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Motivation

Similarity between ResNets and numerical ODE solvers

Residual models as differential equations

Layers becomes equivalent to ‘time’

Many possible applications

Physical sciences, continuous time modeling
Generative models using flows
Extensions to stochastic PDEs
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Neural ODEs

Block t in ResNet: xt+1 = xt + f(x, t; θ)

Consider the ODE

ż = f(z, t; θ)

z(0) = x

Euler discretization of the ODE: zt+1 = zt + τ f (zt , t; θ)

Perspective: Continuous ‘time’ generalization of ResNets

τ = 1 gives ResNets
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Neural ODEs

Memory footprint of Neural ODEs can be much smaller

Training time can be long:

Cost of numerically integrating the ODEs

Goal: Regularization to help solve the ODEs fast
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Continuous Normalizing Flows

Goal is develop model pθ(x) to maximize likelihood, or minimize

J(pθ) = − 1

N

N∑
i=1

log pθ(xi )

Parameterize pθ(x) using a vector field f : Rd × R 7→ Rd

z(x,T ) be the solution map by running dynamics till T

Change of variables

log pθ(x) = log q(z(x,T )) + log det |∇z(x,T )|

Can be done efficiently using
∂

∂t
log det |∇z(x, t)| = div(f)(z(x, t), t)

Recall that div(f)(x) =
∑

i ∂xi fi (x) = Tr(∇f(x))
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Continuous Normalizing Flows (Contd.)

By fundamental theorem of calculus

log pθ(x) = log q(z(x,T )) +

∫ T

0
div(f)(z(x, s), s)ds

Normalizing flow with free form Jacobian

Divergence can be estimated by an unbiased MC estimate

div(f)(x) = Eε∼N (0,I)

[
εT∇f(x)ε

]
Recall:

Eε
[
εT∇f(x)ε

]
= Eε

[
Tr(εT∇f(x)ε)

]
= Eε

[
Tr(∇f(x)εεT )

]
= Tr(∇f (x)E[εεT ]) = Tr(∇f(x)I) = Tr(∇f(x))
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Regularizing the Flow

Without regularization, optimal vector field f is not unique

f may be poorly conditioned

Rapidly varying local trajectories and non-constant speed
Leads to difficulty during numerical integration of the ODE

Regularization: Field places nearly constant force on the particles

Force experienced by particle z(t)
df (z, t)

dt
= ∇f(z, t) · ż +

∂f(z, t)

∂t

= ∇f(z, t) · f(z, t) +
∂f(z, t)

∂t

Regularize two terms

f: so the distance traveled is small, based on optimal transport
∇f: so the (Frobeius) norm is small, regularized Jacobian
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Unregularized vs. Optimal Transport Flows
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Regularized Dynamics: Optimal Transport

Quadratic cost optimal transport minimizes transportation cost

M(z) =

∫
‖x− z(x)‖2p(x)dx , s.t.

∫
A
q(z)dz =

∫
z−1(A)

p(x)dx)

Alternative (Benamou-Brenier) approach:

z(x,T ) is solution map of vector field f (ODE)
Optimal transport by minimizing

min
f,ρ

∫ T

0

∫
‖f(x, t)‖2ρt(x)dxdt

s.t.
∂ρt
∂t

= −div(ρt f ) (probability mass conservation)

ρ0(x) = p (source marginal)

ρT (z) = q (target marginal)

Particles under the optimal flow travel in straight lines

Optimal solution is unique, under assumptions
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Regularized Dynamics: Optimal Transport (Contd.)

Solution map z(x, t) = (1− t/T )z(x, 0) + t/T z(x,T )

Makes it easy to solve (ODE)

For normalizing flows, q(z) is normal, p(x) is data distribution

Source marginal is satisfied, data drawn from true distribution
Target marginal is approximated by KL(ρT‖q), maximum likelihood
Probability mass conservation not needed, tracking finite particles

Formulation becomes

Jλ(f) =
λ

N

N∑
i=1

∫ T

0
‖f(zi , t)‖2dt − 1

N

N∑
i=1

log pθ(xi )

Regularized form of the continuous normalizing flow problem
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Regularizing the Jacobian

Transport regularization focuses on the training set

Want the ‘smoothness’ of the flow to generalize ı

Regularize the Jacobian, based on Frobenius norm

Efficient computation using vector-Jacobian product εT∇f(z)

‖∇f(z)‖2F = Eε∼N(0,I)‖εT∇f (z)‖2
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Regularized Neural ODE (RNODE)

Overall optimization problem to be solved

min
f

1

Nd

N∑
i=1

− log q(z(xi ,T ))−
∫ T

0
div(z(xi , s), s)ds

+ λK

∫ T

0
‖f(z(xi , s), s)‖2ds + λJ

∫ T

0
‖∇zf(z(xi , s), s)‖2Fds

Compute the three integrals by augmenting the ODE

ż = f(z, t)

l̇ = div(f)(z, t)

Ė = ‖f(z, t)‖2

ṅ = ‖∇f(z, t)‖2F
z(0) = x,E (0) = l(0) = n(0) = 0
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Algorithm: RNODE

Instructor: Arindam Banerjee Regularized Neural ODEs



14/19

Running Time: RNODE vs. FFJORD
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Jacobian Norm vs. Function Evaluation

Instructor: Arindam Banerjee Regularized Neural ODEs



16/19

Results: Log-likelihood (bits/dim)
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Results: Ablation Study
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Results: Samples
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