
Discrete
Flows:
Invertible
Generative
Models of
Discrete Data

CARL EDWARDS (CNE2)

Outline

•Introduction and Motivation

•Background

•Building Blocks

•Models

• Discrete Autoregressive Flows

• Discrete Bipartite Flows

•Training

•Results

•Takeaway

Introduction and Motivation

▪Normalizing flows have shown strong results in modeling continuous domains, but they haven’t

been explored in the discrete setting.

▪Discrete flows don’t require determinant-Jacobian computations

▪This can be used for tasks such as language modeling, addition, and Potts models

▪Key Idea: Can flows be used on discrete distributions?

▪Paper introduces two approaches:

▪ Discrete autoregressive flows

▪ Discrete bipartite flows

Background

•There have not been advances like normalizing flows for discrete distributions

• Work focuses either on latent-variable models (e.g. “Generating sentences from a continuous space”)

• Or models assume a fixed ordering of the data (e.g. the Transformer, RNNs)

•There is older work using bidirectional models such as Markov random fields, but they require

either approximate inference or approximate sampling

• Bidirectional models such as BERT have shown increased performance over single directions.

•There has been some work on non-autoregressive discrete models, but they do not maintain an

exact density like this work does.

Background – Normalizing Flows

•There are many normalizing flow methods for continuous distributions.

• They require a transformation that is invertible and has a computationally efficient Jacobian determinant

calculation

• They can generally be divided into two categories:

• Autoregressive flows

• Bipartite flows

Background – Autoregressive
Flows

•Models that are both autoregressive and flows.

•Examples are Inverse Autoregressive Flows and Masked Autoregressive flows

Given a base distribution in D dimensions

Transform x into y:

To compute the inverse: (note this can be parallelized)

Background – Bipartite Flows

•Uses a “bipartite” factorization where some variables are constant and the others are

transformed

•Both forward and inverse computations are fast, but they are less flexible than autoregressive

flows

•An example is RealNVP

Building Blocks

Discrete Change of Variables

Suppose that x is a discrete random variable and

Then the change of variables is

• Note: f -1 is the preimage of f

If f is invertible, this simplifies:

Compare this to the continuous version:

This makes intuitive sense: discrete distributions have no volume, so there is no need to correct for the

change in volume (which is what the determinant does)

Discrete Flow Transformations -
XOR

•We will first consider the binary case: XOR

•Given a binary vector x

•This has inverse:

Discrete Flow Transformations –
XOR Example

•Given D = 2 with p(x) defined:

•We cannot model the distribution as p(x1)p(x2) (which would be an independence assumption)

•Instead set the following flow: p(x1) = [0.7, 0.3], p(x2) = [0.9, 0.1]

•Why is p(x2) that? Call p(x2) = p(y2). Then p(y2=0) = p(x1= x2) = 0.63 + 0.27 = 0.9

•Essentially the flow “relabels” the data so that it is better modelled by the base

Discrete Flow Transformations –
Extension to Categorical Data
•To extend the XOR to categorical data, the authors introduce the “Modulo location-scale

transform”, where a modulo integer space is used

•Given a D-dimensional vector x where each element has K values,

•μd and σd are autoregressive functions of y. Note that σ cannot be zero (just 1,…,K-1) just like in

continuous case

•To be invertible, σ and K must be coprime (only sharing divisor 1). There are three easy fixes:

• Set K to be prime

• Mask noninvertible (non-coprime to K) values of σ

• Set σ = 1

•Note that when K = 2 and σ = 1 is XOR

Discrete Flow Transformations –
Modulo location-scale transform Example

•This example shows (a) the data modeled (which is discretized into bins), (b) an attempt to

factorize the assumed base distribution of the data, and (c) a single discrete flow

•Even just a single layer of flow is much better at modeling the data.

Discrete
Autoregressive
Flows

•Can stack multiple levels of

autoregression

•Solid lines show receptive

fields of the red block

•Dashed lines show other

connections

Discrete
Bipartite
Flows

•Receptive field of 2 is only x1:3

•Blue and green are each a set

of transformed variables

•White blocks are not

transformed

2

Training

•Like other normalizing flows, directly optimize the maximum likelihood

•The maximum likelihood of a discrete model is (discrete change of

variables)

• The parameters of f and of the base distribution p can be optimized

• Note: notation for p is often less clear than earlier papers

Training – Gradient Tricks

•μ and σ both produce discrete values. To train f, they must be backpropagated through.

• Address this issue using the straight-through gradient estimator

• Essentially, on the backward pass of the network pretend the discrete function is the identity function and

just pass the gradients through.

•To compute μ and σ , produce K logits for each. The value is chosen using argmax:

•This isn’t differentiable! To fix this, we can instead use the following differentiable function:

•This approaches an argmax as 𝜏 approaches 0. Experimentally, they use 𝜏 = 0.1

Results

Experimental Settings

•For discrete autoregressive flows, use an autoregressive Categorical base distribution

•For discrete bipartite flows, use a factorized Categorial distribution

•Use σ = 1 for all experiments except character-level language modeling

Full-rank Discrete Distribution

•How well can the discrete flows fit full-rank discrete distributions?

•Sample true probabilities for K classes in D dimensions using Dirichlet distribution with α = 1

•Transformer with 64 hidden units is used as a base model and for flow parameters

•Compute “nats” for negative log likelihood, indicating natural logarithm is used

Negative Log Likelihood

Addition

•Base-10 addition using D=10 and D=20 digits.

•Addition is a right-to-left task, which disadvantages the base autoregressive model.

•Use an LSTM with 256 hidden units for D=10 and 512 for D=20 as a base.

•For D=10, the autoregressive base (left to right) achieves 4.0 nats (negative log likelihood). The

autoregressive flow achieves 0.2 nats.

•A bipartite model achieves 4.0, 3.17, and 2.58 nats for 1, 2, and 4 flows.

•For D=20, the autoregressive base achieves 12.2 nats (negative log likelihood). The autoregressive flow

achieves 4.8 nats.

•A bipartite model achieves 12.2, 8.8, 7.6, and 5.08 nats for 1, 2, 4, and 8 flows.

Potts Model

•Can the discrete flows be applied
to models with untractable
sampling and likelihood?

•Sample from the Potts model,
which is a 2D Markov random
field

•Samples are a D x D matrix,
where the coupling between
elements is J

•Data sampled using 500 steps of
Metropolis-Hastings (MCMC)

Example of Potts Model [2]. β = J

Potts Model
Results

Potts Model
Samples

•3 states, 4x4, J = 0.1

•Samples are indistinguishable from ground truth

Character-Level Penn Treebank

•Goal is to model the Penn treebank, which has K = 51 characters.

•Data is split into sentences. In this work, sequence length is restricted to 288 (which is not

explained)

•Compare to only other nonautoregressive language model [3], a VAE-based generative model

which learns a normalizing flow in the latent space

Character level text8

•A larger text dataset (100M characters as opposed to 5M) which is intended for testing text

compression algorithms

•Bipartite flows can generate much faster than autoregressive models

Text8 – All paper
results from [4]

Takeaway

•Motivation: Normalizing flows generally are only used for continuous distributions

•This can be extended to discrete distributions using a different change of variables formulation

(with a Jacobian determinant!)

•Discrete autoregressive flows enable bidirectionality

•Discrete bipartite flows enable quick generation

•Future work:

• Can inverse autoregressive flows be made discrete?

• How to scale to many more classes? The straight-through estimator might not work on word sequences

with 1000s of vocabulary tokens

• Can other invertible discrete cryptographic functions be applied?

References

•[1] Tran, Dustin, et al. "Discrete flows: Invertible generative models of discrete

data." Advances in Neural Information Processing Systems 32 (2019): 14719-14728.

•[2] ACM Youtube: “Session 6B - Efficient sampling and counting algorithms for the Potts

model”

•[3] Ziegler, Zachary, and Alexander Rush. "Latent normalizing flows for discrete

sequences." International Conference on Machine Learning. PMLR, 2019.

•[4] https://paperswithcode.com/sota/language-modelling-on-text8

