

Discrete Flows: Invertible Generative Models of Discrete Data

CARL EDWARDS (CNE2)

Outline

- Introduction and Motivation
- Background
- •Building Blocks
- Models
 - Discrete Autoregressive Flows
 - Discrete Bipartite Flows
- Training
- Results
- Takeaway

Introduction and Motivation

Normalizing flows have shown strong results in modeling continuous domains, but they haven't been explored in the discrete setting.

- Discrete flows don't require determinant-Jacobian computations
- This can be used for tasks such as language modeling, addition, and Potts models
- •Key Idea: Can flows be used on discrete distributions?
- Paper introduces two approaches:
 - Discrete autoregressive flows
 - Discrete bipartite flows

Background

•There have not been advances like normalizing flows for discrete distributions

- Work focuses either on latent-variable models (e.g. "Generating sentences from a continuous space")
- Or models assume a fixed ordering of the data (e.g. the Transformer, RNNs)
- •There is older work using bidirectional models such as Markov random fields, but they require either approximate inference or approximate sampling
 - Bidirectional models such as BERT have shown increased performance over single directions.
- •There has been some work on non-autoregressive discrete models, but they do not maintain an exact density like this work does.

Background – Normalizing Flows

•There are many normalizing flow methods for continuous distributions.

- They require a transformation that is invertible and has a computationally efficient Jacobian determinant calculation
- They can generally be divided into two categories:
 - Autoregressive flows
 - Bipartite flows

Background – Autoregressive Flows

•Models that are both autoregressive and flows.

•Examples are Inverse Autoregressive Flows and Masked Autoregressive flows

Given a base distribution $\mathbf{x} \sim p(\mathbf{x})$ in D dimensions

Transform x into y:

 $\boldsymbol{\mu}_d, \boldsymbol{\sigma}_d = f(\mathbf{y}_1, \dots, \mathbf{y}_{d-1})$

 $\mathbf{y}_d = \boldsymbol{\mu}_d + \boldsymbol{\sigma}_d \cdot \mathbf{x}_d \qquad \text{for } d \text{ in } 1, \dots, D.$

To compute the inverse: (note this can be parallelized)

$$\mathbf{x}_d = \boldsymbol{\sigma}_d^{-1} (\mathbf{y}_d - \boldsymbol{\mu}_d) \qquad \text{for } d \text{ in } 1, \dots, D.$$

Background – Bipartite Flows

- •Uses a "bipartite" factorization where some variables are constant and the others are transformed
- •Both forward and inverse computations are fast, but they are less flexible than autoregressive flows
- •An example is RealNVP

$$\mathbf{y}_{1:d} = \mathbf{x}_{1:d}$$
$$\mathbf{y}_{d+1:D} = \boldsymbol{\mu} + \boldsymbol{\sigma} \cdot \mathbf{x}_{(d+1):D},$$

Building Blocks

Discrete Change of Variables

Suppose that *x* is a discrete random variable and $\mathbf{y} = f(\mathbf{x})$

Then the change of variables is $p(\mathbf{y} = y) = \sum_{x \in f^{-1}(y)} p(\mathbf{x} = x),$ • Note: f^{-1} is the preimage of f

If *f* is invertible, this simplifies:

$$p(\mathbf{y} = y) = p(\mathbf{x} = f^{-1}(y))$$

Compare this to the continuous version:

$$p(\mathbf{y}) = p(f^{-1}(\mathbf{y})) \det \left| \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} \mathbf{y}} \right|$$

This makes intuitive sense: discrete distributions have no volume, so there is no need to correct for the change in volume (which is what the determinant does)

Discrete Flow Transformations - XOR

•We will first consider the binary case: XOR

•Given a binary vector *x*

$$\mathbf{y}_d = \boldsymbol{\mu}_d \oplus \mathbf{x}_d, \qquad \qquad \text{for } d \text{ in } 1, \dots, D,$$

•This has inverse:

$$\mathbf{x}_d = oldsymbol{\mu}_d \oplus \mathbf{y}_d$$

Discrete Flow Transformations – XOR Example

•Given $D = 2$ with $p(x)$ defined:		$\mathbf{x}_2 = 0$	$\mathbf{x}_2 = 1$
	$\mathbf{x}_1 = 0$ $\mathbf{x}_1 = 1$	0.63	0.07
	$\mathbf{x}_1 = 1$	0.05	0.27

•We cannot model the distribution as $p(x_1)p(x_2)$ (which would be an independence assumption)

•Instead set the following flow: $f(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1, \mathbf{x}_1 \oplus \mathbf{x}_2)$ $p(\mathbf{x}_1) = [0.7, 0.3], p(\mathbf{x}_2) = [0.9, 0.1]$

•Why is $p(x_2)$ that? Call $p(x_2) = p(y_2)$. Then $p(y_2=0) = p(x_1 = x_2) = 0.63 + 0.27 = 0.9$

•Essentially the flow "relabels" the data so that it is better modelled by the base

Discrete Flow Transformations – Extension to Categorical Data

•To extend the XOR to categorical data, the authors introduce the "Modulo location-scale transform", where a modulo integer space is used

•Given a D-dimensional vector x where each element has K values,

 $\mathbf{y}_d = (\boldsymbol{\mu}_d + \boldsymbol{\sigma}_d \cdot \mathbf{x}_d) \mod K$

- • μ_d and σ_d are autoregressive functions of y. Note that σ cannot be zero (just 1,...,K-1) just like in continuous case
- •To be invertible, σ and K must be coprime (only sharing divisor 1). There are three easy fixes:
 - Set *K* to be prime
 - Mask noninvertible (non-coprime to *K*) values of σ
 - Set σ = 1
- •Note that when K = 2 and $\sigma = 1$ is XOR

Discrete Flow Transformations – Modulo location-scale transform Example

•This example shows (a) the data modeled (which is discretized into bins), (b) an attempt to factorize the assumed base distribution of the data, and (c) a single discrete flow

•Even just a single layer of flow is much better at modeling the data.

Discrete Autoregressive Flows

Can stack multiple levels of autoregression

Solid lines show receptive fields of the red block

Dashed lines show other connections

Discrete Bipartite Flows

Receptive field of 2 is only $x_{1:3}$

Blue and green are each a set of transformed variables

White blocks are not transformed

Training

•Like other normalizing flows, directly optimize the maximum likelihood

- •The maximum likelihood of a discrete model is $\log p(\mathbf{y}) = \log p(f^{-1}(\mathbf{y}))$; (discrete change of variables)
 - The parameters of *f* and of the base distribution *p* can be optimized
 - Note: notation for *p* is often less clear than earlier papers

Training – Gradient Tricks

• μ and σ both produce discrete values. To train *f*, they must be backpropagated through.

- Address this issue using the straight-through gradient estimator
- Essentially, on the backward pass of the network pretend the discrete function is the identity function and just pass the gradients through.

•To compute μ and σ , produce K logits for each. The value is chosen using argmax:

 $\boldsymbol{\mu}_d = \text{one_hot}(\operatorname{argmax}(\theta_d))$

•This isn't differentiable! To fix this, we can instead use the following differentiable function:

$$\frac{d\boldsymbol{\mu}_d}{d\theta_d} \approx \frac{d}{d\theta_d} \operatorname{softmax}\left(\frac{\theta_d}{\tau}\right)$$

•This approaches an argmax as τ approaches 0. Experimentally, they use $\tau = 0.1$

Results

Experimental Settings

•For discrete autoregressive flows, use an autoregressive Categorical base distribution

- For discrete bipartite flows, use a factorized Categorial distribution
- •Use $\sigma = 1$ for all experiments except character-level language modeling

Full-rank Discrete Distribution

•How well can the discrete flows fit full-rank discrete distributions?

- •Sample true probabilities for K classes in D dimensions using Dirichlet distribution with $\alpha = 1$
- •Transformer with 64 hidden units is used as a base model and for flow parameters

•Compute "nats" for negative log likelihood, indicating natural logarithm is used

	Autoregressive Base	Autoregressive Flow	Factorized Base	Bipartite Flow
D = 2, K = 2	0.9	0.9	1.3	1.0
D = 5, K = 5	7.7	7.6	8.0	7.9
D = 5, K = 10	10.7	10.3	11.5	10.7
D = 10, K = 5	15.9	15.7	16.6	16.0

Negative Log Likelihood

Addition

•Base-10 addition using D=10 and D=20 digits.

- •Addition is a right-to-left task, which disadvantages the base autoregressive model.
- •Use an LSTM with 256 hidden units for D=10 and 512 for D=20 as a base.
- •For *D*=10, the autoregressive base (left to right) achieves **4.0 nats** (negative log likelihood). The autoregressive flow achieves **0.2 nats**.
- •A bipartite model achieves 4.0, 3.17, and 2.58 nats for 1, 2, and 4 flows.
- •For *D*=20, the autoregressive base achieves **12.2 nats** (negative log likelihood). The autoregressive flow achieves **4.8 nats**.
- •A bipartite model achieves 12.2, 8.8, 7.6, and 5.08 nats for 1, 2, 4, and 8 flows.

Potts Model

- Can the discrete flows be applied to models with untractable sampling and likelihood?
- Sample from the Potts model, which is a 2D Markov random field
- •Samples are a *D* x *D* matrix, where the coupling between elements is *J*
- Data sampled using 500 steps of Metropolis-Hastings (MCMC)

High temperature (β small)

Low temperature (β large)

Example of Potts Model [2]. $\beta = J$

Potts Model Results

	AR Base	AR Flow
number of states = 3		
D = 9, J = 0.1	9.27	9.124
D = 9, J = 0.5	3.79	3.79
D = 16, J = 0.1	16.66	11.23
D = 16, J = 0.5	6.30	5.62
number of states = 4		
D = 9, J = 0.1	11.64	10.45
D = 9, J = 0.5	5.87	5.56
number of states = 5		
D = 9, J = 0.1	13.58	10.25
D = 9, J = 0.5	7.94	7.07

Potts Model Samples

•3 states, 4x4, *J* = 0.1

•Samples are indistinguishable from ground truth

Character-Level Penn Treebank

•Goal is to model the Penn treebank, which has K = 51 characters.

•Data is split into sentences. In this work, sequence length is restricted to 288 (which is not explained)

•Compare to only other nonautoregressive language model [3], a VAE-based generative model which learns a normalizing flow in the latent space

	Test NLL (bpc)	Generation
3-layer LSTM (Merity et al., 2018)	1.18 ³	3.8 min
Ziegler and Rush (2019) (AF/SCF)	1.46	-
Ziegler and Rush (2019) (IAF/SCF)	1.63	-
Bipartite flow	1.38	0.17 sec

Character level text8

•A larger text dataset (100M characters as opposed to 5M) which is intended for testing text compression algorithms

•Bipartite flows can generate much faster than autoregressive models

Takeaway

•Motivation: Normalizing flows generally are only used for continuous distributions

•This can be extended to discrete distributions using a different change of variables formulation (with a Jacobian determinant!)

•Discrete autoregressive flows enable bidirectionality

•Discrete bipartite flows enable quick generation

•Future work:

- Can inverse autoregressive flows be made discrete?
- How to scale to many more classes? The straight-through estimator might not work on word sequences with 1000s of vocabulary tokens
- Can other invertible discrete cryptographic functions be applied?

References

- •[1] Tran, Dustin, et al. "Discrete flows: Invertible generative models of discrete data." *Advances in Neural Information Processing Systems* 32 (2019): 14719-14728.
- •[2] ACM Youtube: "Session 6B Efficient sampling and counting algorithms for the Potts model"
- •[3] Ziegler, Zachary, and Alexander Rush. "Latent normalizing flows for discrete sequences." *International Conference on Machine Learning*. PMLR, 2019.
- •[4] https://paperswithcode.com/sota/language-modelling-on-text8