space of Gaussian random fields
(GRFs) with the correlation length /=0.1 for DeepONets trained with GRF spaces of different correlation length / (red curve). The 2-Wasserstein metric
between the GRF of /=0.1 and a GRF of different correlation length / is shown as a blue curve. The test error grows exponentially with respect to the W,

21/24

Instructor: Atri

Results: Gravity Pendulum

1o Branch/trunk width 50 o Branch/trunk width 200
o Gen. o Gen.
—a— Test —a—i Test
102 L
.-
10°°
]
@
=
1074
Fads,
‘e zaam 10
x1s Bou
. 10°
10° 10* 10° 10°
No. of training data No. of training data
c FNN width 100 d Seq2Seq
107
5800 o Gen
—a—i Test
107 .
) 10 T fffﬁ N
<] ~
2 @ N
= = ~
107 L T } fﬁ
1S
10° & X 10°
\
106 Lt L N 1076 Lu L L
10° 10* 10° 10° 10* 10°
No. of training data No. of training data

Fig. 3 | Fast learning of implicit operators in a nonlinear pendulum (k=1and T=3). a,b, The test and generalization errors of DeepONets have

exponential convergence for small training datasets, and then converge with polynomial rates. The transition point from exponential to polynomial

(indicated by the arrow) convergence depends on the width (branch/trunk width of 50 in a and 200 in b), and a bigger network has a later transition

point. ¢, FNNs also have an initial exponential error decay, but with much larger error and much slower convergence speed. d, Seq2Seq models have a

roughly polynomial convergence rate, and the test errors have a large variation for different runs. x is the number of training data. 22/24

Instructor: Atri

Results: Diffusion-Reaction PDE

o No. of u = 100 b @ P=100
1o Train —8—
Test —e—
102 L
10° F
107 -
10°E "
10° L
107 1
o 100 1,000
No. of u
€ 10 d N
8 No. of u=50 10 AN m P50
. No. of u = 100
102 & No. of u =200 102 L
& No. of u =400
5109k a0k
= =
10 10t
2%, 10° L
105 Tve tl
10 1,000 10

Fig. 4 | Fast learning of implicit operators in a diffusion-reaction system. a,b, Comparison of training (blue) and testing (red) errors for different values

of the number of random points P when 100 random u samples are used (a) and for different numbers of u samples when P=100 (b). The shaded regions
denote one standard deviation. ¢,d, The algebraic decay of test errors in terms of the number of sampling points P and the number of input functions u(x, t):
convergence of test error with respect to P for different numbers of u samples (¢) and with respect to the number of u samples for different values of P (d).

23/24

Instructor: Atri

References

@ Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.
Stuart, A.Anandkumar, Fourier neural operator for parametric partial
differential equations, ICLR, 2021.

@ L. Lu, R. Jin, G.Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear
operators via DeepONet based on the universal approximation theorem of
operators, NMI, 2021.

24/24

Instructor: Arindam Banerjee

