NF 4: Discrete, Mixed Flows CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

October 12, 2021

Instructor: Arindam Banerjee Discrete, Mixed Flows

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Motivation and Background

- Data is on discrete domain, models are continuous
- Need for de-quantization to move back and forth
- Continuous change of variables

$$p_X(x) = p_Z(z) \left| \det \frac{dz}{dx} \right| , \quad z = f(x)$$

- Variety of flows have been developed
 - Coupling flows: Input $x = [x_a, x_b]$, deep nets $s(\cdot), t(\cdot)$

$$\mathsf{z} = [\mathsf{z}_a, \mathsf{z}_b] = f(\mathsf{x}) = [\mathsf{x}_a, \mathsf{x}_b \odot s(\mathsf{x}_a) + t(\mathsf{x}_a)]$$

• Factor-out layers:

$$\begin{aligned} & [z_1, y_1] = f_1(x) , \quad z_2 = f_2(y_1) , \quad z = [z_1, z_2] \\ & p(x) = p(z_2) \left| \det \frac{\partial d_2(y_1)}{\partial y_1} \right| p(z_1|y_1) \left| \det \frac{\partial f_1(x)}{\partial x} \right| \end{aligned}$$

Lossless Compression, Entropy Encoding

- $\bullet\,$ True data distribution $x\sim \mathcal{D}$
 - Encode x with $-\log D(x)$ bits
 - Expected code length is entropy $H(\mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}}[-\log \mathcal{D}(x)]$
- Model using distribution $p_X(x)$
 - x encoded as c(x), with $|c(x)| \approx -\log p_X(x)$ bits
- Expected code length

 $\mathbb{E}_{x \sim \mathcal{D}}[|c(x)|] \approx \mathbb{E}_{x \sim \mathcal{D}}[-\log p_X(x)] \geq \mathcal{H}(\mathcal{D})$

- Map symbols to bits, use entropy encoders
- Compression: Map x to z, encode using $p_Z(z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

- IDFs learn probability mass functions on \mathbb{Z}^d , over integer vectors
- Prior p_Z on \mathbb{Z}^d , bijective map $f : \mathbb{Z}^d \mapsto \mathbb{Z}^d$ $p_X(x) = p_Z(z) , \quad z = f(x)$
- Stack multiple IDF layers $\{f_l\}_{l=1}^L$, ensure composition is closed
- Integer discrete coupling: Additive coupling with rounding

 $z_a = x_a$, $z_b = x_b + \lfloor t(x_a) \rfloor$

- Backprop through rounding: Ignore rounding, i.e., $\nabla_x \lfloor x \rceil = 1$
 - Incurs bias in gradient computation

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

- Logistic($z|\mu, s$) has CDF sigmoid on $(x \mu)/s$, i.e., $\sigma((x \mu)/s)$
- Prior p_Z is factored discreteized logistic distribution

 $DLogistic(z|\mu, s) = \int_{z-1/2}^{z+1/2} Logistic(z'|\mu, s)dz'$ $= \sigma\left(\frac{z+1/2-\mu}{s}\right) - \sigma\left(\frac{z-1/2-\mu}{s}\right)$

- For stacked layers, μ, s are deep nets
- Factor out layers $[z_I, y_I]$, z_I uses $\mu(y_I), s(y_I)$
- Beyond unimodality: Use a mixture model

$$p(z|\mu,s,\pi) = \sum_{k} \pi_k \cdot p(z|\mu_k,s_k)$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Architecture, Gradient Bias

Figure 4: Example of a 2-level flow architecture. The squeeze layer reduces the spatial dimensions by two, and increases the number of channels by four. A single integer flow layer consists of a channel permutation and an integer discrete coupling layer. Each level consists of D flow layers.

Figure 5: Performance of flow models for different depths (i.e. coupling layers per level). The networks in the coupling layers contain 3 convolution layers. Although performance increases with depth for continuous flows, this is not the case for discrete flows.

(ロ) (同) (目) (日) (日) (日)

Table 1: Compression performance of IDFs on CIFAR10, ImageNet32 and ImageNet64 in bits per dimension, and compression rate (shown in parentheses). The Bit-Swap results are retrieved from [23]. The column marked IDF[†] denotes an IDF trained on ImageNet32 and evaluated on the other datasets.

Dataset	IDF	IDF^{\dagger}	Bit-Swap	FLIF [35]	PNG	JPEG2000
CIFAR10	3.34 (2.40×)	3.60 (2.22×)	3.82 (2.09×)	4.37 (1.83×)	5.89 (1.36×)	5.20 (1.54×)
ImageNet32	4.18 (1.91×)	4.18 (1.91×)	4.50 (1.78×)	5.09 (1.57×)	6.42 (1.25×)	6.48 (1.23×)
ImageNet64	3.90 (2.05×)	3.94 (2.03 ×)	-	4.55 (1.76×)	5.74 (1.39×)	5.10 (1.56×)

(日) (四) (王) (王) (王)

Results: Image Compression, Histology

Figure 6: Left: An example from the ER + BCa histology dataset. Right: 625 IDF samples of size 80×80 px.

Table 2: Compression performance on the ER + BCa histology dataset in bits per dimension and compression rate. JP2-WSI is a specialized format optimized for virtual microscopy.

Dataset	IDF	JP2-WSI	FLIF [35]	JPEG2000
Histology	2.42 (3.19 ×)	$3.04(2.63 \times)$	4.00 (2.00×)	4.26 (1.88×)

イロト イポト イヨト イヨト

Results: Progressive Image Rendering

Figure 8: Progressive display of the data stream for images taken from the test set of ImageNet64. From top to bottom row, each image uses approximately 15%, 30%, 60% and 100% of the stream, where the remaining dimensions are sampled. Best viewed electronically.

イロン イボン イヨン イヨン

Table 3: Generative modeling performance of IDFs and comparable flow-based methods in bits per dimension (negative log₂-likelihood).

Dataset	IDF	Continuous	RealNVP	Glow	Flow++
CIFAR10	3.32	3.31	3.49	3.35	3.08
ImageNet32	4.15	4.13	4.28	4.09	3.86
ImageNet64	3.90	3.85	3.98	3.81	3.69

Surjections for Flows

Figure 1: Classes of SurVAE transformations $Z \to X$ and their inverses $X \to Z$. Solid lines indicate deterministic transformations, while dashed lines indicate stochastic transformations.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Unifying Framework: VAEs, Flows, etc.

- Surjective maps:
 - Generative: $\forall x \in \mathcal{X}, \exists z \in \mathcal{Z}, x = f(z)$
 - Inference: $\forall z \in \mathcal{Z}, \exists x \in \mathcal{X}, z = g(x)$
 - Inverse map is stochastic with support on preimage
- For bijections, e.g., flows $\log p(x) = \log p(z) + \log |\det J|, \quad z = f^{-1}(x)$
- For stochastic transformations, e.g., VAEs $\log p(x) = \mathbb{E}_{q(z|x)}[\log p(x|z)] - KL(q(z|x)||p(z)) + KL(q(z|x))|p(z|x))$
- General perspective

 $\log p(\mathbf{x}) \approx \log p(\mathbf{z}) + \mathcal{V}(\mathbf{x}, \mathbf{z}) + \mathcal{E}(\mathbf{x}, \mathbf{z}) \ , \quad \mathbf{z} \sim q(\mathbf{z} | \mathbf{x})$

- $\mathcal{V}(x, z)$: Likelihood contribution
- $\mathcal{E}(x, z)$: Bound looseness

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

Instructor: Arindam Banerjee Discrete, Mixed Flows

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

Table 1: Composable building blocks of SurVAE Flows.

Transformation	Forward $x \leftarrow z$	$\begin{matrix} \textbf{Inverse} \\ z \leftarrow x \end{matrix}$	Likelihood Contribution $\mathcal{V}({m x},{m z})$	Bound Gap $\mathcal{E}(\boldsymbol{x}, \boldsymbol{z})$
Bijective	$\boldsymbol{x} = f(\boldsymbol{z})$	$oldsymbol{z} = f^{-1}(oldsymbol{x})$	$\log \det abla_{m{x}} m{z} $	0
Stochastic	$egin{array}{c} oldsymbol{x} \sim p(oldsymbol{x} oldsymbol{z}) \end{array}$	$\boldsymbol{z} \sim q(\boldsymbol{z} \boldsymbol{x})$	$\log rac{p(oldsymbol{x} oldsymbol{z})}{q(oldsymbol{z} oldsymbol{x})}$	$\log \frac{q(\boldsymbol{z} \boldsymbol{x})}{p(\boldsymbol{z} \boldsymbol{x})}$
Surjective (Gen.)	$oldsymbol{x} = f(oldsymbol{z})$	$\boldsymbol{z} \sim q(\boldsymbol{z} \boldsymbol{x})$	$\log \frac{p(\boldsymbol{x} \boldsymbol{z})}{q(\boldsymbol{z} \boldsymbol{x})} \text{ as } \frac{p(\boldsymbol{x} \boldsymbol{z}) \rightarrow}{\delta(\boldsymbol{x} - f(\boldsymbol{z}))}$	$\log rac{q(oldsymbol{z} oldsymbol{x})}{p(oldsymbol{z} oldsymbol{x})}$
Surjective (Inf.)	$\label{eq:constraint} \boldsymbol{x} \sim p(\boldsymbol{x} \boldsymbol{z})$	$oldsymbol{z} = f^{-1}(oldsymbol{x})$	$\log \frac{p(\boldsymbol{x} \boldsymbol{z})}{q(\boldsymbol{z} \boldsymbol{x})} \text{ as } \frac{q(\boldsymbol{z} \boldsymbol{x}) \rightarrow}{\delta(\boldsymbol{z} - f^{-1}(\boldsymbol{x}))}$	0

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Table 2: Summary of selected inference surjection layers. See App. C for more SurVAE layers.

Surjection	Forward	Inverse	$\mathcal{V}(oldsymbol{x},oldsymbol{z})$
Abs	$\begin{vmatrix} s \sim \operatorname{Bern}(\pi(z)) \\ x = s \cdot z, \ s \in \{-1, 1\} \end{vmatrix}$	$\begin{vmatrix} s = \operatorname{sign} x \\ z = x \end{vmatrix}$	$\log p(s z)$
Max	$\begin{vmatrix} k \sim \operatorname{Cat}(\boldsymbol{\pi}(z)) \\ x_k = z, \boldsymbol{x}_{-k} \sim p(\boldsymbol{x}_{-k} z,k) \end{vmatrix}$	$\begin{vmatrix} k = \arg \max \boldsymbol{x} \\ z = \max \boldsymbol{x} \end{vmatrix}$	$\log p(k z) + \log p(\boldsymbol{x}_{-k} z,k)$
Sort	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{c} \mathcal{I} = \operatorname{argsort} oldsymbol{x} \ oldsymbol{z} = \operatorname{sort} oldsymbol{x} \ oldsymbol{z} = \operatorname{sort} oldsymbol{x} \end{array}$	$\log p(\mathcal{I} \boldsymbol{z})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Model	SurVAE Flow architecture
Probabilistic PCA (Tipping and Bishop, 1999) VAE (Kingma and Welling, 2014; Rezende et al., 2014) Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)	$\mathcal{Z} \xrightarrow{\text{stochastic}} \mathcal{X}$
Dequantization (Uria et al., 2013; Ho et al., 2019)	$\mathcal{Z} \xrightarrow{round} \mathcal{X}$
ANFs, VFlow (Huang et al., 2020; Chen et al., 2020)	$\left \begin{array}{c} \mathcal{X} \xrightarrow{augment} \mathcal{X} imes \mathcal{E} \xrightarrow{bijection} \mathcal{Z} \end{array} \right.$
Multi-scale Architectures (Dinh et al., 2017)	$\Big \hspace{0.1cm} \mathcal{X} \xrightarrow{\text{bijection}} \mathcal{Y} \times \mathcal{E} \xrightarrow{\text{slice}} \mathcal{Y} \xrightarrow{\text{bijection}} \mathcal{Z}$
CIFs, Discretely Indexed Flows, DeepGMMs (Cornish et al., 2019; Duan, 2019; Oord and Dambre, 2015)	$\mathcal{X} \xrightarrow{augment} \mathcal{X} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z} \times \mathcal{E} \xrightarrow{slice} \mathcal{Z}$
RAD Flows (Dinh et al., 2019)	$\Big \hspace{0.1cm} \mathcal{X} \xrightarrow{\text{partition}} \mathcal{X}_{\mathcal{E}} \times \mathcal{E} \xrightarrow{\text{bijection}} \mathcal{Z} \times \mathcal{E} \xrightarrow{\text{slice}} \mathcal{Z}$

Table 3: SurVAE Flows as a unifying framework.

Instructor: Arindam Banerjee Discrete, Mixed Flows

<ロ> (四) (四) (三) (三) (三) (三)

Results: Synthetic Data

Figure 4: Comparison of flows with and without absolute value surjections modelling antisymmetric (top row) and symmetric (3 bottom rows) 2-dimensional distributions.

Figure 5: Point cloud samples from permutation-invariant SurVAE flows trained on SpatialMNIST.

Model	CIFAR-10	ImageNet32	ImageNet64
RealNVP (Dinh et al., 2017)	3.49	4.28	-
Glow (Kingma and Dhariwal, 2018)	3.35	4.09	3.81
Flow++ (Ho et al., 2019)	3.08	3.86	3.69
Baseline (Ours)	3.08	4.00	3.70
MaxPoolFlow (Ours)	3.09	4.01	3.74

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Model	Inception \uparrow	$\mathbf{FID}\downarrow$
DCGAN*	6.4	37.1
WGAN-GP*	6.5	36.4
PixelCNN*	4.60	65.93
PixelIQN*	5.29	49.46
Baseline (Ours)	5.08	49.56
MaxPoolFlow (Ours)	5.18	49.03

Table 5: Inception score and FID for CIFAR-10. *Results taken from Ostrovski et al. (2018).

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

- E. Hoogeboom, J. Peters, R. van den Berg, M. Welling. Integer discrete flows and lossless compression. NeurIPS, 2019.
- D. Nielsen, P. Jaini, E. Hoogeboom, O. Winther, M. Welling, SurVAE flows: Surjections to bridge the gap between VAEs and flows, NeurIPS, 2020.