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Similarity between ResNets and numerical ODE solvers

@ Residual models as differential equations

Layers becomes equivalent to ‘time’

Many possible applications

o Physical sciences, continuous time modeling
o Generative models using flows
e Extensions to stochastic PDEs
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Neural ODEs

@ Block t in ResNet: xt*1 = xt 4 f(x, t; )
e Consider the ODE
z="1(z,t;0)
z(0) = x

Euler discretization of the ODE: 2+ =zt + 7f(z, t; 0)

Perspective: Continuous ‘time’ generalization of ResNets
o 7 =1 gives ResNets
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Neural ODEs

@ Memory footprint of Neural ODEs can be much smaller

@ Training time can be long:
e Cost of numerically integrating the ODEs

@ Goal: Regularization to help solve the ODEs fast
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Continuous Normalizing Flows

@ Goal is develop model py(x) to maximize likelihood, or minimize
N
1
Jpo) =~ Z} log py(xi)
=

Parameterize py(x) using a vector field f : RY x R ~— R

z(x, T) be the solution map by running dynamics till T

Change of variables
log pg(x) = log q(z(x, T)) + log det |Vz(x, T)|

@ Can be done efficiently using

68t log det [Vz(x, t)| = div(f)(z(x, t), t)

Recall that div(f)(x) = >; 0xfi(x) = Tr(Vf(x))
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Continuous Normalizing Flows (Contd.)

@ By fundamental theorem of calculus

-
log pg(x) = log q(z(x, T)) +/0 div(f)(z(x, s), s)ds

Normalizing flow with free form Jacobian

Divergence can be estimated by an unbiased MC estimate
div(f)(x) = Econon) |¢7 VFX)e]

Recall:
E, [eTVf(x)e] —E, [Tr(eTVf(x)e)] — [Tr(Vf(x)eeT)}

= Tr(VF(x)E[ee]) = Tr(VF(X)I) = Tr(VF(x))
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Regularizing the Flow

Without regularization, optimal vector field f is not unique

f may be poorly conditioned

o Rapidly varying local trajectories and non-constant speed
o Leads to difficulty during numerical integration of the ODE

Regularization: Field places nearly constant force on the particles

Force experienced by particle z(t)

CﬁSﬁVf(z,t)-i—i—

of(z, t)
ot

= Vf(z,t) - f(z,t) +

0f(z, t)
ot

Regularize two terms

e f: so the distance traveled is small, based on optimal transport
e Vf: so the (Frobeius) norm is small, regularized Jacobian
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Unregularized vs. Optimal Transport Flows
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Figure 1. Optimal transport map and a generic normalizing flow.
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Regularized Dynamics: Optimal Transport

@ Quadratic cost optimal transport minimizes transportation cost

9= [l Ppede s [ a@de= [ pia)

o Alternative (Benamou-Brenier) approach:

e z(x, T) is solution map of vector field f (ODE)
e Optimal transport by minimizing

.
r?in/ /Hf(x, t)||2pe(x)dxdt
P

0

s.t. 0ptt —div(p:f) (probability mass conservation)
po(x) =p (source marginal)
p1(z) =¢q (target marginal)

o Particles under the optimal flow travel in straight lines

@ Optimal solution is unique, under assumptions
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Regularized Dynamics: Optimal Transport (Contd.)

@ Solution map z(x,t) = (1 —t/T)z(x,0) + t/Tz(x, T)
o Makes it easy to solve (ODE)

e For normalizing flows, g(z) is normal, p(x) is data distribution
e Source marginal is satisfied, data drawn from true distribution

o Target marginal is approximated by KL(pr| g), maximum likelihood
e Probability mass conservation not needed, tracking finite particles

@ Formulation becomes

i\ N T 1 N
W) = 35 3 [ 1P = 5 S logpat)
i=1 i=1

@ Regularized form of the continuous normalizing flow problem
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Regularizing the Jacobian

@ Transport regularization focuses on the training set
@ Want the ‘smoothness’ of the flow to generalize |

@ Regularize the Jacobian, based on Frobenius norm

o Efficient computation using vector-Jacobian product ¢ Vf(z)
IVE@)IF = Ecnoplle™ VE(2)I?
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Regularized Neural ODE (RNODE)

@ Overall optimization problem to be solved
N

1 T
min — Y —logq(z(x;, T)) — / div(z(x;, s), s)ds
£ Nd ] Jo

T

.
+AK/0 ||f(z(x,-,5),s)\|2ds+)\J/0 IV2f(2(xi, 5), )| 7 s

@ Compute the three integrals by augmenting the ODE

z="F(z,t)

I = div(f)(z, t)
= = [f(z, )]
n=|Vf(z 1|7

2(0) = x, E(0) = /(0) = n(0) = 0
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Algorithm: RNODE

Algorithm 1 RNODE: regularized neural ODE training of
FFJORD
Input: data X = {x;},i=1,--- , N, dynamics f(-;0),
final time 7', regularization strength Ay and Ax
initialize 0
while 6 not converged do
Sample e from standard normal distribution
Sample minibatch {x;} of size m from X
Setz;(0) =x;,1;(0) = E;(0) =n; =0
Numerically solve up to time 7" the system

2, = £(z,.1:0)

Ij =€"Vi(z),t:0)e
Ey = (1602, :0) P

iy = €7 T (z,.1:0) |

Compute

m

L(0) = L 3" ~loga(z(T) ~ ()
i=1

+ A (T) + A E;(T)

Compute Vg L(6) using the adjoint sensitivity method
by numerically solving the adjoint equations
Update 6 < 6 — 7 Vg L(6)

end while
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Running Time: RNODE vs. FFJORD
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Jacobian Norm vs. Function Evaluation
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Figure 3. Number of function evaluations vs Jacobian Frobenius
norm of flows on CIFAR10 during training with vanilla FFJORD,
using an adaptive ODE solver.
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Results: Log-likelihood (bits/dim)

MNIST CIFAR10 IMAGENET64 CELEBA-HQ256
BITS/DIM  TIME BITS/DIM  TIME BITS/DIM  TIME
FFJORD, ORIGINAL 0.99 - 3.40 > 5 DAYS - - - -
FFJORD, VANILLA 0.97 68.5 3.36 91.3 X X - -
FFJORD RNODE (0URS) 0.97 24.4 3.38 31.8 3.83 64.1 1.04 6.6 DAYS
REALNVP (DINHET AL., 2017) 1.06 - 3.49 - 3.98 - - -
I-RESNET (BEHRMANN ET AL., 2019) 1.05 - 3.45 - - - - -
GLOW (KINGMA & DHARIWAL, 2018) 1.05 - 3.35 - 3.81 - 1.03 7 DAYS?
FLOW++ (Ho ET AL., 2019) - - 3.28 - - - - -
RESIDUAL FLOW (CHENETAL.,2019)  0.97 - 3.28 - 3.76 - 0.99 -
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Results: Ablation Study
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Results: Samples

(f) FETORD RNODE

Figure 6. Quality of generated samples samples with and without regularization on MNIST, left, and CIFAR10, right.
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