Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David
Duvenaud

LAnurendra Kumar
Computer Science, UIUC

CS 598 DGDM, Class Presentation

S

(UIUC) Neural ODE Nov 2, 2021 1/20

Problem Setup: Supervised learning

o Traditional ML: y = ax+ b

o Neural ODE *(ODE with IVP): % = a,y(0) = x

@ Input: Initial Time Point, Output: Final time point

Figure: a)Linear Regression, b)Gradient tracing

https://jontysinai.github.io/jekyll /update/2019/01/18 /understanding-neural- 6
odes.html
(UIUC) Neural ODE Nov 2, 2021 2/20

@ Physics: ODEs often used to describe the dynamics.
@ Neural ODEs: Replace explicit ODEs to learn them via ML.

o ODE Solvers: Extensive Research on explicit and implicit solvers.

YT sssscrs 7
s
s /S
I ssscccrs /S
TN 7S
I NNsssccr 7S
I NNssscccrr /S
I ssscccc
TN Nssssccc s 7
TN i i

Fig.1: A vector field in 2D space denoting the dynamics of an ODE

(UIuQC) Neural ODE Nov 2, 2021 3/20

Background: Explicit and Implicit ODE Solvers

& = f(t,y(1))
Forward Euler method: y,.1 =y, + 0f(tn, ¥n)
Backward Euler Method: y, 1 = y, + 0 (tnt1, Ynt1)

Forward Euler is an explicit ODESolver and Backward Euler is an
implicit ODE Solver.

Adaptive-step size solvers provide better error handling.

Sophisticated higher order ODE solvers like Rungakutta exist

S

(UIUC) Neural ODE Nov 2, 2021 4/20

Problem Setup: Resnets as an ODE

Resnet: hyy1 = hy + f(ht, 0;)
Euler Discretization: dh t) = f(h(t),t,0)
Residual Networks interpreted as an ODE Solver.

Final output is the composition of all layers.

S

(UIUC) Neural ODE Nov 2, 2021 5/20

Infinite layers in DNN?

o Memory Issues: Traditionally, each layer with learnable parameters
in DNN needs to store its input until the backward pass.

Residual Network ODE Network
5

Depth

=5 =5
Input/Hidden/Output Input/Hidden/Output

Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

(UIUC) Neural ODE Nov 2, 2021 6/20

“Neural” Ordinary Differential Equations

e Instead of y = F(x), solve, y = z(t1), given the initial condition
z(0) = x
e Parameterize dzd(tt) = f(z(t),t,0)

@ Use existing black box solvers for forward pass.

Adaptive step size, O(1) memory handling, error estimate

S

(UIUC) Neural ODE Nov 2, 2021 7/20

Backprop through Neural ODE

Ultimately want to optimize some loss

L(z(t1)) = L(z(to) + /T f(z(t), t,0) = L(ODESolve(z(ty), to, t1,0)

to

dL
We want to compute 75

Naive approach: Know the solver. Backprop through the solver.

Problems - Memory-intensive, Family of “implicit” solvers perform

inner optimization

(UIUC) Neural ODE Nov 2, 2021 8/20

@ We want backprop without knowledge of the ODE Solver

Adjoint sensitivity analysis: Reverse-mode Autodiff

@ The first step is to determining how the gradient of the loss depends
on the hidden state z(t) at each instant.

@ Define adjoint state a(t) = d;j—(Lt)
@ Adjoint follows another ODE,

da(t)
dt

t)Taf(z(t), t,0)

=—a(0z

@ Recompute z(t) along with a(t).

@ Another call to an ODE solver. This solver must run backwards,

starting from the initial value of dz‘%lgl).

S

(UIUC) Neural ODE Nov 2, 2021 9/20

Adjoint sensitivity analysis: Reverse-mode Autodiff

@ Third integral which depends on both z(t) and a(t)

dL _ _/toa(t)Té?f(z(t), t,0)
do t 06
@ The vector jacobian products a(t)TW and a(t)Tw

can be computed using automatic differentiation in similar time cost
as of f.

S

(UIUC) Neural ODE Nov 2, 2021 10/20

Augmented Dynamics

A
Forward ./\/‘
(tw)
z(to) State
Adjoint State
p— e \\
Backward == N A el
_ %
t t
to t ty

Forward:

State
- Adjoint State
N -2 P
Backward % : 1 o \\
S i 1
; H
t

Figure: a)Single Observation time, b)Many Observation Time

2https:/ /www.cs.toronto.edu/ rtgichen/pdfs/neural_ode slides:pdf

(UIUC) Neural ODE Nov 2, 2 11/20

Algorithm : Neural ODE

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time to, stop time ¢y, final state z(¢;), loss gradient 9L/az(t,)

so = [z(t1), % ,0j0] > Define initial augmented state
def aug_dynamics([z(t),a(t),], t,0): > Define dynamics on augmented state
return [f(z(t),t,0), —a(t)T &L, —a(t)T 2] > Compute vector-Jacobian products
[z(to), %, ‘3—5] = ODESolve(sg, aug_dynamics, t1, to,) > Solve reverse-time ODE
return %, g—g > Return gradients

(UIUC) Neural ODE Nov 2, 2021 12 /20

Neural ODE vs Resnet 3

Continuous-time Backpropagation

. aL
Residual network. a::= o

Forward: zt+n = 2t + hf(zt)
Backward: a; = asn + hag, 22
8Zt
. oL 0f (2(1),9)
Params: — = oJ(z(t),0)
90 haitn o0

0L
T 0z(b)
t+1
Forward: z(t+1)=2(t) + f(z(t)) dt

Define: a(t) :

Adjoint method.

Backward: a(t) = a(t+1) + /t aft) 0f(=(t) 4,

o 1 0z(t)
Adjoint State “Adjoint DIffEq_
oL o 0f(2(t),0)
P . oL _ gJ\EY),9)
arams 30 /t a(t) 20 dt

4

O

2https:/ /www.cs.toronto.edu/ rtgichen/pdfs/neural_ode slides:pdf

(UIUC)

Neural ODE

Nov 2, 2021 13 /20

Results: Neural ODE vs Resnet (Supervised Learning)

o ODENet: Implicit Adams method
@ RKNet: Explicit Runge Kutta method

@ Similar Performance with Resnet. Low number of parameters and

memory.

(UIUC)

Table 1: Performance on MNIST. TFrom LeCun

Test Error # Params Memory Time

1.60% 024M - -
041% 060M O(L) O(L)
047% 022M O(L) O(L)
042% 022M ©O(1) O(L)

Neural ODE

Nov 2, 2021

S

14 /20

Results: Continuous Normalizing Flows

e Instantaneous change of Formula (See paper)

1D: 2D: Data Discrete-NF CNF

A AVAN

p(z(to))

(UIUC) Neural ODE Nov 2, 2021 15 /20

Time Series Latent ODE

Zt, Np(zto)
Zty,Zty, - - - Zty = ODESolve(zs, f,05,t0,. .., tn)
each xy, ~ p(x|zy,,0x)

ODE Solve(z,, f,07,t0, - ta)
RNN encoder 9(ze|Tegmey) (24 2t Zta, |
hto . . i Zto 1 1 Ztn N4+1 “ty §
O—O— =-O—| |~ O <> ‘
N Y o T ‘ I P

4 : ' Latent space H H ! , !

T T

i E i Data space v i i ¥ \
W W
— e e & e o & >

to t1 tn INy1 ty to tq tn Nyl iy
Observed Unobserved Prediction Extrapolation

Figure 6: Computation graph of the latent ODE model.

(UIuQC) Neural ODE Nov 2, 20

Results: Time Series Latent ODE

@ RNNs learn very stiff dynamics, have exploding gradients.
@ ODEs are guaranteed to be smooth.

=== Ground Truth
® Observation

= Prediction

== Extrapolation

(b) Latent Neural Ordinary Differential Equation ‘ ;

(UIUC) Neural ODE Nov 2, 2021 17 /20

Contributions (Conclusion)

o Memory efficiency : Adjoint method to compute gradients of a
scalar-valued loss with respect to all inputs of any ODE solver,
without backpropagating through the operations of the solver

@ Adaptive computation : Use SOTA ODE Solvers instead of Euler.
@ Scalable and invertible normalizing flows

@ Continuous time-series models

(UIUC) Neural ODE Nov 2, 2021 18 /20

Scope and Limitations (Conclusion)

@ Minibatching : Use of mini-batches is less straightforward than for
standard neural networks.

@ Uniqueness : solution to an initial value problem exists and is unique
if the differential equation is uniformly Lipschitz continuous in z and
continuous in t. Holds if the neural network has finite weights and
uses Lipshitz nonlinearities, such as tanh or relu.

S

(UIUC) Neural ODE Nov 2, 2021 19/20

Reference

e Chen, R. T., Rubanova, Y., Bettencourt, J., Duvenaud, D. (2018).
Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366.

S

(UIUC) Neural ODE Nov 2, 2021 20 /20

