CS 598: Deep Generative and Dynamical Models GAN3

Presented by Xiaoyang Bai

Wasserstein GAN

GAN Training as Distribution Matching

- Ground truth distribution **p**_r and generated distribution **p**_a
- Vanilla GAN minimizes Jensen-Shannon divergence (JSD)
- f-GAN generalizes to the family of f-divergences
- Other distance functions:
 - Total variance (TV)
 - KL divergence
 - Earth-Mover distance (i.e. Wasserstein-1)

Earth-Mover Distance

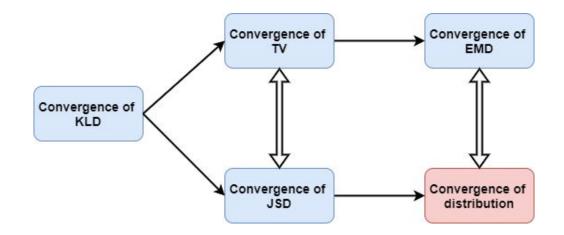
- Measures how much "mass" needs to be transported between distributions
- Formally:

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right] ,$$

- γ defines a matching between \mathbf{p}_r and \mathbf{p}_q
- EMD defined as the minimal expected distance between matched points

Earth-Mover Distance

- Now consider optimizing for the true distribution **p**_r
- EMD is the most sensible choice:



Earth-Mover Distance

- But we want EMD to be continuous and differentiable
- There are two conditions:
 - The generator **g** is continuous in **\theta**
 - The generator **g** is locally Lipschitz
- A feed-forward NN as generator with finite prior distribution p_z suffices!

Wasserstein GAN (WGAN)

- Basically replacing discriminator criterion with EMD
- The original formulation is intractable for distribution dimension >1:

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right] ,$$

• We can apply Kantorovich-Rubinstein duality:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

• Take supremum over every 1-Lipschitz **f** that projects **x** down to a scalar

Wasserstein GAN (WGAN)

- Integrating that into the GAN pipeline:
 - Let the discriminator weight $\boldsymbol{\omega}$ come from a compact space \boldsymbol{W}
 - Then the discriminator \mathbf{d}_{ω} is **K**-Lipschitz
 - Calculate EMD (batch-wise mean difference) as discriminator loss
- Formally:

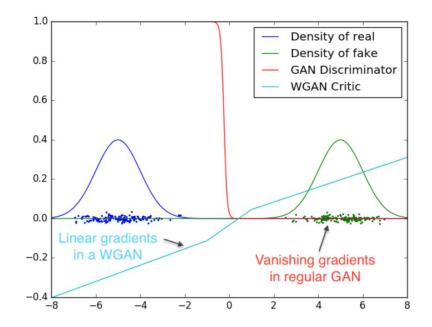
$$\mathcal{L}_D = \frac{1}{m} \sum_{i=1}^m D_\omega(G_\theta(\mathbf{z}_i)) - D_\omega(\mathbf{x}_i)$$
$$\mathcal{L}_G = -\frac{1}{m} \sum_{i=1}^m D_\omega(G_\theta(\mathbf{z}_i))$$

Wasserstein GAN (WGAN)

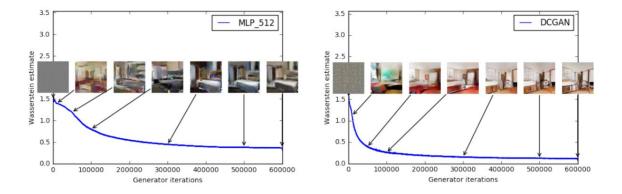
- Challenge: how to make **D** Lipschitz?
 - Weight clipping
 - Projecting weights to unit sphere
- We'll see a much better approach in the next paper

Advantage of WGAN

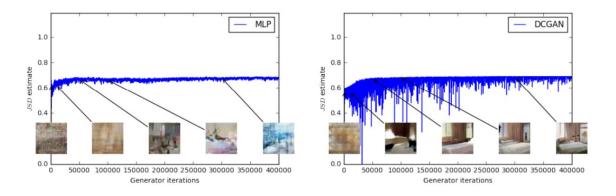
• No vanishing gradients with well-trained discriminator:



- Train on LSUN-bedroom with MLP/DCGAN as generator
 - Smooth decreasing loss as training progresses for WGAN



- Non-smooth static loss for vanilla GAN:
 - And MLP doesn't work!



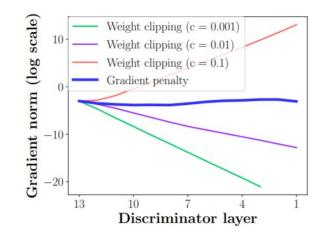
Improved Training of Wasserstein GANs

Recap on WGAN

- Weight clipping to enforce Lipschitz causes problem
 - Suboptimal generation results
 - End up learning simple functions
 - Gradient vanishing and explosion

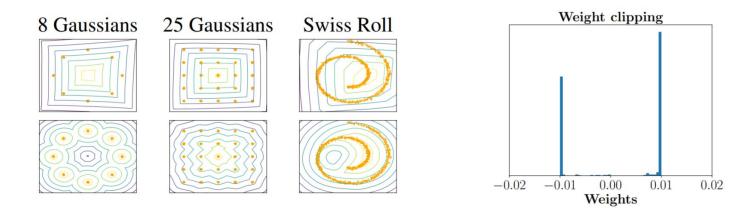
Recap on WGAN

- The paper proves:
 - Optimal **f** for the KR-dual form has gradient norm 1 almost everywhere
 - Which is not the case for WGAN



Recap on WGAN

- WGAN learns very simple functions (left)
- And its weights are pushed to extremes (right)



Gradient Penalty

- Add a loss term to constraint the gradient norm of D
- Use the fact that for **f** in the KR-dual form,

$$P_{(x,y)\sim\pi}[\nabla f(x_t) = \frac{y - x_t}{\|y - x_t\|}] = 1$$
, where $x_t = tx + (1 - t)y$

- So,
 - Sample **t** uniformly from [0, 1]
 - Interpolate between real and fake data points using **t** as weight
 - Calculate gradient of **D** w.r.t. interpolated data
 - Constraint norm to be 1

Gradient Penalty

- Formally:
 - \circ **\lambda** is chosen to be 10 in experiments

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

- Two-side penalty instead of one-side
 - Authors claim that there is little difference empirically

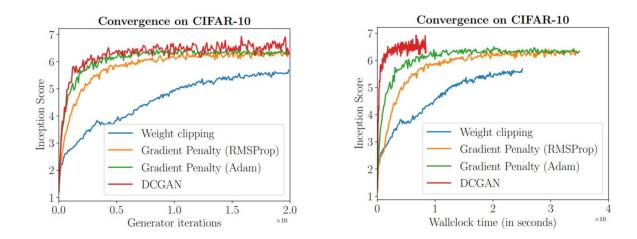
Gradient Penalty

- Also removed batch normalization in **D**
 - Since it changes the target of **D** from single data points to whole batches
 - Which is inconsistent with the GP term

- Train vanilla GAN and WGAN-GP on 200 random architectures
 - WGAN-GP is more robust towards architecture shift

Min. score	Only GAN	Only WGAN-GP	Both succeeded	Both failed
1.0	0	8	192	0
3.0	1	88	110	1
5.0	0	147	42	11
7.0	1	104	5	90
9.0	0	0	0	200

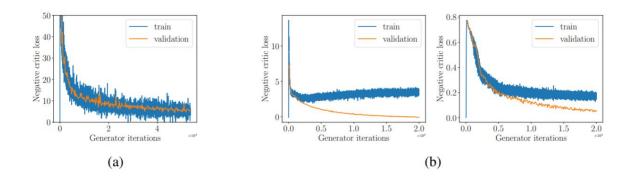
- Outperforms DCGAN and WGAN with weight clipping quantitatively
 - Inception score (IS) as metric



• More quantitative results...

Unsupervised		Supervised		
Method	Score	Method	Score	
ALI [8] (in [27])	$5.34 \pm .05$	SteinGAN [26]	6.35	
BEGAN [4]	5.62	DCGAN (with labels, in [26])	6.58	
DCGAN [22] (in [11])	$6.16 \pm .07$	Improved GAN [23]	$8.09\pm.07$	
Improved GAN (-L+HA) [23]	$6.86 \pm .06$	AC-GAN [20]	$8.25\pm.07$	
EGAN-Ent-VI [7]	$7.07 \pm .10$	SGAN-no-joint [11]	$8.37 \pm .08$	
DFM [27]	$7.72 \pm .13$	WGAN-GP ResNet (ours)	$8.42 \pm .10$	
WGAN-GP ResNet (ours)	$7.86\pm.07$	SGAN [11]	$8.59\pm.12$	

- Interpreting loss curves
 - Negative critic loss converges for LSUN-bedroom (left)
 - Overfitting of **D** detected for both WGAN (right-right) and WGAN-GP (right-left)



• Qualitative results (left: unconditional, right: conditional)

