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Introduction

Classical ML maps vectors to vectors

Extensions map structures to other structures
Examples: ranking, sequence to sequence, graphs, etc.

Operators map functions to functions

Examples: integration, ODEs, PDEs, stochastic PDEs

In practice, often need to solve inverse problems

Parameterized PDEs to model real world phenomena
Parameters are unknown, need to be estimated
Inverse problem, need to solve the PDE several times

Existing methods: fixed resolution, specific parameterization

Instructor: Arindam Banerjee Learning Operators



3/24

Learning Operators

D ⊂ Rd is bounded, A = A(D;Rda),U = U(D;Rdu)

A,U are Banach spaces of functions in Rda ,Rdu respectively

G † : A 7→ U , e.g., solution operator of parametric PDEs

Observations {ai , uj}Nj=1 with uj = G †(aj)

Goal: Learn a paramteric map to approximate G †

G : A×Θ 7→ U ≡ Gθ : A 7→ U , θ ∈ Θ

Suitable cost function to ensure G (·, θ†) = Gθ† ≈ G †

min
θ∼Θ

Ea[C (G (a, θ),G †(a))]

(aj , uj) are functions, need evaluations at Dj = {x1, . . . , xn}
Observations aj |Dj ∈ Rn×da , uj |Dj ∈ Rn×dv
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Neural Operator

Neural operators as layer-wise transforms

Map input a ∈ A to high-d representation v0(x) = P(a(x))
Sequence of maps v0 7→ v1 7→ · · · 7→ vT
Map vT to output u(x) = Q(VT (x)), Q : Rdv 7→ Rdu
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Neural Operator (Contd.)

Kernel integral operator K

(K(a;φ)vt)(x) =

∫
D
κφ(x , y , a(x), a(y))vt(y)dy , ∀x ∈ D

κφ : R2(d+da) 7→ Rdv×dv is a deep network with parameter φ

Specific choice of radial kernel, avoiding dependence on a

κφ(x , y , a(x), a(y)) = κφ(x − y)

Then, (K(a;φ)vt)(x) is a convolution operator

Efficiently computed as product in Fourier space
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Fourier Neural Operator (FNO)

Compute convolution as product in Fourier space

Fourier transform and inverse for f : D 7→ Rdv

(F f )j(k) =

∫
D
fj(x)e−2iπ〈x,k〉dx

(F−1f )j(x) =

∫
D
fj(k)e2iπ〈x,k〉dx

Fourier integral operator K:

(K(φ)vt)(x) = F−1 (Rφ · (Fvt)) (x) , ∀x ∈ D

For k ∈ D, (Fvt)(k) ∈ Cdv and Rφ(k) ∈ Cdv×dv

Rφ is the Fourier transform of a periodic κφ : D 7→ Rdv×dv

Allows Fourier series expansion
Model uses finite-d representation with kmax modes
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FNO Architecture
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FNO: Discrete setting, FFT

Domain D ⊂ Rd is discretized with n points

Specific case: uniform grid per dimension, n =
∏d

i=1 si

With vt ∈ Rn×dv , F(vt) ∈ Cn×dv

With mode truncation R ∈ Ckmax×dv×dv , use F(vt) ∈ Rkmax×dv

Computation is matrix-vector product

(R·F(vt))k,l =
dv∑
j=1

Rk,l,j(F(vt))k,j , k = 1, . . . , kmax, j = 1, . . . , dv

For uniform grid, F can be replaced by Fast Fourier Transform
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Example: Burger’s Equation

Modeling 1-d flow of viscous fluid

Initial condition u0 ∈ L2
per((0, 1);R)

ν ∈ R+ is the viscosity coefficient

Operator learning: initial condition to solution at t = 1
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Example: Navier-Stokes Equation

Modeling 2-d Navier-Stokes equation

Key components

u: the velocity field
w0: initial vorticity
f : the forcing function
ν ∈ R+: viscosity coefficient

Operator learning: Vorticity till t=10 to vorticity at T > 10
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Results: Relative Error
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Results: Navier Stokes
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Results: Zero-Shot Super Resolution
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Learning Operators with DeepONets

Given a function u, operator G maps to function G (u)

Realization of u represented as [u(x1) · · · u(xm)]
G (u) evaluated at some y , with value G (u)(y)

Goal: Deep model Gθ(u, y) ≈ G (u)(y) for all y

Training phase:

Different u at sensor locations {x1, . . . , xm}
Corresponding G (u)(y) at locations y

Test phase: Given function u and y , predict Gθ(u, y)
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Universal Approximation

Three sources of error: approximation, optimization, generalization

Illustrates approximation error will be small
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DeepONet Overview
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DeepONet Architecture

Sensor locations {x1, . . . , xm} are the same for all functions u

Does not need to be on a lattice
Can be avoided by modeling u, e.g., interpolation, basis functions

Output y is d-dimensional, does not need to match u

Can feed [u(x1), . . . , u(x2), y ]T as input

Output is G (u)(y), train using backprop, e.g., Adam
Used as baseline with different architectres, e.g., CNNs, Seq2Seq

DeepONet architecture is based on branch-trunk from
approximation result

G (u)(y) ≈
p∑

k=1

bk(u(x1), . . . , u(xm))︸ ︷︷ ︸
branch

tk(y)︸ ︷︷ ︸
trunk

In practice, also use a bias term G (u)(y) ≈
∑p

k=1 bktk + b0
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Generalized Universal Approximation

Allows for multi-layer networks, representation in the same space
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Applications: Problem Types

Explicit operators

Integration
Legendre transforms
Fraction derivatives, Laplacians

Implicit operators

Determistic ODEs
PDEs
Stochstic PDEs
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Example: Anti-derivative (Integral) Operator

Explicit operator example
ds(x)

dx
= g(s(x), u(x), x) , x ∈ (0, 1]

Example: g(s(x), u(x), x) = u(x), anti-derivative (integral)
operator

G : u(x) 7→ s(x) , s(x) ≡ s0 +

∫ x

0
u(τ)dτ, x ∈ [0, 1]
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Results: Anti-derivative Operator
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Results: Gravity Pendulum
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Results: Diffusion-Reaction PDE
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