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Wasserstein GAN



GAN Training as Distribution Matching

● Ground truth distribution pr and generated distribution pg
● Vanilla GAN minimizes Jensen-Shannon divergence (JSD)
● f-GAN generalizes to the family of f-divergences
● Other distance functions:

○ Total variance (TV)
○ KL divergence
○ Earth-Mover distance (i.e. Wasserstein-1)



Earth-Mover Distance

● Measures how much “mass” needs to be transported between distributions
● Formally:

● γ defines a matching between pr and pg
● EMD defined as the minimal expected distance between matched points



Earth-Mover Distance

● Now consider optimizing for the true distribution pr
● EMD is the most sensible choice:



Earth-Mover Distance

● But we want EMD to be continuous and differentiable
● There are two conditions:

○ The generator g is continuous in θ
○ The generator g is locally Lipschitz

● A feed-forward NN as generator with finite prior distribution pz suffices!



Wasserstein GAN (WGAN)

● Basically replacing discriminator criterion with EMD
● The original formulation is intractable for distribution dimension >1: 

● We can apply Kantorovich-Rubinstein duality:

● Take supremum over every 1-Lipschitz f that projects x down to a scalar



Wasserstein GAN (WGAN)

● Integrating that into the GAN pipeline:
○ Let the discriminator weight ω come from a compact space W
○ Then the discriminator dω is K-Lipschitz
○ Calculate EMD (batch-wise mean difference) as discriminator loss

● Formally:



Wasserstein GAN (WGAN)

● Challenge: how to make D Lipschitz?
○ Weight clipping
○ Projecting weights to unit sphere

● We’ll see a much better approach in the next paper



Advantage of WGAN

● No vanishing gradients with well-trained discriminator:



Experiments

● Train on LSUN-bedroom with MLP/DCGAN as generator
○ Smooth decreasing loss as training progresses for WGAN



Experiments

● Non-smooth static loss for vanilla GAN:
○ And MLP doesn’t work!



Improved Training of Wasserstein GANs



Recap on WGAN

● Weight clipping to enforce Lipschitz causes problem
○ Suboptimal generation results
○ End up learning simple functions
○ Gradient vanishing and explosion



Recap on WGAN

● The paper proves:
○ Optimal f for the KR-dual form has gradient norm 1 almost everywhere
○ Which is not the case for WGAN



Recap on WGAN

● WGAN learns very simple functions (left)
● And its weights are pushed to extremes (right)



Gradient Penalty

● Add a loss term to constraint the gradient norm of D
● Use the fact that for f in the KR-dual form,

● So,
○ Sample t uniformly from [0, 1]
○ Interpolate between real and fake data points using t as weight
○ Calculate gradient of D w.r.t. interpolated data
○ Constraint norm to be 1



Gradient Penalty

● Formally:
○ λ is chosen to be 10 in experiments

● Two-side penalty instead of one-side
○ Authors claim that there is little difference empirically



Gradient Penalty

● Also removed batch normalization in D
○ Since it changes the target of D from single data points to whole batches
○ Which is inconsistent with the GP term



Experiments

● Train vanilla GAN and WGAN-GP on 200 random architectures
○ WGAN-GP is more robust towards architecture shift



Experiments

● Outperforms DCGAN and WGAN with weight clipping quantitatively
○ Inception score (IS) as metric



Experiments

● More quantitative results...



Experiments

● Interpreting loss curves
○ Negative critic loss converges for LSUN-bedroom (left)
○ Overfitting of D detected for both WGAN (right-right) and WGAN-GP (right-left)



Experiments

● Qualitative results (left: unconditional, right: conditional)


