CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

October 7, 2021
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De-quantization

e De-quantization: Images x € {0,...,255}"
o Create noisy image: y = x+u, u € [0,1[P, density p(y) on [0, 256]°
o Fit models pmodel(y) based on y

@ Can be interpreted as lower bound maximization on

Pmodel(x) — / pmodel(x + u)du
J[0,1)P

@ With x ~ Pyata and y ~ pyata
EYNPdata[log pmodeI(Y)] < EX’\’Pdata[log PmOde|(X)]
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Variational Dequantization

e Rather than using uniform, use g(u|x)
Prmodel(x+u)
Exn log P > EypywEung(-x) |108 ————~—
Pyara [108 Pmodel (X)] > Pdata=u~q(-|x) {og q(ulx) }

Use a conditional flow for u, i.e., u = gx(€), € ~ p(e) = N (€ 0,1)

With a flow model for u, we have
Exp, . [108 Pmodel(X)] = Excp, Eco [Iog pmow(xﬂx(e))}
X~ Fdata ode = X~Fdata P ,D(E)‘aqx/adfl
@ Flow model for pmodel
o Invertible £ with x + g.(e) = f~1(z2)
o Can use SGD, f(x + gy(¢)) is differentiable w.r.t. parameters in f, g

Uniform q is a special case, inexpressive, poor lower bound

VI idea for (flow based) dequantization for fitting a flow model
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Improved Coupling Layers

Paramtereized flow y = fy(x)

Affine coupling layers: splits x = (x1,x2) to get
yi=x1 Y2 =x2-exp(ag(x1)) + bg(x1)

e ap(x1),bg(x1) are neural networks
e But still just an affine transform of x,

@ The inverse map is
X1 =2
x2 = (y2 — bp(y1)) - exp(—ag(y1))
log ‘gi =1T2ay(x)

@ Can we do more general elementwise non-linear transformations?
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Coupling with Mixture of CDFs

@ Mixture of k sigmoids, viewed as CDF of logistics
MixLogCDF(x; 7, p.s) Z?T o((x — i) - exp(—sj))

e  are the mixture probabllltles, 7TT1 =1,7>0
o i, s determine the mean and scaling respectively

@ Such mapping is followed by inverse sigmoid, and affine transform
x — 0 1(MixLogCDF(x; 7, jt,5)) - exp(a) + b)

@ Non-linear coupling transformation

Y1 =X1

Y2 = O'_l(MiXLOgCDF(XQ; mo(x1), o(x1),s0(x)) - exp(an(x1) + bo(x1))
@ Can be inverted by bisection, since CDF is monotonic increasing

@ Jacobian is based on density function of logistic mixtures
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Elementwise Models with Attention

@ Elementwise transform parameters 7, u,s,a, b
@ Multi-head self-attention, similar to transformers
@ Each block has two layers, connected as residuals
Conv = Input — Nonlinearity
— Convsys — Nonlinearity — Gate
Attn = Input — Convy i
— MultiHeadSelfAttention — Gate
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Results: Bits/dim

Table 1. Unconditional image modeling results in bits/dim

Model family Model CIFAR10 ImageNet 32x32 ImageNet 64x64

Non-autoregressive RealNVP (Dinh et al., 2016) 3.49 4.28 -

Glow (Kingma & Dhariwal, 2018) 3.35 4.09 3.81
IAF-VAE (Kingma et al., 2016) 3.11 - -

Flow++ (ours) 3.08 3.86 3.69

Autoregressive Multiscale PixelCNN (Reed et al., 2017) - 3.95 3.70
PixelCNN (van den Oord et al., 2016b) 3.14 - -

PixelRNN (van den Oord et al., 2016b) 3.00 3.86 3.63

Gated PixelCNN (van den Oord et al., 2016¢) 3.03 3.83 3.57
PixelCNN++ (Salimans et al., 2017) 292 - -
Image Transformer (Parmar et al., 2018) 2.90 3.77 -

PixelSNAIL (Chen et al., 2017) 2.85 3.80 3.52
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Results: Ablation
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Results: Ablation

Table 2. CIFAR10 ablation results after 400 epochs of training.
Models not converged for the purposes of ablation study.

Ablation bits/dim  parameters
uniform dequantization 3.292 32.3M
affine coupling 3.200 32.0M
no self-attention 3.193 314M
Flow++ (not converged for ablation) 3.165 31.4M
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Results: Samples, Cifar-10
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Results: Samples, ImageNet
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Results: Samples, CelebA
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Figure 4. Samples from Flow++ trained on 5-bit 64x64 CelebA,
without low-temperature sampling.
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Flow models

@ Invertible mapping fp : X — Y, y = fy(x)

-1
0

py(y) = ’

o Minimize KL(py (y)| prarget(y))
@ Maximume-likelihood, density estimation

e px(x) is a complex data distribution
o Prarget(y)) is a simple distribution, say isotropic Gaussian
o fy maps x to y, so px(x) can be computed

@ Variational inference

e px(x) is a simple distribution, e.g., Gaussian from encoder network
® Prarget(y)) is @ complex distribution, approximating true posterior
o fy maps simple distribution to more complex/flexible
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Desiderata: Key Computational Steps

Sampling x ~ p(x)
Computing y = f(x)
Computing gradient of log-likelihood of y = f(x)

Computing the gradient of the log-det of the Jacobian of f
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Affine Autoregressive Flows

Order x,y

Compute y; as a function of x3.;-1
A conditioner ¢ and transformation 7
Ye = T(C(Xlzt—l)axt)

Focus has been on affine transformations, for simplicity
T, 0, %) = 4 oxt

T(p,0,%x¢) = oxe + (1 — o)

Affine is not necessary, properties we need
e 7 must be an invertible function of x;

° Z—ﬁ must be tractable to compute
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Neural Autoregressive Flows (NAFs)

@ Use deep nets for complex monotonic transform
T(c(x1:t-1),xt) = DNN(x¢; ¢ = c(x1:4-1))

@ NAF use monotonic transforms, view as CDF

Proposition 1. Using strictly positive weights and strictly
monotonic activation functions for 7. is sufficient for the
entire network to be strictly monotonic.

@ Can model multi-modality by going from affine to monotonic
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Example: Multi-modal Modeling
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Figure 5. Illustration of the effects of traditional IAF (top), and our
proposed NAF (bottom). Areas where the slope of the transformer
T, is greater/less than 1, are compressed/expanded (respectively)
in the output distribution. Inflection points in 7. (z;) (middle) can
transform a unimodal p(z+) (left) into a multimodal p(y:) (right);
NAF allows for such inflection points, whereas IAF does not.
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Architectures

@ Two types of architectures

@ Deep Sigmoidal Flows (DSF)

e Single hidden layer, with sigmoid and inverse sigmoid
yvi=o Yw-o(a-x.+b), wil=1,w>0,a>0

@ Deep Dense Sigmoidal Flows (DDSF)
e Stacking layers of DSF looks like a MLP with bottlenecks

o Dense version avoids the bottleneck
pU+1L) — U—l(w . 0—(3(/+1) o oD a0 4 b(’“)))

-] ho:X,hLIy; do:dLI].
@ w continues to be a distribution, all parameters except b are positive

@ Jacobian can be computed by chain rule
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NAF Architectures: DSF, DDSF
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Universal Density Approximators

Proposition 2. (DSF universally transforms uniform ran-
dom variables into any desired random variables) Let Y be
a random vector in R™ and assume Y has a strictly pos-
itive and continuous probability density distribution. Let
X ~ Unif((0,1)™). Then there exists a sequence of func-
tions (Gn)nzl parameterized by autoregressive neural net-
works in the following form

G(x)e =0 " (S (24 Celw1:4-1))) (12)

where Cy = (atj, bej, th);'l:l are functions of x1.;_1, such
thatY,, = G,,(X) converges in distribution to Y .
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Universal Density Approximators

Proposition 3. (DSF universally transforms any random
variables into uniformly distributed random variables) Let X
be a random vector in an open set U C R™. Assume X has
a positive and continuous probability density distribution.
Let Y ~ Unif((0,1)™). Then there exists a sequence of
functions (Hy,),>1 parameterized by autoregressive neural
networks in the following form

H(x); = S (24;Ce(21:4-1)) (13)

where Cy = (atj, byj, T¢5)7—1 are functions of T1.4—1, such
thatY,, = H,,(X) converges in distribution to Y .
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Universal Density Approximators

Theorem 1. (DSF universally transforms any random vari-
ables into any desired random variables) Let X be a random
vector in an open setUU C R™. LetY be a random vector
in R™. Assume both X and Y have a positive and contin-
uous probability density distribution. Then there exists a
sequence of functions (K,,),>1 parameterized by autore-
gressive neural networks in the following form

K(x);=0""(S (;Ce(21:4-1))) (14)

where Cy = (atj, by, th)?:l are functions of x1.+_1, such
that Y, = K,,(X) converges in distribution to Y .
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Results: Log-likelihood

Table 2. Test log-likelihood and error bars of 2 standard deviations on the 5 datasets (5 trials of experiments). Neural autoregressive flows
(NAFs) produce state-of-the-art density estimation results on all 5 datasets. The numbers (5 or 10) in parantheses indicate the number of
transformations which were stacked; for TAN (Oliva et al., 2018), we include their best results, achieved using different architectures on
different datasets. We also include validation results to give future researchers a fair way of comparing their methods with ours during
development.

Model POWER GAS HEPMASS MINIBOONE BSDS300
MADE MoG 0.4040.01 8.47£0.02 —1515+£0.02 —12.274+047 153.71+0.28
MAF-affine (5) 0.1440.01 9.07 £0.02 —17.70 £0.02 —-11.754+0.44 155.69+0.28
MAF-affine (10) 0.24+£0.01 10.08£0.02 —-17.73£0.02 —1224+0.45 154.934+0.28
MAF-affine MoG (5) 0.30£0.01 9.59 £0.02 —17.39£0.02 —11.68+0.44 156.36 £0.28
TAN (various architectures)  0.48 £0.01  11.194+0.02  —1512+0.02 —11.01+0.48 157.03+0.07
MAF-DDSF (5) 0.62+0.01 11.91+£0.13 -15.09+040 -886+0.15 157.73+0.04
MAF-DDSF (10) 0.60+0.02 11.96+0.33 —1532+0.23 —9.01+0.01 157.43+0.30
MAF-DDSF (5) valid 0.63+£0.01  11.91£0.13 15.10 £0.42 —8.38+0.13  172.89 £0.04
MAF-DDSF (10) valid 0.60£0.02  11.95£0.33 15.34 £0.24 —8.50+0.03  172.58 £0.32
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Results: Variational Inference

Table 1. Using DSF to improve variational inference. We report
the number of affine IAF with our implementation. We note that
the log likelihood reported by Kingma et al. (2016) is 78.88. The
average and standard deviation are carried out with 5 trials of
experiments with different random seeds.

Model ELBO log p(x)
VAE 85.00£0.03 81.66 +0.05

[AF-affine 82.25+0.05 80.05+0.04
IAF-DSF  81.92+0.04 79.86+0.01
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Results: Grid of Gaussians
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Figure 6. Fitting grid of Gaussian distributions using maximum
likelihood. Left: true distribution. Center: affine autoregressive
flow (AAF). Right: neural autoregressive flow (NAF)
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Results: Learning Curves

Density estimation with MAF Fitting energy with IAF
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Figure 7. Learning curve of MAF-style and IAF-style training. q
denotes our trained model, and p denotes the target.
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Figure 1: Pathways to designing scal-
able normalizing flows and their en-
forced Jacobian structure. Residual
Flows fall under unbiased estimation
with free-form Jacobian.
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Invertible Residual Networks (i-ResNets)

@ Recall change of variables y = f(x)
df (x)
dx

log p(x) = log p(f(x)) + log ’

@ Residual networks: y = x + g(x)

e Transformation is invertible if g is a contraction

o With Jacobian J, = %) e have

log p(x) = log p(F(x) + Tr (Z CU [Jg(x)1k>

k=1

@ In practice, truncate the infinite series

o Biased estimate of the stochastic gradient
e Bias is worse with increase in dimension and Lipschitz constant of g
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Unbiased Estimation of Infinite Series

e Estimating an infinite series, k-th term Ay

o Evaluate first term A;
e Draw b ~ Bern(q) to decide whether to stop or continue

o A - A

o Estimator by drawing the number of terms evaluated
oo n Ak
Z = Envp) [Z P(N > k)
k=1 k=1

Theorem 1 (Unbiased log density estimator). Let f(xz) = « + g(x) with Lip(g) < 1 and N be a
random variable with support over the positive integers. Then

i (—1)k+1 vT[Jg(mv}

logp(z) = log p(f(2)) + En v )

k. P(N>k)

k=1
wheren ~ p(N) and v ~ N(0,I).
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Biased vs. Unbiased Stochastic Gradients
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Figure 2: i-ResNets suffer from substantial bias
when using expressive networks, whereas Residual
Flows principledly perform maximum likelihood
with unbiased stochastic gradients.
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Memory Efficient Backpropagation

@ Naive backprop is problematic

0
80 |Og det( + Jg(x7 0)) - E”vv

00
k=1

N avT(Jg<x,e>)k>v]
k

Theorem 2 (Unbiased log-determinant gradient estimator). Let Lip(g) < 1 and N be a random
variable with support over positive integers. Then

D togdet (1 + 1,(.6)) = KZIPN>k xe)>%§ﬁ”v}, ®)

where n ~ p(N) and v ~ N(0,1).

o Additional efficiencies by chain rule on log-det, a scaler
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Memory Usage
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Figure 3: Memory usage (GB) per minibatch of 64
samples when computing n=10 terms in the cor-
responding power series. CIFAR10-small uses im-
mediate downsampling before any residual blocks.
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Avoiding Derivative Saturation

Training depends on Hessian, i.e., derivative of the Jacobian

Gradient saturation leads to slow training

Desirable properties

e Bounded derivatives |¢'(z)] <1
e Second derivative should not be zero when |¢/(z)] close to 1

@ Good choices: smooth and non-monotonic

Scaled version of the Swish function
LipSwish(z) = z - 0(5z)/1.1
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Activation Functions

1.0 4 = d¢/dx 1.0 o w—dd/dx 1.0 4 = dé/dx
— d¢ldx? — d?gidx* — d?idx*
0.5 0.5 0.5
0.0 0.0 0.0
—0.5 -0.5 -0.5
Softplus ELU LipSwish

Figure 4: Common smooth Lipschitz activation functions ¢ usually have vanishing ¢” when ¢’ is
maximal. LipSwish has a non-vanishing ¢ in the region where ¢’ is close to one.
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Results: Bits/dim on Benchmarks

Table 1: Results [bits/dim] on standard benchmark datasets for density estimation. In brackets are
models that used “variational dequantization” (Ho et al., 2019), which we don’t compare against.

Model MNIST  CIFAR-10 ImageNet 32 ImageNet 64 CelebA-HQ 256
Real NVP (Dinh et al., 2017) 1.06 3.49 4.28 3.98

Glow (Kingma and Dhariwal, 2018)  1.05 3.35 4.09 3.81 1.03

FFJORD (Grathwohl etal., 2019)  0.99 3.40 — — —

Flow++ (Ho etal., 2019) — 3.293.09) — (3.80) — (3.69) —

i-ResNet (Behrmann etal., 2019)  1.05 345 — — —

Residual Flow (Ours) 0.970 3.280 4.010 3.757 0.992
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Results: Samples, CelebA

Figure 5: Qualitative samples. Real (left) and random samples (right) from a model trained on 5bit
64x64 CelebA. The most visually appealing samples were picked out of 5 random batches.
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Results: Samples, CIFAR-10
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Figure 6: Random samples from Residual Flow are more globally coherent. PixelCNN (Oord et al.,
2016) and Flow++ samples reprinted from Ho et al. (2019).
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Results: FID, CIFAR-10

Table 2: Lower FID implies bet-
ter sample quality. *Results taken
from Ostrovski et al. (2018).

Model CIFAR10 FID
Pixel CNN* 65.93
PixellQN" ______ 4946
i-ResNet 65.01
Glow 46.90
Residual Flow 46.37
DCGAN* 37.11
WGAN-GP* 36.40
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Results: Reduced Entropy Sampling

7=0.7 T7=0.8 7=0.9 T=1.0 T=0.7 T7=0.8 7=0.9 T=1.0

Figure 7: Reduced entropy sampling does not equate with proper temperature annealing for gen-
eral flow-based models. Naively reducing entropy results in samples that exhibit black hair and
background, indicating that samples are not converging to the mode of the distribution.
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Results: Effect of Activation Function

35;2 —— Softplus Training Setting MNIST CIFAR-10f  CIFAR-10
£ —= ELU
g i-ResNet + ELU 1.05 345 3.66~4.78
@330 Residual Flow + ELU 1.00 3.40 3.32
32555160 1m0 200 350 o0 Residual Flow + LipSwish 0.97 3.39 3.28
Epoch
Figure 8: Effect of activation Table 3: Ablation results. Uses immediate downsampling
functions on CIFAR-10. before any residual blocks.
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Results: Hybrid Modeling

Table 4: Comparison of residual vs. coupling blocks for the hybrid modeling task.

MNIST SVHN
A=0 A=1p A=1 A=0 A=1p A=1
Block Type Acct  BPD| Acct  BPD| Acct Acct BPD] Acct BPD| Acct
Nalisnick et al. (2019) 99.33% 126 97.78% — - 95.74% 240 94.77%  — —
Coupling 99.50%  1.18 9845%  1.04 9542% 96.27%  2.73 95.15% 221 46.22%
+1 x 1 Conv 99.56%  1.15 98.93%  1.03 94.22% 96.72%  2.61 95.49% 217 46.58%
Residual 99.53%  1.01 99.46%  0.99 98.69% 96.72%  2.29 95.79%  2.06 58.52%
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