
Neural Ordinary Differential Equations
Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David

Duvenaud

1Anurendra Kumar
Computer Science, UIUC

CS 598 DGDM, Class Presentation

(UIUC) Neural ODE Nov 2, 2021 1 / 20



Problem Setup: Supervised learning

Traditional ML: y = ax + b

Neural ODE 1(ODE with IVP): dy
dt = a, y(0) = x

Input: Initial Time Point, Output: Final time point

Figure: a)Linear Regression, b)Gradient tracing

1https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-
odes.html

(UIUC) Neural ODE Nov 2, 2021 2 / 20



Background: ODE

Physics: ODEs often used to describe the dynamics.

Neural ODEs: Replace explicit ODEs to learn them via ML.

ODE Solvers: Extensive Research on explicit and implicit solvers.

(UIUC) Neural ODE Nov 2, 2021 3 / 20



Background: Explicit and Implicit ODE Solvers

dy
dt = f (t, y(t))

Forward Euler method: yn+1 = yn + δf (tn, yn)

Backward Euler Method: yn+1 = yn + δf (tn+1, yn+1)

Forward Euler is an explicit ODESolver and Backward Euler is an
implicit ODE Solver.

Adaptive-step size solvers provide better error handling.

Sophisticated higher order ODE solvers like Rungakutta exist

(UIUC) Neural ODE Nov 2, 2021 4 / 20



Problem Setup: Resnets as an ODE

Resnet: ht+1 = ht + f (ht , θt)

Euler Discretization: dh(t)
dt = f (h(t), t, θ)

Residual Networks interpreted as an ODE Solver.

Final output is the composition of all layers.

(UIUC) Neural ODE Nov 2, 2021 5 / 20



Infinite layers in DNN?

Memory Issues: Traditionally, each layer with learnable parameters
in DNN needs to store its input until the backward pass.

(UIUC) Neural ODE Nov 2, 2021 6 / 20



“Neural” Ordinary Differential Equations

Instead of y = F (x), solve, y = z(t1), given the initial condition
z(0) = x

Parameterize dz(t)
dt = f (z(t), t, θ)

Use existing black box solvers for forward pass.

Adaptive step size, O(1) memory handling, error estimate

(UIUC) Neural ODE Nov 2, 2021 7 / 20



Backprop through Neural ODE

Ultimately want to optimize some loss

L(z(t1)) = L(z(t0) +

∫ T

t0

f (z(t), t, θ) = L(ODESolve(z(t0), t0, t1, θ)

We want to compute dL
dθ

Naive approach: Know the solver. Backprop through the solver.

Problems - Memory-intensive, Family of “implicit” solvers perform
inner optimization

We want backprop without knowledge of the ODE Solver

(UIUC) Neural ODE Nov 2, 2021 8 / 20



Adjoint sensitivity analysis: Reverse-mode Autodiff

The first step is to determining how the gradient of the loss depends
on the hidden state z(t) at each instant.

Define adjoint state a(t) = dL
dz(t)

Adjoint follows another ODE,

da(t)

dt
= −a(t)T

∂f (z(t), t, θ)

∂z

Recompute z(t) along with a(t).

Another call to an ODE solver. This solver must run backwards,
starting from the initial value of dL

dz(t1)
.

(UIUC) Neural ODE Nov 2, 2021 9 / 20



Adjoint sensitivity analysis: Reverse-mode Autodiff

Third integral which depends on both z(t) and a(t)

dL

dθ
= −

∫ t0

t1

a(t)T
∂f (z(t), t, θ)

∂θ

The vector jacobian products a(t)T ∂f (z(t),t,θ)
∂z and a(t)T ∂f (z(t),t,θ)

∂θ
can be computed using automatic differentiation in similar time cost
as of f .

(UIUC) Neural ODE Nov 2, 2021 10 / 20



Augmented Dynamics 2

Figure: a)Single Observation time, b)Many Observation Time

2https://www.cs.toronto.edu/ rtqichen/pdfs/neural ode slides.pdf
(UIUC) Neural ODE Nov 2, 2021 11 / 20



Algorithm : Neural ODE

(UIUC) Neural ODE Nov 2, 2021 12 / 20



Neural ODE vs Resnet 3

2https://www.cs.toronto.edu/ rtqichen/pdfs/neural ode slides.pdf
(UIUC) Neural ODE Nov 2, 2021 13 / 20



Results: Neural ODE vs Resnet (Supervised Learning)

ODENet: Implicit Adams method

RKNet: Explicit Runge Kutta method

Similar Performance with Resnet. Low number of parameters and
memory.

(UIUC) Neural ODE Nov 2, 2021 14 / 20



Results: Continuous Normalizing Flows

Instantaneous change of Formula (See paper)

(UIUC) Neural ODE Nov 2, 2021 15 / 20



Time Series Latent ODE

(UIUC) Neural ODE Nov 2, 2021 16 / 20



Results: Time Series Latent ODE

RNNs learn very stiff dynamics, have exploding gradients.

ODEs are guaranteed to be smooth.

(UIUC) Neural ODE Nov 2, 2021 17 / 20



Contributions (Conclusion)

Memory efficiency : Adjoint method to compute gradients of a
scalar-valued loss with respect to all inputs of any ODE solver,
without backpropagating through the operations of the solver

Adaptive computation : Use SOTA ODE Solvers instead of Euler.

Scalable and invertible normalizing flows

Continuous time-series models

(UIUC) Neural ODE Nov 2, 2021 18 / 20



Scope and Limitations (Conclusion)

Minibatching : Use of mini-batches is less straightforward than for
standard neural networks.

Uniqueness : solution to an initial value problem exists and is unique
if the differential equation is uniformly Lipschitz continuous in z and
continuous in t. Holds if the neural network has finite weights and
uses Lipshitz nonlinearities, such as tanh or relu.

(UIUC) Neural ODE Nov 2, 2021 19 / 20



Reference

Chen, R. T., Rubanova, Y., Bettencourt, J., Duvenaud, D. (2018).
Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366.

(UIUC) Neural ODE Nov 2, 2021 20 / 20


