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Introduction

▶ Theoretical efforts to understanding of GANs focus on
statistics or optimization.

▶ Statistics:
▶ In the GAN paper, Goodfellow et al. (2014) linked the

min-max formulation and the JS divergence.
▶ WGAN (Arjovsky et al., 2017) proposed a loss function based

on the Wasserstein distance.
▶ Wassertein distance and JS distance are not generalizable but

real metric used in practice is generalizable (Arora et al., 2017).

▶ Optimization:
▶ Cyclic behavior, non-convergence, for min-max optimization:

cycle around a stable point to slowly converge or diverge.
▶ Sub-optimal local minima issues for GANs: current works only

perform local analysis or global analysis with simple setting.

▶ Therefore, main goal of the paper is to perform global analysis
on GANs for general data distribution.
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Relativistic GANs

▶ Discriminator should utilize both real and fake data to
measure the reality of samples, therefore, the measurement of
absolute reality is substituted with relative reality.

▶ Having the priori knowledge that input samples consist of half
real and half fake samples, discriminator estimates real
samples with lower score as the fake samples are more realistic
than the real samples.
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Relativistic GANs

▶ The training is problematic by only pushing D(fake) to 1 and
ignoring D(real).



Relativistic GANs

▶ To make discriminator relativistic, we can sample real/fake
data pairs x̂ = (xr , xf ) with D(x̂) = sigmoid(C (xr )− C (xf )).

▶ The discriminator estimates the probability that the given real
data is more realistic than a randomly sampled fake data.



Relativistic GANs

▶ Therefore, we have loss in general form:

LRGAND = E(xr ,xf )∼(P,Q) [f1 (C (xr )− C (xf ))]

+E(xr ,xf )∼(P,Q) [f2 (C (xf )− C (xr ))]

LRGANG = E(xr ,xf )∼(P,Q) [g1 (C (xr )− C (xf ))]

+E(xr ,xf )∼(P,Q) [g2 (C (xf )− C (xr ))]

▶ The point is to use real/fake paired data for training.
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Intution

▶ Suppose we have two real samples x1, x2 and two generated
samples y1, y2 in one dimension, then we can intuitively
illustrate the training process of standard GANs as:

▶ Easily lead to mode collapse.



Intuition

▶ Having the same setting, the training process of relativistic
paired GANs is:

▶ Seem to have no mode collapse.



Bad Local Minima

▶ To further investigate how pairing influence local minima, the
paper sets a two-point case:
▶ Two real samples x1, x2 and two generated samples y1, y2.
▶ Four states s0, s1a, s1b, s2 represent |{x1, x2} ∩ {y1, y2}| = 0,

y1 = y2 ∈ {x1, x2}, |{x1, x2} ∩ {y1, y2}| = 1,
{x1, x2} = {y1, y2}.

▶ s0: no overlap

▶ s2: perfect match

▶ s1a: mode collapse

▶ s1b: mode dropping



Bad Local Minima

ϕJS(Y ,X ) =


− log 2 ≈ −0.6931 if s2,
− log 2/2 ≈ −0.3467 if s1b,
1
4(2 log 2− 3 log 3) ≈ −0.4774 if s1a,
0 if s0

where ϕJS is the divergence measurement in JS-GAN.

Sub-optimal local minima at s1a.



Bad Loacl Minima

ϕRS(Y ,X ) =


− log 2 ≈ −0.6931 if s2,
−1

2 log 2 ≈ −0.3466 if s1a, s1b,
0 if s0



Landscape Results in Function Space

▶ Extend from n=2 to general n.

Theorem 1.
Suppose x1, x2, . . . , xn ∈ Rd are distinct. Suppose h1, h2 satisfy
Assumptions 4.1, 4.2 and 4.3. Then for separable-GAN loss
gSP(Y ) defined in Eq. (5), we have:
(i) The global minimal value is −1

2 supt∈R (h1(t) + h2(−t)), which
is achieved iff {y1, . . . , yn} = {x1, . . . , xn} .
(ii) If yi ∈ {x1, . . . , xn} , i ∈ {1, 2, . . . , n} and yi = yj for some
i ̸= j , then Y is a sub-optimal strict local minimum. Therefore,
gSP(Y ) has (nn − n!) sub-optimal strict local minima.

▶ The theorem is saying that (i) For standard GANs, global
minimal achieves when two sets of points perfectly match; (ii)
Local minima always exists in some scenarios.



Landscape Results in Function Space

Definition (global-min-reachable)

We say a point w is global-min-reachable for a function F (w) if
there exists a continuous path from w to one global minimum of F
along which the value of F (w) is non-increasing.

Theorem 2.
Suppose x1, x2, . . . , xn ∈ Rd are distinct. Suppose h satisfies
Assumptions 4.4 and 4.5. Then for RpGAN loss gR defined in Eq.
(6): (i) The global minimal value is h(0), which is achieved iff
{y1, . . . , yn} = {x1, . . . , xn} . (ii) Any Y is global-min-reachable for
the function gR(Y ).

▶ Theorem 2 means (i) For RpGAN, global minimal achieves
when two sets of points perfectly match; (ii) Only global
minima.



Landscape Results in Parameter Space

▶ Different from before, where we optimize over yi and f
(function space), we now optimize over w and θ (parameter
space).

▶ Assume generator and discriminator are extremely expressive,
the analysis of optimization on parameter space gives the
same results.
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Results of Case Study



Results of Real Data Experiments



Conclusion

▶ Analyze the landscape of JS-GAN and generalize the results
to the standard GANs.

▶ The results show that the minimization problem has many
sub-optimal local minima and each leads to a model collapse.

▶ Prove minimization problem of the relativistic pairing GANs
has no local minima.

▶ Conduct experiments that support the landscape theories.
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