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Introduction and Motivation

▪Normalizing flows have shown strong results in modeling continuous domains, but they haven’t 

been explored in the discrete setting. 

▪Discrete flows don’t require determinant-Jacobian computations

▪This can be used for tasks such as language modeling, addition, and Potts models

▪Key Idea: Can flows be used on discrete distributions?

▪Paper introduces two approaches:

▪ Discrete autoregressive flows

▪ Discrete bipartite flows



Background

•There have not been advances like normalizing flows for discrete distributions

• Work focuses either on latent-variable models (e.g. “Generating sentences from a continuous space”)

• Or models assume a fixed ordering of the data (e.g. the Transformer, RNNs)

•There is older work using bidirectional models such as Markov random fields, but they require 

either approximate inference or approximate sampling

• Bidirectional models such as BERT have shown increased performance over single directions.

•There has been some work on non-autoregressive discrete models, but they do not maintain an 

exact density like this work does.



Background – Normalizing Flows

•There are many normalizing flow methods for continuous distributions.

• They require a transformation that is invertible and has a computationally efficient Jacobian determinant 

calculation

• They can generally be divided into two categories:

• Autoregressive flows

• Bipartite flows



Background – Autoregressive 
Flows

•Models that are both autoregressive and flows.

•Examples are Inverse Autoregressive Flows and Masked Autoregressive flows

Given a base distribution in D dimensions

Transform x into y:

To compute the inverse: (note this can be parallelized)



Background – Bipartite Flows

•Uses a “bipartite” factorization where some variables are constant and the others are 

transformed

•Both forward and inverse computations are fast, but they are less flexible than autoregressive 

flows

•An example is RealNVP



Building Blocks



Discrete Change of Variables

Suppose that x is a discrete random variable and 

Then the change of variables is 

• Note: f -1 is the preimage of f

If f is invertible, this simplifies: 

Compare this to the continuous version:

This makes intuitive sense: discrete distributions have no volume, so there is no need to correct for the 

change in volume (which is what the determinant does)



Discrete Flow Transformations -
XOR

•We will first consider the binary case: XOR

•Given a binary vector x

•This has inverse: 



Discrete Flow Transformations –
XOR Example

•Given D = 2 with p(x) defined:

•We cannot model the distribution as p(x1)p(x2) (which would be an independence assumption)

•Instead set the following flow: p(x1) = [0.7, 0.3], p(x2) = [0.9, 0.1]

•Why is p(x2) that? Call p(x2) = p(y2). Then p(y2=0) = p(x1= x2) = 0.63 + 0.27 = 0.9 

•Essentially the flow “relabels” the data so that it is better modelled by the base



Discrete Flow Transformations –
Extension to Categorical Data
•To extend the XOR to categorical data, the authors introduce the “Modulo location-scale 

transform”, where a modulo integer space is used

•Given a D-dimensional vector x where each element has K values,

•μd and σd are autoregressive functions of y. Note that σ cannot be zero (just 1,…,K-1) just like in 

continuous case

•To be invertible, σ and K must be coprime (only sharing divisor 1). There are three easy fixes:

• Set K to be prime

• Mask noninvertible (non-coprime to K) values of σ

• Set σ = 1

•Note that when K = 2 and σ = 1 is XOR



Discrete Flow Transformations –
Modulo location-scale transform Example

•This example shows (a) the data modeled (which is discretized into bins), (b) an attempt to 

factorize the assumed base distribution of the data, and (c) a single discrete flow

•Even just a single layer of flow is much better at modeling the data.



Discrete 
Autoregressive 
Flows

•Can stack multiple levels of 

autoregression

•Solid lines show receptive 

fields of the red block

•Dashed lines show other 

connections



Discrete 
Bipartite 
Flows

•Receptive field of 2 is only x1:3

•Blue and green are each a set 

of transformed variables

•White blocks are not 

transformed
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Training

•Like other normalizing flows, directly optimize the maximum likelihood

•The maximum likelihood of a discrete model is (discrete change of 

variables) 

• The parameters of f and of the base distribution p can be optimized

• Note: notation for p is often less clear than earlier papers



Training – Gradient Tricks

•μ and σ both produce discrete values. To train f, they must be backpropagated through.

• Address this issue using the straight-through gradient estimator

• Essentially, on the backward pass of the network pretend the discrete function is the identity function and 

just pass the gradients through.

•To compute μ and σ , produce K logits for each. The value is chosen using argmax:

•This isn’t differentiable! To fix this, we can instead use the following differentiable function:

•This approaches an argmax as 𝜏 approaches 0. Experimentally, they use 𝜏 = 0.1



Results



Experimental Settings

•For discrete autoregressive flows, use an autoregressive Categorical base distribution

•For discrete bipartite flows, use a factorized Categorial distribution

•Use σ = 1 for all experiments except character-level language modeling



Full-rank Discrete Distribution 

•How well can the discrete flows fit full-rank discrete distributions?

•Sample true probabilities for K classes in D dimensions using Dirichlet distribution with α = 1

•Transformer with 64 hidden units is used as a base model and for flow parameters

•Compute “nats” for negative log likelihood, indicating natural logarithm is used

Negative Log Likelihood



Addition

•Base-10 addition using D=10 and D=20 digits.

•Addition is a right-to-left task, which disadvantages the base autoregressive model.

•Use an LSTM with 256 hidden units for D=10 and 512 for D=20 as a base.

•For D=10, the autoregressive base (left to right) achieves 4.0 nats (negative log likelihood). The 

autoregressive flow achieves 0.2 nats. 

•A bipartite model achieves 4.0, 3.17, and 2.58 nats for 1, 2, and 4 flows.

•For D=20, the autoregressive base achieves 12.2 nats (negative log likelihood). The autoregressive flow 

achieves 4.8 nats. 

•A bipartite model achieves 12.2, 8.8, 7.6, and 5.08 nats for 1, 2, 4, and 8 flows.



Potts Model

•Can the discrete flows be applied 
to models with untractable
sampling and likelihood?

•Sample from the Potts model, 
which is a 2D Markov random 
field

•Samples are a D x D matrix, 
where the coupling between 
elements is J

•Data sampled using 500 steps of 
Metropolis-Hastings (MCMC)

Example of Potts Model [2]. β = J



Potts Model 
Results



Potts Model 
Samples

•3 states, 4x4, J = 0.1

•Samples are indistinguishable from ground truth



Character-Level Penn Treebank

•Goal is to model the Penn treebank, which has K = 51 characters.

•Data is split into sentences. In this work, sequence length is restricted to 288 (which is not 

explained)

•Compare to only other nonautoregressive language model [3], a VAE-based generative model 

which learns a normalizing flow in the latent space



Character level text8

•A larger text dataset (100M characters as opposed to 5M) which is intended for testing text 

compression algorithms 

•Bipartite flows can generate much faster than autoregressive models



Text8 – All paper 
results from [4]



Takeaway

•Motivation: Normalizing flows generally are only used for continuous distributions

•This can be extended to discrete distributions using a different change of variables formulation 

(with a Jacobian determinant!)

•Discrete autoregressive flows enable bidirectionality

•Discrete bipartite flows enable quick generation

•Future work:

• Can inverse autoregressive flows be made discrete?

• How to scale to many more classes? The straight-through estimator might not work on word sequences 

with 1000s of vocabulary tokens

• Can other invertible discrete cryptographic functions be applied?
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