Cycle-GAN

Zhu, et al. 2017

CS598 GAN 2

Introduction

Motivation and Method

Results

Introduction

Motivation and Method

Results

(4日) (個) (主) (主) (三) の(の)

Introduction

- Convert an image from one representation to another.
- Capture characteristics of one image domain and figure out how these characteristics could be translated into the other domain.

Related Works

pix2pix:

ヘロト 人間 とくほとくほとう

æ

Limitation: require supervision of paired images.

Related Works

Neural Style Transfer Methods:

- Given a style image, we disentangle the style information from the content information.
- Transfer the style information to the target image.
- Limitation: only learn mapping between two specific images.

Formulations

- ▶ Training samples $\{x_i\}_{i=1}^N$ where $x_i \in X$ and $\{y_i\}_{i=1}^N$ where $y_i \in Y$.
- Two mapping $G: X \to Y$ and $F: Y \to X$.
- Two discriminators: D_X and D_Y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Motivation and Method

Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Adversarial Loss

Encourage G to generate images similar to images in domain Y and D_Y to distinguish G(x) from y.

$$egin{aligned} \mathcal{L}_{ ext{GAN}}\left(\mathcal{G}, D_{Y}, X, Y
ight) &= \mathbb{E}_{y \sim p_{ ext{data}}\left(y
ight)}\left[\log D_{Y}(y)
ight] \ &+ \mathbb{E}_{x \sim p_{ ext{data}}\left(x
ight)}\left[\log\left(1 - D_{Y}(\mathcal{G}(x))
ight] \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Similarly, for F, we also have $\mathcal{L}_{GAN}(F, D_X, X, Y)$.

Consistency Loss

- A neural network is capable of mapping the input images to any subsets of images in the target domain, so we need extra regularization other than the adversarial loss.
- Mapping function should be cycle-consistent, i.e., $x \to G(x) \to F(G(x)) \approx x$.

Consistency Loss

Cycle consistency loss:

$$egin{aligned} \mathcal{L}_{ ext{cyc}}\left(G,F
ight) &= \mathbb{E}_{x \sim p_{ ext{data}}\left(x
ight)}\left[\|F(G(x))-x\|_{1}
ight] \ &+ \mathbb{E}_{y \sim p_{ ext{data}}\left(y
ight)}\left[\|G(F(y))-y\|_{1}
ight] \end{aligned}$$

Therefore, the full objective is:

$$egin{aligned} \mathcal{L}\left(\mathcal{G},\mathcal{F},\mathcal{D}_{X},\mathcal{D}_{Y}
ight) &= \mathcal{L}_{ ext{GAN}}\left(\mathcal{G},\mathcal{D}_{Y},X,Y
ight) \ &+ \mathcal{L}_{ ext{GAN}}\left(\mathcal{F},\mathcal{D}_{X},Y,X
ight) \ &+ \lambda \mathcal{L}_{ ext{cyc}}(\mathcal{G},\mathcal{F}) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Motivation and Method

Results

(4日) (個) (目) (目) (目) (の)()

	$Map \rightarrow Photo$	Photo \rightarrow Map
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [32]	$0.6\% \pm 0.5\%$	$0.9\% \pm 0.5\%$
BiGAN/ALI [9, 7]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$
SimGAN [46]	$0.7\% \pm 0.5\%$	$2.6\% \pm 1.1\%$
Feature loss + GAN	$1.2\% \pm 0.6\%$	$0.3\% \pm 0.2\%$
CycleGAN (ours)	$26.8\% \pm 2.8\%$	$23.2\% \pm 3.4\%$

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos at 256×256 resolution.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.45	0.11	0.08
BiGAN/ALI [9, 7]	0.41	0.13	0.07
SimGAN [46]	0.47	0.11	0.07
Feature loss + GAN	0.50	0.10	0.06
CycleGAN (ours)	0.58	0.22	0.16
pix2pix [22]	0.85	0.40	0.32

Table 3: Classification performance of photo \rightarrow labels for different methods on cityscapes.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

Table 4: Ablation study: FCN-scores for different variants of our method, evaluated on Cityscapes labels \rightarrow photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Table 5: Ablation study: classification performance of photo-blabels for different losses, evaluated on Cityscapes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Figure 8: Example results of CycleGAN on paired datasets used in "pix2pix" [22] such as architectural labels↔photos and edges↔shoes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Photo → Cezanne

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

References

- Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017
- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization Xun Huang, Serge Belongie, ICCV 2017

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・