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Problem Setup: Supervised learning

o Traditional ML: y = ax+ b

o Neural ODE *(ODE with IVP): % = a,y(0) = x

@ Input: Initial Time Point, Output: Final time point

Figure: a)Linear Regression, b)Gradient tracing

https://jontysinai.github.io/jekyll /update/2019/01/18 /understanding-neural- 6
odes.html
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@ Physics: ODEs often used to describe the dynamics.
@ Neural ODEs: Replace explicit ODEs to learn them via ML.

o ODE Solvers: Extensive Research on explicit and implicit solvers.
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Fig.1: A vector field in 2D space denoting the dynamics of an ODE
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Background: Explicit and Implicit ODE Solvers

& = f(t,y(1))
Forward Euler method: y,.1 =y, + 0f(tn, ¥n)
Backward Euler Method: y, 1 = y, + 0 (tnt1, Ynt1)

Forward Euler is an explicit ODESolver and Backward Euler is an
implicit ODE Solver.

Adaptive-step size solvers provide better error handling.

Sophisticated higher order ODE solvers like Rungakutta exist
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Problem Setup: Resnets as an ODE

Resnet: hyy1 = hy + f(ht, 0;)
Euler Discretization: dh t) = f(h(t),t,0)
Residual Networks interpreted as an ODE Solver.

Final output is the composition of all layers.
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Infinite layers in DNN?

o Memory Issues: Traditionally, each layer with learnable parameters
in DNN needs to store its input until the backward pass.
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Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.
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“Neural” Ordinary Differential Equations

e Instead of y = F(x), solve, y = z(t1), given the initial condition
z(0) = x
e Parameterize dzd(tt) = f(z(t),t,0)

@ Use existing black box solvers for forward pass.

Adaptive step size, O(1) memory handling, error estimate
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Backprop through Neural ODE

Ultimately want to optimize some loss

L(z(t1)) = L(z(to) + /T f(z(t), t,0) = L(ODESolve(z(ty), to, t1,0)

to

dL
We want to compute 75

Naive approach: Know the solver. Backprop through the solver.

Problems - Memory-intensive, Family of “implicit” solvers perform

inner optimization
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Adjoint sensitivity analysis: Reverse-mode Autodiff

@ The first step is to determining how the gradient of the loss depends
on the hidden state z(t) at each instant.

@ Define adjoint state a(t) = d;j—(Lt)
@ Adjoint follows another ODE,

da(t)
dt

t)Taf(z(t), t,0)

=—a( 0z

@ Recompute z(t) along with a(t).

@ Another call to an ODE solver. This solver must run backwards,

starting from the initial value of dz‘%lgl).
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Adjoint sensitivity analysis: Reverse-mode Autodiff

@ Third integral which depends on both z(t) and a(t)

dL _ _/toa(t)Té?f(z(t), t,0)
do t 06
@ The vector jacobian products a(t)TW and a(t)Tw

can be computed using automatic differentiation in similar time cost
as of f.
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Augmented Dynamics
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Figure: a)Single Observation time, b)Many Observation Time

2https:/ /www.cs.toronto.edu/ rtgichen/pdfs/neural_ode slides:pdf
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Algorithm : Neural ODE

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time to, stop time ¢y, final state z(¢;), loss gradient 9L/az(t,)

so = [z(t1), % ,0j0] > Define initial augmented state
def aug_dynamics([z(t),a(t), ], t,0): > Define dynamics on augmented state
return [f(z(t),t,0), —a(t)T &L, —a(t)T 2] > Compute vector-Jacobian products
[z(to), %, ‘3—5] = ODESolve(sg, aug_dynamics, t1, to, ) > Solve reverse-time ODE
return %, g—g > Return gradients
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Neural ODE vs Resnet 3

Continuous-time Backpropagation

. aL
Residual network. a::= o

Forward:  zt+n = 2t + hf(zt)
Backward: a; = asn + hag, 22
8Zt
. oL 0f (2(1),9)
Params: — = oJ(z(t),0)
90 haitn o0

0L
T 0z(b)
t+1
Forward: z(t+1)=2(t) + f(z(t)) dt

Define: a(t) :

Adjoint method.

Backward: a(t) = a(t+1) + /t aft) 0f(=(t) 4,

o 1 0z(t)
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Results: Neural ODE vs Resnet (Supervised Learning)

o ODENet: Implicit Adams method
@ RKNet: Explicit Runge Kutta method

@ Similar Performance with Resnet. Low number of parameters and

memory.

(UIUC)

Table 1: Performance on MNIST. TFrom LeCun

Test Error  # Params Memory Time

1.60%  024M - -
041%  060M  O(L) O(L)
047%  022M  O(L) O(L)
042%  022M ©O(1) O(L)
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Results: Continuous Normalizing Flows

e Instantaneous change of Formula (See paper)

1D: 2D: Data Discrete-NF CNF

A AVAN

p(z(to))
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Time Series Latent ODE
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Figure 6: Computation graph of the latent ODE model.
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Results: Time Series Latent ODE

@ RNNs learn very stiff dynamics, have exploding gradients.
@ ODEs are guaranteed to be smooth.

=== Ground Truth
® Observation

= Prediction

== Extrapolation

(b) Latent Neural Ordinary Differential Equation ‘ ;
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Contributions (Conclusion)

o Memory efficiency : Adjoint method to compute gradients of a
scalar-valued loss with respect to all inputs of any ODE solver,
without backpropagating through the operations of the solver

@ Adaptive computation : Use SOTA ODE Solvers instead of Euler.
@ Scalable and invertible normalizing flows

@ Continuous time-series models
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Scope and Limitations (Conclusion)

@ Minibatching : Use of mini-batches is less straightforward than for
standard neural networks.

@ Uniqueness : solution to an initial value problem exists and is unique
if the differential equation is uniformly Lipschitz continuous in z and
continuous in t. Holds if the neural network has finite weights and
uses Lipshitz nonlinearities, such as tanh or relu.
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