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Introduction

» Theoretical efforts to understanding of GANs focus on
statistics or optimization.

» Statistics:
» In the GAN paper, Goodfellow et al. (2014) linked the
min-max formulation and the JS divergence.
> WGAN (Arjovsky et al., 2017) proposed a loss function based
on the Wasserstein distance.
» Wassertein distance and JS distance are not generalizable but
real metric used in practice is generalizable (Arora et al., 2017).

» Optimization:
» Cyclic behavior, non-convergence, for min-max optimization:
cycle around a stable point to slowly converge or diverge.
» Sub-optimal local minima issues for GANSs: current works only
perform local analysis or global analysis with simple setting.
» Therefore, main goal of the paper is to perform global analysis
on GANSs for general data distribution.



Introduction

Table 1: Comparison of theoretical works.

Wide neural-nets have no sub-optimal basins

Supervised Learning GANs
paper brief description paper brief description
G ization analysis 9] ion bound for neural-nets [5] generalization bound for GANs
convex problem, divergence of Adam bi-linear game, non-convergence of GDA
Convergence analysis 177 of AMSGrad 123] convergence of optil ic GD,
Global landscape 73] 150] Any distinct input data “This work Any distinct input data

SepGAN has bad basins; RpGAN does not

* This table does NOT show a complete list of works. The goal is ta list various types of works. Only one or two works are listed as examples of that class




Relativistic GANs

» Discriminator should utilize both real and fake data to
measure the reality of samples, therefore, the measurement of
absolute reality is substituted with relative reality.

» Having the priori knowledge that input samples consist of half
real and half fake samples, discriminator estimates real
samples with lower score as the fake samples are more realistic
than the real samples.



Relativistic GANs

Scenario Absolute probability
(Standard GAN)

Relative probability
(Relativistic average Standard GAN)

Real image looks real

and
fake images look fake

Clar) =8
P(a, is bread) = 1

Clap) =

P(x, is bread|C(xy)) = 1

Real image looks real
but.
fake images look
similarly real on average

Clz,) =8
Pz, is bread) = 1

[

Real image looks fake
but
fake images look more
fake on average

Clzy) = -3
P(x, is bread) = .05

Clzg)=—5
P(x, isbread|Clxy)) = .88




Relativistic GANs

(A) Divergence minimization (B) Actual generator training (C) Ideal generator training
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» The training is problematic by only pushing D(fake) to 1 and
ignoring D(real).



Relativistic GANs

» To make discriminator relativistic, we can sample real /fake
data pairs & = (x;, xr) with D(X) = sigmoid(C(x,) — C(xf)).

» The discriminator estimates the probability that the given real
data is more realistic than a randomly sampled fake data.



Relativistic GANs

» Therefore, we have loss in general form:

LEEN =B, xpym(r0) [ (C () = C (x¢))]
FE(x, )~ (,0) [2 (C (xr) — C (xr))]
LEAN = By, xy~r.0) L8 (C (%) — C (x¢))]
+E(x, x)~(P,0) [&2 (C (x¢) = C (x,))]

» The point is to use real /fake paired data for training.
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Intution

» Suppose we have two real samples x1, x> and two generated
samples y1, y» in one dimension, then we can intuitively
illustrate the training process of standard GANs as:

Update D: A | ° °

l Y1 ¥z x, X
Update G: |_L ® °
Update D: i e ®
Update G: Iﬁ.‘. ®

» Easily lead to mode collapse.



Intuition

» Having the same setting, the training process of relativistic
paired GANs is:

» Seem to have no mode collapse.



Bad Local Minima

vvyyypy

To further investigate how pairing influence local minima, the
paper sets a two-point case:

» Two real samples x1, x» and two generated samples y1, y».
» Four states Sy, 514, S1b, S2 represent |{xi, x2} N {y1,y2}| =0,

1=y € {xi,x2}, [{x1,} N {y1, )2} =1,
{X17X2} = {}/15)/2}'

Sp: no overlap
sp: perfect match
S12: mode collapse

S15: mode dropping



Bad Local Minima

—log?2 ~ —0.6931 if s,
) —log2/2 ~ —0.3467 if s1p,
ss(Y, X) = %(2 log2 — 3log3) ~ —0.4774 if s12,
0 if So

where ¢ s is the divergence measurement in JS-GAN.

byslY, X)
oe So S1a Sib 52 Y
—0.35¢ \ /
=0.48 ¢ \
—-0.69 * /
(a) JS-GAN

Sub-optimal local minima at sp,.



Bad Loacl Minima

—log2 ~ —0.6931 if s,
¢rs(Y,X)={ —3%log2~ —0.3466 if s1,, 51,
0 if )

Prs(VX)
So Sia Szn 53 Y

N
W,

(b) RS-GAN



Landscape Results in Function Space

» Extend from n=2 to general n.

Theorem 1.

Suppose x1, X2, . .., X, € RY are distinct. Suppose hy, hy satisfy
Assumptions 4.1, 4.2 and 4.3. Then for separable-GAN loss
gsp(Y) defined in Eq. (5), we have:

(i) The global minimal value is —3% sup,cg (h1(t) + h2(—t)), which
is achieved iff {y1,...,yn} = {x1,..., xn}.

(i) fy; € {x1,...,xa},i € {1,2,...,n} and y; = y; for some

i # j, then Y is a sub-optimal strict local minimum. Therefore,
gsp(Y) has (n" — n!) sub-optimal strict local minima.

» The theorem is saying that (i) For standard GANs, global
minimal achieves when two sets of points perfectly match; (ii)
Local minima always exists in some scenarios.



Landscape Results in Function Space

Definition (global-min-reachable)

We say a point w is global-min-reachable for a function F(w) if
there exists a continuous path from w to one global minimum of F
along which the value of F(w) is non-increasing.

Theorem 2.
Suppose x1, X2, ..., x, € RY are distinct. Suppose h satisfies
Assumptions 4.4 and 4.5. Then for RpGAN loss gr defined in Eq.
(6): (i) The global minimal value is h(0), which is achieved iff
{Vis-- s ¥n} = {x1,...,xa}. (ii) Any Y is global-min-reachable for
the function gr(Y).

» Theorem 2 means (i) For RpGAN, global minimal achieves

when two sets of points perfectly match; (i) Only global
minima.



Landscape Results in Parameter Space

» Different from before, where we optimize over y; and f
(function space), we now optimize over w and 6 (parameter
space).

P> Assume generator and discriminator are extremely expressive,
the analysis of optimization on parameter space gives the
same results.
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Results of Case Study
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Figure 5: Training process of JS-GAN and RS-GAN for two-cluster data. True data are red, fake data are blue.
RS-GAN escapes from mode collapse faster than JS-GAN.
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Figure 6: (a) and (b): Evolution of D loss over iterations. RS-GAN is 3-4x faster than JS-GAN. (c) For JS-GAN
training in (a), we plot (Y, D) together at iteration 2800. Y are represented in blue points, and they are near
c1 = 0. D is near the optimal D*(s1a) since D(0) =~ 1/3 and D(4) ~ 1. Interestingly, this bad attractor
(Y, D) is similar to the one discussed in Fig. 1, so the intuition of “local-min” is verified in (c).



Results of Real Data Experiments

CIFAR-10 STL-10

Inception Score 1 FID | FID Gap Model size ‘ Inception Score T FID | FID Gap M
Real Datasct 11244019 518 24455041 534
Standard CNN !
WGAN-GP 6.6840.06  39.66 8114009  55.64
JS-GAN 627+0.10  49.13 8014007 5038
RS-GAN 70240.07 3379 133 100% 7624008 5254 216
JS-GAN+ SN 7424008 B80T (o o0m 832+010 4406 o
RS-GAN+ SN 7324008 2716 O 8201013 4388 O
JS-GAN+SN: GD channel/2 | 685£008 3390 oo | 7695005 516,
RS-GAN+SN: GD channel2 | 6744004 3274 © : 795+0.10 5247 *
JS-GAN +SN; GD channel/d | 5.83:0.07 5263 o0 40 6904006 7296 .o
RS-GAN + SN: GD channcl/4| 5944009 4537 ' 7274011 6361
ResNet
JS-GAN+ SN 8.1240.14  20.13 8874007 3633
RS-GAN + SN 7924013 1931 082 100% 896-0.10 3477 30
JS-GAN +SN; GD channel/2 | 7.6740.04 2329 | o o s, | 8455005 4439 .
RS-GAN + SN; GD channel/2|  7.63£007 2178 " ' 8474009 4218 =
JS-GAN + SN; GD channel/d | 6.65£006 4520 .o oo | 82012 5357
RS-GAN+ SN GD channel/d | 7084005 3126 ' : 846011 5200 "
JS-GAN + SN BottleNeck TE0H0.07 2698 | oeq | 8295005 5038 oo
RS-GAN+ SN: BottleNeck 7574000 2544 U : 8.5240.11 4658

Table 2: Inception score (IS) (higher is better) and Frechét Inception distance (FID) (lower is better) for JS
WGAN-GP and RS-GAN on CIFAR-10 and STL-10. We also show FID gap between JS-GAN and RS
and show the relative model size of narrow nets vs. regular nets (“regular”: CNN and ResNet of [67]).



Conclusion

» Analyze the landscape of JS-GAN and generalize the results
to the standard GANSs.

» The results show that the minimization problem has many
sub-optimal local minima and each leads to a model collapse.

» Prove minimization problem of the relativistic pairing GANs
has no local minima.

» Conduct experiments that support the landscape theories.
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