
1/42

NF 3: Improved, Neural, Residual Flows
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

October 7, 2021

Instructor: Arindam Banerjee Flow based Models

2/42

De-quantization

De-quantization: Images x ∈ {0, . . . , 255}D
Create noisy image: y = x + u, u ∈ [0, 1[D , density p(y) on [0, 256]D

Fit models pmodel(y) based on y

Can be interpreted as lower bound maximization on

Pmodel(x) =

∫
[0,1)D

pmodel(x + u)du

With x ∼ Pdata and y ∼ pdata
Ey∼pdata [log pmodel(y)] ≤ Ex∼Pdata

[logPmodel(x)]

Instructor: Arindam Banerjee Flow based Models

3/42

Variational Dequantization

Rather than using uniform, use q(u|x)

Ex∼Pdata
[logPmodel(x)] ≥ Ex∼Pdata

Eu∼q(·|x)

[
log

pmodel(x+u)

q(u|x)

]
Use a conditional flow for u, i.e., u = qx(ε), ε ∼ p(ε) = N (ε; 0, I)
With a flow model for u, we have

Ex∼Pdata
[logPmodel(x)] ≥ Ex∼Pdata

Eε∼p
[

log
pmodel(x+qx(ε))

p(ε)|∂qx/∂ε|−1

]
Flow model for pmodel

Invertible f with x + qx(ε) = f −1(z)
Can use SGD, f (x + qx(ε)) is differentiable w.r.t. parameters in f , q

Uniform q is a special case, inexpressive, poor lower bound

VI idea for (flow based) dequantization for fitting a flow model

Instructor: Arindam Banerjee Flow based Models

4/42

Improved Coupling Layers

Paramtereized flow y = fθ(x)

Affine coupling layers: splits x = (x1, x2) to get

y1 = x1 y2 = x2 · exp(aθ(x1)) + bθ(x1)

aθ(x1), bθ(x1) are neural networks
But still just an affine transform of x2

The inverse map is

x1 = y1

x2 = (y2 − bθ(y1)) · exp(−aθ(y1))

log

∣∣∣∣∂y

∂x

∣∣∣∣ = 1Taθ(x)

Can we do more general elementwise non-linear transformations?

Instructor: Arindam Banerjee Flow based Models

5/42

Coupling with Mixture of CDFs

Mixture of k sigmoids, viewed as CDF of logistics

MixLogCDF(x ;π, µ.s) =
K∑
i=1

πiσ((x − µi) · exp(−si))

π are the mixture probabilities, πT1 = 1, π ≥ 0
µ, s determine the mean and scaling respectively

Such mapping is followed by inverse sigmoid, and affine transform

x 7→ σ−1(MixLogCDF(x;π, µ, s)) · exp(a) + b)

Non-linear coupling transformation

y1 = x1

y2 = σ−1(MixLogCDF(x2;πθ(x1), µθ(x1), sθ(x)) · exp(aθ(x1) + bθ(x1))

Can be inverted by bisection, since CDF is monotonic increasing

Jacobian is based on density function of logistic mixtures

Instructor: Arindam Banerjee Flow based Models

6/42

Elementwise Models with Attention

Elementwise transform parameters π, µ, s, a, b

Multi-head self-attention, similar to transformers

Each block has two layers, connected as residuals

Instructor: Arindam Banerjee Flow based Models

7/42

Results: Bits/dim

Instructor: Arindam Banerjee Flow based Models

8/42

Results: Ablation

Instructor: Arindam Banerjee Flow based Models

9/42

Results: Ablation

Instructor: Arindam Banerjee Flow based Models

10/42

Results: Samples, Cifar-10

Instructor: Arindam Banerjee Flow based Models

11/42

Results: Samples, ImageNet

Instructor: Arindam Banerjee Flow based Models

12/42

Results: Samples, CelebA

Instructor: Arindam Banerjee Flow based Models

13/42

Flow models

Invertible mapping fθ : X 7→ Y, y = fθ(x)

pY (y) =

∣∣∣∣∂f (x)

∂x

∣∣∣∣−1 pX (x)

Minimize KL(pY (y)‖ptarget(y))

Maximum-likelihood, density estimation

pX (x) is a complex data distribution
ptarget(y)) is a simple distribution, say isotropic Gaussian
fθ maps x to y, so pX (x) can be computed

Variational inference

pX (x) is a simple distribution, e.g., Gaussian from encoder network
ptarget(y)) is a complex distribution, approximating true posterior
fθ maps simple distribution to more complex/flexible

Instructor: Arindam Banerjee Flow based Models

14/42

Desiderata: Key Computational Steps

Sampling x ∼ p(x)

Computing y = f (x)

Computing gradient of log-likelihood of y = f (x)

Computing the gradient of the log-det of the Jacobian of f

Instructor: Arindam Banerjee Flow based Models

15/42

Affine Autoregressive Flows

Order x, y

Compute yt as a function of x1:t−1

A conditioner c and transformation τ

yt = τ(c(x1:t−1), xt)

Focus has been on affine transformations, for simplicity

τ(µ, σ, xt) = µ+ σxt

τ(µ, σ, xt) = σxt + (1− σ)µ

Affine is not necessary, properties we need

τ must be an invertible function of xt
dyt
dxt

must be tractable to compute

Instructor: Arindam Banerjee Flow based Models

16/42

Neural Autoregressive Flows (NAFs)

Use deep nets for complex monotonic transform

τ(c(x1:t−1), xt) = DNN(xt ;φ = c(x1:t−1))

NAF use monotonic transforms, view as CDF

Can model multi-modality by going from affine to monotonic

Instructor: Arindam Banerjee Flow based Models

17/42

Example: Multi-modal Modeling

Instructor: Arindam Banerjee Flow based Models

18/42

Architectures

Two types of architectures

Deep Sigmoidal Flows (DSF)

Single hidden layer, with sigmoid and inverse sigmoid

yt = σ−1(w · σ(a · xt + b)) , wT1 = 1,w > 0, a > 0

Deep Dense Sigmoidal Flows (DDSF)

Stacking layers of DSF looks like a MLP with bottlenecks
Dense version avoids the bottleneck

h(l+1) = σ−1(w · σ(a(l+1) � u(l+1) · h(l) + b(l+1)))

h0 = x , hL = y ; d0 = dL = 1
w continues to be a distribution, all parameters except b are positive

Jacobian can be computed by chain rule

Instructor: Arindam Banerjee Flow based Models

19/42

NAF Architectures: DSF, DDSF

Instructor: Arindam Banerjee Flow based Models

20/42

Universal Density Approximators

Instructor: Arindam Banerjee Flow based Models

21/42

Universal Density Approximators

Instructor: Arindam Banerjee Flow based Models

22/42

Universal Density Approximators

Instructor: Arindam Banerjee Flow based Models

23/42

Results: Log-likelihood

Instructor: Arindam Banerjee Flow based Models

24/42

Results: Variational Inference

Instructor: Arindam Banerjee Flow based Models

25/42

Results: Grid of Gaussians

Instructor: Arindam Banerjee Flow based Models

26/42

Results: Learning Curves

Instructor: Arindam Banerjee Flow based Models

27/42

Jacobian Structure for Flows

Instructor: Arindam Banerjee Flow based Models

28/42

Invertible Residual Networks (i-ResNets)

Recall change of variables y = f (x)

log p(x) = log p(f (x)) + log

∣∣∣∣df (x)

dx

∣∣∣∣
Residual networks: y = x + g(x)

Transformation is invertible if g is a contraction

With Jacobian Jg = dg(x)
dx , we have

log p(x) = log p(f (x)) + Tr

(∞∑
k=1

(−1)k+1

k
[Jg (x)]k

)

In practice, truncate the infinite series

Biased estimate of the stochastic gradient
Bias is worse with increase in dimension and Lipschitz constant of g

Instructor: Arindam Banerjee Flow based Models

29/42

Unbiased Estimation of Infinite Series

Estimating an infinite series, k-th term ∆k

Evaluate first term ∆1

Draw b ∼ Bern(q) to decide whether to stop or continue

∆1 + E
[(∑∞

k=2 ∆k

1− q

)
1b=0 + (0)1b=1

]
= ∆1 +

∑∞
k=2 ∆k

1− q
(1− q)

Estimator by drawing the number of terms evaluated
∞∑
k=1

= En∼p(N)

[
n∑

k=1

∆k

P(N ≥ k)

]

Instructor: Arindam Banerjee Flow based Models

30/42

Biased vs. Unbiased Stochastic Gradients

Instructor: Arindam Banerjee Flow based Models

31/42

Memory Efficient Backpropagation

Naive backprop is problematic

∂

∂θ
log det(I + Jg (x, θ)) = En,v

[
n∑

k=1

(−1)k+1

k

∂vT (Jg (x, θ))k)v

∂θ

]

Additional efficiencies by chain rule on log-det, a scaler

Instructor: Arindam Banerjee Flow based Models

32/42

Memory Usage

Instructor: Arindam Banerjee Flow based Models

33/42

Avoiding Derivative Saturation

Training depends on Hessian, i.e., derivative of the Jacobian

Gradient saturation leads to slow training

Desirable properties

Bounded derivatives |φ′(z)| ≤ 1
Second derivative should not be zero when |φ′(z)| close to 1

Good choices: smooth and non-monotonic

Scaled version of the Swish function

LipSwish(z) = z · σ(βz)/1.1

Instructor: Arindam Banerjee Flow based Models

34/42

Activation Functions

Instructor: Arindam Banerjee Flow based Models

35/42

Results: Bits/dim on Benchmarks

Instructor: Arindam Banerjee Flow based Models

36/42

Results: Samples, CelebA

Instructor: Arindam Banerjee Flow based Models

37/42

Results: Samples, CIFAR-10

Instructor: Arindam Banerjee Flow based Models

38/42

Results: FID, CIFAR-10

Instructor: Arindam Banerjee Flow based Models

39/42

Results: Reduced Entropy Sampling

Instructor: Arindam Banerjee Flow based Models

40/42

Results: Effect of Activation Function

Instructor: Arindam Banerjee Flow based Models

41/42

Results: Hybrid Modeling

Instructor: Arindam Banerjee Flow based Models

42/42

References

J. Ho, X. Chen, A. Srinivas, Y. Duan, P. Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and
architecture design.. ICML, 2019.

C.-W. Huang, D. Krueger, A. Lacoste, A. Courville. Neural
Autoregressive Flows. ICML, 2018.

R. Chen, J. Behrmann, D. Duvenaud, J. Jacobsen. Residual Flows for
Invertible Generative Modeling. NeurIPS, 2019.

Instructor: Arindam Banerjee Flow based Models

