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Problem Setup: Supervised learning

Traditional ML: y = ax + b

Neural ODE 1(ODE with IVP): dy
dt = a, y(0) = x

Input: Initial Time Point, Output: Final time point

Figure: a)Linear Regression, b)Gradient tracing

1https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-
odes.html
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Background: ODE

Physics: ODEs often used to describe the dynamics.

Neural ODEs: Replace explicit ODEs to learn them via ML.

ODE Solvers: Extensive Research on explicit and implicit solvers.
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Background: Explicit and Implicit ODE Solvers

dy
dt = f (t, y(t))

Forward Euler method: yn+1 = yn + δf (tn, yn)

Backward Euler Method: yn+1 = yn + δf (tn+1, yn+1)

Forward Euler is an explicit ODESolver and Backward Euler is an
implicit ODE Solver.

Adaptive-step size solvers provide better error handling.

Sophisticated higher order ODE solvers like Rungakutta exist
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Problem Setup: Resnets as an ODE

Resnet: ht+1 = ht + f (ht , θt)

Euler Discretization: dh(t)
dt = f (h(t), t, θ)

Residual Networks interpreted as an ODE Solver.

Final output is the composition of all layers.
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Infinite layers in DNN?

Memory Issues: Traditionally, each layer with learnable parameters
in DNN needs to store its input until the backward pass.
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“Neural” Ordinary Differential Equations

Instead of y = F (x), solve, y = z(t1), given the initial condition
z(0) = x

Parameterize dz(t)
dt = f (z(t), t, θ)

Use existing black box solvers for forward pass.

Adaptive step size, O(1) memory handling, error estimate
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Backprop through Neural ODE

Ultimately want to optimize some loss

L(z(t1)) = L(z(t0) +

∫ T

t0

f (z(t), t, θ) = L(ODESolve(z(t0), t0, t1, θ)

We want to compute dL
dθ

Naive approach: Know the solver. Backprop through the solver.

Problems - Memory-intensive, Family of “implicit” solvers perform
inner optimization

We want backprop without knowledge of the ODE Solver
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Adjoint sensitivity analysis: Reverse-mode Autodiff

The first step is to determining how the gradient of the loss depends
on the hidden state z(t) at each instant.

Define adjoint state a(t) = dL
dz(t)

Adjoint follows another ODE,

da(t)

dt
= −a(t)T

∂f (z(t), t, θ)

∂z

Recompute z(t) along with a(t).

Another call to an ODE solver. This solver must run backwards,
starting from the initial value of dL

dz(t1)
.
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Adjoint sensitivity analysis: Reverse-mode Autodiff

Third integral which depends on both z(t) and a(t)

dL

dθ
= −

∫ t0

t1

a(t)T
∂f (z(t), t, θ)

∂θ

The vector jacobian products a(t)T ∂f (z(t),t,θ)
∂z and a(t)T ∂f (z(t),t,θ)

∂θ
can be computed using automatic differentiation in similar time cost
as of f .
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Augmented Dynamics 2

Figure: a)Single Observation time, b)Many Observation Time

2https://www.cs.toronto.edu/ rtqichen/pdfs/neural ode slides.pdf
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Algorithm : Neural ODE
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Neural ODE vs Resnet 3

2https://www.cs.toronto.edu/ rtqichen/pdfs/neural ode slides.pdf
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Results: Neural ODE vs Resnet (Supervised Learning)

ODENet: Implicit Adams method

RKNet: Explicit Runge Kutta method

Similar Performance with Resnet. Low number of parameters and
memory.
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Results: Continuous Normalizing Flows

Instantaneous change of Formula (See paper)
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Time Series Latent ODE
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Results: Time Series Latent ODE

RNNs learn very stiff dynamics, have exploding gradients.

ODEs are guaranteed to be smooth.
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Contributions (Conclusion)

Memory efficiency : Adjoint method to compute gradients of a
scalar-valued loss with respect to all inputs of any ODE solver,
without backpropagating through the operations of the solver

Adaptive computation : Use SOTA ODE Solvers instead of Euler.

Scalable and invertible normalizing flows

Continuous time-series models
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Scope and Limitations (Conclusion)

Minibatching : Use of mini-batches is less straightforward than for
standard neural networks.

Uniqueness : solution to an initial value problem exists and is unique
if the differential equation is uniformly Lipschitz continuous in z and
continuous in t. Holds if the neural network has finite weights and
uses Lipshitz nonlinearities, such as tanh or relu.
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