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NF 1: Flow based Models
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee
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Non-linear Functions of Independent Components

Base distribution over h has independent components

pH(h) =
d∏

i=1

pHd
(hd)

Observed distribution over x

Same dimensionality as h, can define invertable maps x = g(h)
Change of variables h = f (x), so that g(·) = f −1(·)

pX (x) = pH(f (x))

∣∣∣∣det
∂f (x)

∂x

∣∣∣∣
Sampling:

h ∼ pH(h)

x ∼ f −1(h)

Instructor: Arindam Banerjee Flow based Models



3/27

Invertable Transformations, Change of Variables

Two key requirements for x = f (h):

f should be easy to invert, i.e., h = g(x) = f −1(x)

Jacobian ∂f (x)
∂x ∈ Rd×d should be easy to compute

Core idea: By dimension splitting, for some complex m(·)
h1 = x1

h2 = x2 + m(x1)

Inverse is easy, Jacobian is 1

x1 = h1

x2 = h2 −m(h1)
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Recall “Normalizing Flows”

Transforming r.v.s with smooth invertable functions f : Rd 7→ Rd

z′ = f (z) ⇒ z = f −1(z′) = g(z′)

Density of the transformed variable

q(z′) = q(z)

∣∣∣∣det
∂f −1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1
Change of variables, volume changes by the (abs) determinant
Jacobian ∂f

∂z is a d × d matrix
Theorem 10.9, W. Rudin, Principles of Mathematical Analysis

Apply multiple such transformations

zK = fK (fK−1(· · · f1(z0)))

log qK (zK ) = log q0(z0)−
K∑

k=1

log

∣∣∣∣det
∂fk
∂zk−1

∣∣∣∣
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Non-linear Independent Component Estimation (NICE)

Components of h = f (x) are independent

[h1 h2 · · · hD ] = [f1(x) f2(x) · · · fD(x)]

Likelihood of observed data

log pX (x) = log pH(f (x)) + log

(∣∣∣∣det
∂f (x)

∂x

∣∣∣∣)
=

D∑
d=1

log pHd
(fd(x)) + log

(∣∣∣∣det
∂f (x)

∂x

∣∣∣∣)
Encoder-Decoder Perspective

f : encoder, f −1: decoder, inverse of the encoder
Sampling is easy, using f −1 : H 7→ X
Likelihood computation is exact
Dimensionality of h and x are the same
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Coupling Layer II

General coupling: Split dimensions [I1 I2], |I1| = d

hI1 = xI1
hI2 = g(xI2 ;m(xI1)

Coupling g : RD−d ×m(Rd) 7→ RD−d

g is invertible w.r.t. first argument given the second

Jacobian
∂h

∂x
=

[
Id 0
∂hI2
∂xI1

∂hI2
∂xI2

]

We have det ∂h
∂x = det

∂hI2
∂xI2

For simplicity, use:

hI2 = xI2 + m(xI1) ⇒ xI2 = hI2 −m(hI1)
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Rescaling, Prior Distribution

Rescaling
Determinant of Jacobian is 1 is the basic setup
Multiple coupling layers also have determinant 1
Consider diaginal scaling matrix Sdd , likelihood

log pX (x) =
D∑

d=1

[
log pHd

(fd(x)) + log(|Sdd |)
]

Prior distribution, component-wise independent
pH(h) =

∏
d pHd

(hd)
Normal distribution, on R

log pHd
= −1

2
(h2d + log(2π))

Logistic distribution, on R

log pHd
= −hd − 2 log(1 + exp(−hd))
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Results: Log-Likelihood
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Results: Samples
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Results: In-Painting

Instructor: Arindam Banerjee Flow based Models



11/27

Coupling Layers III: Affine Coupling Layers

Affine coupling layer, with functions s, t : Rd 7→ RD−d

h1:d = x1:d

hd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

Inverse function

x1:d = h1:d

xd+1:D = (hd+1:D − t(h1:d))� exp(−s(h1:d))

Jacobian
∂h

∂x
=

[
Id 0

∂hd+1:D

∂x1:d
diag(exp[s(x1:d)])

]

Determinant is exp[
∑D

j=d+1 s(x1:d)j ]
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Partitioning: Masked Convolution

Partition with binary mask b

h = b� x + (1− b)� (x� exp(s(b� x)) + t(b � x))

Spatial checkerboard masks and channel-wise masks

s(·), t(·) are conv nets

Combine coupling layers with alternating patterns

Instructor: Arindam Banerjee Flow based Models
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Multi-scale Architecture

Layers: 3 alternating checkerboard masks, squeezing
(a× a× c 7→ a/2× a/2× 4c), 3 alternating channel-wise masks
Factor out half the dimensions, f (i) is couple-squeeze-couple

h(0) = x

(z(i+1), h(i+1)) = f (i+1)(h(i))

z(L) = f (L)(h(L−1))

z = (z(1), · · · , z(L))

Multi-scale factoring out to Gaussians
Instructor: Arindam Banerjee Flow based Models
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De-quantization, Bits/Dimension, etc.

De-quantization: Images y ∈ {0, . . . , 255}D
Create noisy image: z = y + u, u ∈ [0, 1[D , density p(z) on [0, 256]D

Fit models q(z) based on z
Can bound Ep(z)[log q(z)] with EP(y)[logQ(y)]

Model x = logit(α + (1− α)� z/256), small α

Recall: b = Logit(a) = log a
1−a , inverse a = σ(b) = 1

1+exp(−b)

Convert density back to image space (verify)

p(z) = p(x)

(
1− α
256

)D
(

D∏
i=1

σ(xi )(1− σ(xi )

)−1
Results based on bits/dimension

b(x) = − 1

D
log2 p(z)

= − log p(x)

D log 2
+

1

D

∑
i

[log2 σ(xi ) + log2(1− σ(xi )] + c(α)
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Results: Bits/Dimension
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Results: Samples
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Results: Latent Space Interpolation
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Glow: Generative Flow with 1× 1 Convolution
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Glow Details
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Invertible 1× 1 Convolutions

Prior work: Fixed permutation over channels

Generalization

Initialize with random rotation matrix (log det = 0)
Use c × c convolution W for each spatial location (i , j)

Computation of detW is c3, use LU decomposition

W = PL(U + diag(s))

P is a permutation matrix, kept fixed
L is lower triangular with ones in the diagonal
U is upper triangular with zeros in the diagonal

log | detW | =
c∑

j=1

log |sj |
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Results: Training, Bits/Dimension
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Results: Samples
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Results: Latent Space Interpolation
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Results: Manipulation
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Results: Effect of Temperature

Additive coupling layers: Multiply standard deviation of pθ(z) by T

Distribution at temperature T : pθ,T (x) ∝ (pθ(x))1/T
2

[check!]
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Results: Shallow vs. Deep
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