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Introduction

The recent works show the local convergence of GAN training for absolutely
continuous data and generator distributions.

In this paper, the author discussed a counterexample showing that in the more
realistic case of distributions that are not absolutely continuous, unregularized
GAN training is not always convergent.

The paper also showed that how recent techniques for stabilizing GAN training
affect local convergence on the example problem, as WGAN, WGAN-GP, and
DRAGAN do not converge on this example. And based on this observation, the
paper introduced simplified gradient penalties and prove local convergence for the
regularized GAN training dynamics.
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Introduction

Problem Definition:

We consider the traditional GAN training objective function as

L(θ, ψ) = Ep(z)[f (Dψ(Gθ(z)))] + EpD (x)[f (−Dψ(x))]

where the common choice f (t) = − log)1 + exp(−t)

Recently, it was shown that local convergence of GAN training near an equilibrium
point(θ⋆, ψ⋆) can be analyzed by looking at the spectrum of the Jacobian F ′

h(θ
⋆, ψ⋆)

at the equilibrium:
1 If F ′

h(θ
⋆, ψ⋆) has eigenvalues with absolute value bigger than 1, the training algorithm

will generally not converge to(θ⋆, ψ⋆).
2 On the other hand, If F ′

h(θ
⋆, ψ⋆) has eigenvalues with absolute value smaller than 1,

the algorithm will converge in sublinear time.

Gradient vector field:

v(θ, ψ) =

(
−∇θL(θ, ψ)
∇ψ(θ, ψ)

)
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Dirac-GAN

Definition 1

The Dirac-GAN consists of a (univariate) generator distribution pθ = γθ and a linear
discriminator Dψ(x) = ψ · x . The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

In this setup, the GAN training objective is given by L(θ, ψ) = f (ψθ) + f (0)

Lemma 2

The unique equilibrium point of the training objective is given by θ = ψ = 0. And the
Jacobian of the gradient vector field has two eigenvalues ±f ′(0)i .
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Dirac-GAN

Considering the idealized continuous systems in GAN training dynamics, in the previous
works, it was assumed that the optimal discriminator parameter vector is a continuous
function of the current generator parameters.

Lemma 2.3

The integral curves of the gradient vector field v(θ, ψ) do not converge to the
Nash-equilibrium. Every integral curve (θ(t), ψ(t)) of the gradient vector field v(θ, ψ)
satisfies θ(t)2 + ψ(t)2 = const for all t ∈ [0,∞)

In this case, unless θ = 0, there is not even an optimal discriminator parameter for the
Dirac-GAN.
And the following theorems showed that in two normal training dynamics of GAN:
SimGD and AltGD, both encounter such instabilities.

Where do these instabilities come from?
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Dirac-GAN

Figure: (a): In the beginning, the discriminator pushes the generator towards the true data
distribution and the slope increases. (b): When the generator reaches the target distribution, the
slope of the discriminator is the largest, pushing it away from the target distribution. This results
in the oscillating behavior that will never converge.

Another way to look at it is to consider the local behavior of the training algorithm near
the Nash-equilibrium, where there is no incentive for the discriminator to move to the
equilibrium discriminator.
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Dirac-GAN

Note that WGAN and WGAN-GP both do not converge on this example.

Figure: Converging properties of different GAN training algorithms using alternating gradient
descent.
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Regularization Techniques

A common technique to stabilize GANs is to add instance noise, i.e., independent
Gaussian noise, to the data points.
For the Dirac-GAN:

Lemma 3.2

When using Gaussian instance noise with standard deviation σ, the eigenvalues of the
Jacobian of the gradient vector field are given by

λ1/2 = f ′′(0)σ2 ±
√

f ′′(0)2σ4 − f ′(0)2

This theorem also implies that in the case of absolutely continuous distributions, gradient
descent based GAN optimization is, under suitable assumptions, locally convergent.
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Regularization Techniques

Zero-centered gradient penalties.
A penalty on the squared norm of the gradients of the discriminator results in the
regularizer

R(ψ) =
γ

2
ψ2

Lemma 3.3

The eigenvalues of the Jacobian of the gradient vector field for the gradient-regularized
Dirac-GAN at the equilibrium point are given by

λ1/2 = −γ
2
±

√
γ2

4
− f ′(0)2

Like instance noise, there is a critical regularization parameter γcritical = 2|f ′(0)| that
results in a locally rotation free vector field. And in this case, simultaneous and
alternating gradient descent are both locally convergent.
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Gradient Penalties

The analysis suggests that the main effect of the zero-centered gradient penalties on
local stability is to penalize the discriminator for deviating from the Nash-equilibrium.
Then we can derive the following gradient penalties.

R1(ψ) =
γ

2
EpD (x)[||∇Dψ(x)||2] (1)

R2(ψ) =
γ

2
Epθ(x)[||∇Dψ(x)||2] (2)
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Experiment Results

Figure: Experiments on 2D-Problems
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Introduction

In standard generative adversarial network (SGAN), the discriminator D estimatesthe
probability that the input data is real. The generator G is trained to increase the
probability that fake data is real. In this paper, the authors argue that it should also
simultaneously decrease the probability that real data is real because

1 This would account for a priori knowledge that half of the data in the mini-batch is
fake.

2 This would be observed with divergence minimization.

3 In optimal settings, SGAN would be equivalent to integral probability metric (IPM)
GANs.
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Introduction

Problem Definition: GANs can be defined generally in terms of the discriminator in
the following way

LD = Exr∼P[f̃1(D(xr ))] + Ez∼Pz [f̃2(D(G(z)))] (1)

LG = Exr∼P[g̃1(D(xr ))] + Ez∼Pz [g̃2(D(G(z)))] (2)

where f̃1, f̃2, g̃1, g̃2 are scalar-to-sclar functions. P is the distribution of the real data.

Integral Probability Metrics (IPM): IPMs are statistical divergences represented
mathematically as

IPMF (P||Q) = sup
C∈F

Ex∼P[C(x)]− Ex∼Q[C(x)] (3)

IPM-based GANs can be defined using euqation 1 and 2 assuming
f̃1(D(x)) = g̃2(D(x)) = −D(x) and f̃2(D(x)) = g̃1(D(x)) = D(x) and D(x) = C(x)
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Missing Property of SGAN

In this paper, the authors argued that the key missing property of SGAN is that the
probability of real data being real (D(xr )) should decrease as the probability of fake data
being real (D(xf )) increase.

Figure: Expected discriminator output of the real and fake data for the direct minimization of the
JSD, actual training of the generator to minimize its loss function, and ideal training of the
generator to minimize its loss function.

SGAN completely ignores the a priori knowledge that half of the mini-batch samples are
fake. And IPM-based GANs implicitly account for the fact that some of the samples
must be fake because they compere how realistic real data is compared to fake data.
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Missing Property of SGAN

In SGAN, the discriminator loss function is equal to the Jensen-Shannon divergence.
Thus, it can be represented as solving the following maximum problem

JSD(P||Q) =
1

2
(log(4) + max

D:x→[0,1]
)Exr∼P[log(D(xr ))] + Exf ∼Q[log(1− D(xf ))] (4)

In terms of the gradient steps of SGAN and IPM-based GANs,

∇wL
GAN
D = −Exr∼P[(1− D(xr ))∇wC(xr )] + Exf ∼Qθ [D(xf )∇wC(xf )] (5)

∇θL
GAN
G = −Ez∼Pz [(1− D(G(z)))∇xC(Gz)JθG(z)] (6)

∇wL
IPM
D = −Exr∼P[∇wC(xr )] + Exf ∼Qθ [∇wC(xf )] (7)

∇θL
IPM
G = −Ez∼Pz [∇xC(Gz)JθG(z)] (8)

In IPMs, oth real and fake data equally contribute to the gradient of the discriminator’s
loss function.However, in SGAN, if the discriminator reach optimality, the gradient
completely ignores real data, which means if D(xr ) does not indirectly change when
training the discriminator to reduce D(xf ),the discriminator will stop learning what it
means for data to be ”real” and training will focus entirely on fake data.
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Relativistic Discriminator

The discriminator estimates the probability that the given real data is more realistic than
a randomly sampled fake data. When the discriminator is defined only on C(x). Then we
have the discriminator and generator loss functions of the Relativistic Standard GAN

LRSGAN
D = −E(xr ,Xf )∼(P,Q)[log(sigmoid(C(xr )− C(xf )))] (9)

LRSGAN
G = −E(xr ,Xf )∼(P,Q)[log(sigmoid(C(xf )− C(xr )))] (10)

And for discriminator defined as a(C(xr )− C(xf ))

LRGAN
D = E(xr ,Xf )∼(P,Q)[f1(C(xr )− C(xf ))] + E(xr ,Xf )∼(P,Q)[f2(C(xf )− C(xr ))] (11)

LRGAN
G = E(xr ,Xf )∼(P,Q)[g1(C(xr )− C(xf ))] + E(xr ,Xf )∼(P,Q)[g2(C(xf )− C(xr ))] (12)

In RGANs, g1 is influenced by fake data , thus by the generator. This means that in most
RGANs, the generator is trained to minimize the full loss function envisioned rather than
only half of it.
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Relativistic average GANs

Although the relative discriminator provide the missing property that we want in GANs
(i.e. G influencing D(xr )), its interpretation is different from the standard discriminator.
Rather than measuring “the probability that the input data is real”, it is now measuring
“the probability that the input data is more realistic than a randomly sampled data of the
opposing type.
So we define that

P(xr is real) = Exr∼Q[D(xr , xf )] (13)

P(xf is real) = Exr∼P[D(xf , xr )] (14)

where D(xr , xf ) = sigmoid(C(xr )− C(xf ))

LRaGAN
D = Exr∼P[f1(C(xr )− Exf ∼QC(xf ))] + Exf ∼Q[f2(C(xf )− Exr∼PC(xr ))] (15)

LRaGAN
G = Exr∼P[g1(C(xr )− Exf ∼QC(xf ))] + Exf ∼Q[g2(C(xf )− Exr∼PC(xr ))] (16)
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Experiment Results
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Experiment Results

Evaluation Metrics:

Figure: Experimental results of different GAN loss functions on CIFAR-10 datasets. Measured
with FID scores.
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Conclusions

In the first paper, we analyzed the stability of GAN training on a simple yet
prototypical examplea nd we showed that (unregularized) gradient based GAN
optimization is not always locally convergent. And the authors extended the local
convergence with simplified zero-centered gradient penalties under suitable
assumptions.

In the second paper, the authors proposed the relativistic discriminator as a way to
fix and improve on standard GAN.We further generalized this approach to any GAN
loss and introduced a generally more stable variant called RaD. Our results suggest
that relativism significantly improve data quality and stability of GANs at no
computational cost
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