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Presentation Outline

• Related Work and Existing Limitations


• Problem Statement and Motivation


• Model Architecture and Novelties
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Related Work
Unsupervised Representation Learning

• Well-studied


• Still relatively unrefined compared to modern results


• K-Means


• Autoencoders


• Ladder Networks


• Deep Belief Networks
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Related Work
Generating Images

• Similarly well explored


• Poor generative output


• VAEs


• GANs


• RNNs with Deconvolutions


• Blurry/Wobbly Images
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Related Work
Existing GAN Models

• Exciting architecture and idea


• Generative output quality not yet crisp


• “Noisy and incomprehensible”


• Unsuccessful using CNNs to model images


• LAPGAN utilized a different, iterative upscaling approach


• Problem specifically scaling up CNN architectures from supervised learning 
literature
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Develop an architecture to utilize CNNs within 
GANs in order to stabilize training and 

unsupervisedly learn a strong image representation 

Problem Statement
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Eliminate Pooling Layers

• Uses strided convolutions in 
place of pooling layers


• Allows the network to learn its 
own upscaling and 
downscaling algorithms

Model Architecture
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Remove Fully Connected Layers

• Eliminate fully connected head on 
top of convolutional layers


• Extreme is global average pooling


• Helped stability but hurt 
convergence rate


• Final convolution layer instead 
fed into a single sigmoid layer


• Only other fully connected layer is 
initial generation layer matrix 
multiplication to reshape noise

Model Architecture
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Using Batch Normalization

• Normalizes the input to each 
layer to have zero mean and unit 
variance


• Stabilizes training and improves 
gradient flow for deep networks


• Helps with mode collapse


• Applied to all but last generator 
and first discriminator layers

Model Architecture
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Activation Functions

• Tanh for generator output


• ReLU in generator otherwise


• LeakyReLU in discriminator


• Original GAN used Maxout

Model Architecture
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Model Architecture
Overview

• All CNNs


• No pooling, no fully connected 
layers


• Utilize batch normalization


• ReLU (+Tanh) for the generator, 
LeakyReLU for the discriminator


• Simple changes but the result of 
lots of experimentation
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Experimental Details
Datasets

• 3 Main Datasets


• LSUN


• ImageNet-1k


• Faces


• Only preprocessing is scaling to 
range [-1,1]


• No Data Augmentation
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Experimental Details
Training Specifications

• Mini-Batch SGD


• LeakyReLU slope of 0.2


• Adam Optimizer


• Learning Rate of 0.0002


• Momentum  = 0.5β1
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Results
Analysis of Possible Memorization

• Analysis of limited training


• 1 Epoch, Small LR


• Hashing model


• Deduplication and 
analysis
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Results
Classifying CIFAR-10 Using DCGAN Features

• Use DCGAN as feature extractor with linear model on top for supervised 
learning task


• Discriminator feature maps max pooled to same 4x4 size, concatenated, and 
flattened to 28672 dimensional vector


• Beat strong K-means benchmark
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Results
Classifying SVHN Numbers Using DCGAN Features

• Same setup as CIFAR-10


• Here achieves state of the art


• Makes sure architecture is not the 
key by supervisedly training CNN 
with the same architecture
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Results
Exploring the Latent Space

• Pick two random points in the 
latent space, generate outputs 
along the connecting line


• Checks for memorization


• Evaluates quality of 
representation
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Results
Visualizing Discriminator Features

• Use guided back 
propagation to find 
exemplar activations of 
learned features


• Can see bedroom 
features corresponding 
to LSUN dataset
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Results
Removing Features in Generations

• Using manual analysis and logistic regression, identify window features


• During forward pass, dropped all positive values for these features and 
replaced with noise


• Images do not have windows but remain semantically sound
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Results
Performing Vector Arithmetic

• Vector manipulation similar to Word2Vec


• Use average of multiple images rather than single 
image for stability
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Results
Conditional DCGANs

• Trained a conditional version of the 
model


• Evaluated using a nearest neighbor 
classifier on the test dataset
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Conclusion

• Propose a CNN-only architecture for GANs which offers 
more stable training


• Learns strong representations and produces strong 
image generations


• Remaining work to improve generative capacity, handle 
mode collapse, and apply to other domains
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