
NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

CS598 NODE 2: Augmented Neural ODEs –
Bhavesh Shrimali

Emilien Dupont, Arnaud Doucet, Yee Whye Teh

November 4, 2021

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

ResNet update

ht+1 = ht + ft (ht) ht ∈ Rd and ft : Rd → Rd

More generally

ht+1 = ht + ∆tft (ht) ht ∈ Rd and ft : Rd → Rd

Interpret ht+1 − ht as finite-difference discretization of ḣ(t) with the
time step ∆t = 1

lim
∆t→0+

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t)

The hidden state can then be parameterized by an ODE, x 7→ φ (x)

dh(t)

dt
= f(h(t), t), h(0) = x t ∈ (0, T ]

h(T ) is the learned features by the model at T .

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

ResNet update

ht+1 = ht + ft (ht) ht ∈ Rd and ft : Rd → Rd

More generally

ht+1 = ht + ∆tft (ht) ht ∈ Rd and ft : Rd → Rd

Interpret ht+1 − ht as finite-difference discretization of ḣ(t) with the
time step ∆t = 1

lim
∆t→0+

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t)

The hidden state can then be parameterized by an ODE, x 7→ φ (x)

dh(t)

dt
= f(h(t), t), h(0) = x t ∈ (0, T ]

h(T ) is the learned features by the model at T .

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

ResNet update

ht+1 = ht + ft (ht) ht ∈ Rd and ft : Rd → Rd

More generally

ht+1 = ht + ∆tft (ht) ht ∈ Rd and ft : Rd → Rd

Interpret ht+1 − ht as finite-difference discretization of ḣ(t) with the
time step ∆t = 1

lim
∆t→0+

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t)

The hidden state can then be parameterized by an ODE, x 7→ φ (x)

dh(t)

dt
= f(h(t), t), h(0) = x t ∈ (0, T ]

h(T ) is the learned features by the model at T .

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

ResNet update

ht+1 = ht + ft (ht) ht ∈ Rd and ft : Rd → Rd

More generally

ht+1 = ht + ∆tft (ht) ht ∈ Rd and ft : Rd → Rd

Interpret ht+1 − ht as finite-difference discretization of ḣ(t) with the
time step ∆t = 1

lim
∆t→0+

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t)

The hidden state can then be parameterized by an ODE, x 7→ φ (x)

dh(t)

dt
= f(h(t), t), h(0) = x t ∈ (0, T ]

h(T ) is the learned features by the model at T .

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

ResNet update

ht+1 = ht + ft (ht) ht ∈ Rd and ft : Rd → Rd

More generally

ht+1 = ht + ∆tft (ht) ht ∈ Rd and ft : Rd → Rd

Interpret ht+1 − ht as finite-difference discretization of ḣ(t) with the
time step ∆t = 1

lim
∆t→0+

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t)

The hidden state can then be parameterized by an ODE, x 7→ φ (x)

dh(t)

dt
= f(h(t), t), h(0) = x t ∈ (0, T ]

h(T ) is the learned features by the model at T .

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

Figure: Neural ODEs (right) as continuous-time ResNets (left) [CRBD19]

In ResNets: map an input x to output y by a forward pass

Tune the weights of the network to minimize d(y,ytrue)

For NODEs: adjust the dynamics of the system encoded by f such that
the ODE transforms input x to y to minimize d(y,ytrue)

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

Figure: Neural ODEs (right) as continuous-time ResNets (left) [CRBD19]

In ResNets: map an input x to output y by a forward pass

Tune the weights of the network to minimize d(y,ytrue)

For NODEs: adjust the dynamics of the system encoded by f such that
the ODE transforms input x to y to minimize d(y,ytrue)

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: Neural ODEs

Figure: Neural ODEs (right) as continuous-time ResNets (left) [CRBD19]

In ResNets: map an input x to output y by a forward pass

Tune the weights of the network to minimize d(y,ytrue)

For NODEs: adjust the dynamics of the system encoded by f such that
the ODE transforms input x to y to minimize d(y,ytrue)

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: ODE flows

The flow associated to f(h(t), t) is given by φ(t)

φt : Rd → Rd, φt(x) = h(t) with h(0) = x

ODE Layer

Linear Layer

The flow measures how the states of the ODE at a given time t depend
on the initial conditions x.

The features of the ODE, φ(x), are the “ flow at the final time T ”

For classification/regression problems, often define a NODE g : Rd → R
as g(x) = L(φ(x)), where L : Rd → R is a linear map and φ : Rd → Rd

is the mapping from data to features.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: ODE flows

The flow associated to f(h(t), t) is given by φ(t)

φt : Rd → Rd, φt(x) = h(t) with h(0) = x

ODE Layer

Linear Layer

The flow measures how the states of the ODE at a given time t depend
on the initial conditions x.

The features of the ODE, φ(x), are the “ flow at the final time T ”

For classification/regression problems, often define a NODE g : Rd → R
as g(x) = L(φ(x)), where L : Rd → R is a linear map and φ : Rd → Rd

is the mapping from data to features.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: ODE flows

The flow associated to f(h(t), t) is given by φ(t)

φt : Rd → Rd, φt(x) = h(t) with h(0) = x

ODE Layer

Linear Layer

The flow measures how the states of the ODE at a given time t depend
on the initial conditions x.

The features of the ODE, φ(x), are the “ flow at the final time T ”

For classification/regression problems, often define a NODE g : Rd → R
as g(x) = L(φ(x)), where L : Rd → R is a linear map and φ : Rd → Rd

is the mapping from data to features.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Introduction: ODE flows

The flow associated to f(h(t), t) is given by φ(t)

φt : Rd → Rd, φt(x) = h(t) with h(0) = x

ODE Layer

Linear Layer

The flow measures how the states of the ODE at a given time t depend
on the initial conditions x.

The features of the ODE, φ(x), are the “ flow at the final time T ”

For classification/regression problems, often define a NODE g : Rd → R
as g(x) = L(φ(x)), where L : Rd → R is a linear map and φ : Rd → Rd

is the mapping from data to features.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let g1 d : R→ R be a function such that g1 d(−1) = 1 and
g1 d(1) = −1.

Proposition 1: The flow of an ODE cannot represent g1d(x).

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let g1 d : R→ R be a function such that g1 d(−1) = 1 and
g1 d(1) = −1.

Proposition 1: The flow of an ODE cannot represent g1d(x).

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

ResNets, on the other hand, can!

ResNets are a discretization of the ODE, allowing the trajectories to make
discrete jumps to cross each other

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

ResNets, on the other hand, can!

ResNets are a discretization of the ODE, allowing the trajectories to make
discrete jumps to cross each other

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let 0 < r1 < r2 < r3 and let g : Rd 7→ R 3{
g(x) = −1 if ‖x‖ ≤ r1
g(x) = 1 if r2 ≤ ‖x‖ ≤ r3

where ‖ · ‖ is a Eucledian norm

In order for the linear layer to map the blue and red points to
−1 and 1 respectively, the features φ(x) for the blue and
red points must be linearly separable.

Since the blue region is enclosed by the red region, points in
the blue region must cross over the red region to become
linearly separable, requiring the trajectories to intersect,
which is not possible

The feature mapping φ(x) is a homeomorphism

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let 0 < r1 < r2 < r3 and let g : Rd 7→ R 3{
g(x) = −1 if ‖x‖ ≤ r1
g(x) = 1 if r2 ≤ ‖x‖ ≤ r3

where ‖ · ‖ is a Eucledian norm

In order for the linear layer to map the blue and red points to
−1 and 1 respectively, the features φ(x) for the blue and
red points must be linearly separable.

Since the blue region is enclosed by the red region, points in
the blue region must cross over the red region to become
linearly separable, requiring the trajectories to intersect,
which is not possible

The feature mapping φ(x) is a homeomorphism

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let 0 < r1 < r2 < r3 and let g : Rd 7→ R 3{
g(x) = −1 if ‖x‖ ≤ r1
g(x) = 1 if r2 ≤ ‖x‖ ≤ r3

where ‖ · ‖ is a Eucledian norm

In order for the linear layer to map the blue and red points to
−1 and 1 respectively, the features φ(x) for the blue and
red points must be linearly separable.

Since the blue region is enclosed by the red region, points in
the blue region must cross over the red region to become
linearly separable, requiring the trajectories to intersect,
which is not possible

The feature mapping φ(x) is a homeomorphism

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Let 0 < r1 < r2 < r3 and let g : Rd 7→ R 3{
g(x) = −1 if ‖x‖ ≤ r1
g(x) = 1 if r2 ≤ ‖x‖ ≤ r3

where ‖ · ‖ is a Eucledian norm

In order for the linear layer to map the blue and red points to
−1 and 1 respectively, the features φ(x) for the blue and
red points must be linearly separable.

Since the blue region is enclosed by the red region, points in
the blue region must cross over the red region to become
linearly separable, requiring the trajectories to intersect,
which is not possible

The feature mapping φ(x) is a homeomorphism

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Figure: g(x) for d = 2

Discrete points and continuous regions: In practice, NODEs are trained
on inputs sampled from the continuous regions of the annulus (and the
sphere). The flow could then squeeze through the gaps between sampled
points making it possible for the NODE to learn a good approximation of
the function.

The resulting flows lead to ill-posed ODE problems which are expensive
to solve.
https://github.com/EmilienDupont/augmented-neural-odes

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

https://github.com/EmilienDupont/augmented-neural-odes


NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Figure: g(x) for d = 2

Discrete points and continuous regions: In practice, NODEs are trained
on inputs sampled from the continuous regions of the annulus (and the
sphere). The flow could then squeeze through the gaps between sampled
points making it possible for the NODE to learn a good approximation of
the function.

The resulting flows lead to ill-posed ODE problems which are expensive
to solve.
https://github.com/EmilienDupont/augmented-neural-odes

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

https://github.com/EmilienDupont/augmented-neural-odes


NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Limitations of Neural ODEs/ODE Flows

Figure: Flow visualization NODEs vs ANODEs1

1
https://github.com/EmilienDupont/augmented-neural-odes

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

https://github.com/EmilienDupont/augmented-neural-odes


NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE

Main idea: Augment the space on which the ODE is learned

Rd → Rd+p =⇒ allows the ODE to lift points into additional
dimensions to avoid trajectories from intersecting each other.

Let a(t) ∈ Rp be a point in the augmented part of the space,
the reformulation can be written as

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
The authors hypothesize that this will make the learned f
smoother, giving rise to simpler flows that the ODE solver can
compute in fewer steps

Run empirical experiments to substantiate the above
hypotheses

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE

Main idea: Augment the space on which the ODE is learned

Rd → Rd+p =⇒ allows the ODE to lift points into additional
dimensions to avoid trajectories from intersecting each other.

Let a(t) ∈ Rp be a point in the augmented part of the space,
the reformulation can be written as

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
The authors hypothesize that this will make the learned f
smoother, giving rise to simpler flows that the ODE solver can
compute in fewer steps

Run empirical experiments to substantiate the above
hypotheses

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE

Main idea: Augment the space on which the ODE is learned

Rd → Rd+p =⇒ allows the ODE to lift points into additional
dimensions to avoid trajectories from intersecting each other.

Let a(t) ∈ Rp be a point in the augmented part of the space,
the reformulation can be written as

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]

The authors hypothesize that this will make the learned f
smoother, giving rise to simpler flows that the ODE solver can
compute in fewer steps

Run empirical experiments to substantiate the above
hypotheses

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE

Main idea: Augment the space on which the ODE is learned

Rd → Rd+p =⇒ allows the ODE to lift points into additional
dimensions to avoid trajectories from intersecting each other.

Let a(t) ∈ Rp be a point in the augmented part of the space,
the reformulation can be written as

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
The authors hypothesize that this will make the learned f
smoother, giving rise to simpler flows that the ODE solver can
compute in fewer steps

Run empirical experiments to substantiate the above
hypotheses

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE

Main idea: Augment the space on which the ODE is learned

Rd → Rd+p =⇒ allows the ODE to lift points into additional
dimensions to avoid trajectories from intersecting each other.

Let a(t) ∈ Rp be a point in the augmented part of the space,
the reformulation can be written as

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
The authors hypothesize that this will make the learned f
smoother, giving rise to simpler flows that the ODE solver can
compute in fewer steps

Run empirical experiments to substantiate the above
hypotheses

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Experiments

Figure: Training losses for NODEs and ResNets.

Baseline comparison: Train on data which can be “ linearly separable ”

ResNet easily fits g(x) for both d = 1, 2, but NODE cannot. For d = 2
NODE eventually learns but is far more costly compared to ResNets.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Experiments

Figure: Training losses for NODEs and ResNets.

Baseline comparison: Train on data which can be “ linearly separable ”

ResNet easily fits g(x) for both d = 1, 2, but NODE cannot. For d = 2
NODE eventually learns but is far more costly compared to ResNets.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Computational Cost and NFE

As the training progresses and flows get increasingly complex,
the number of steps for the ODE solver increases
([CRBD19, GCB+18]) =⇒ NFE ↑

Figure: Evolution of the feature space as training progresses and the
corresponding NFE required to solve the ODE. As the ODE needs
to break apart the annulus, NFE shoots up

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

ANODEs fit the functions that NODEs can’t

Much faster despite higher input dim

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
Learn simpler flows and thus lower NFEs

Better generalization

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

ANODEs fit the functions that NODEs can’t

Much faster despite higher input dim

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]

Learn simpler flows and thus lower NFEs

Better generalization

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

ANODEs fit the functions that NODEs can’t

Much faster despite higher input dim

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
Learn simpler flows and thus lower NFEs

Better generalization

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

ANODEs fit the functions that NODEs can’t

Much faster despite higher input dim

d

dt

[
h(t)
a(t)

]
= f

([
h(t)
a(t)

]
, t

)
,

[
h(0)
a(0)

]
=

[
x
0

]
Learn simpler flows and thus lower NFEs

Better generalization

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

g(x) for d = 2



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Figure: Loss function for NODEs and ANODEs trained on g(x) in d = 1 (top)
and d = 2 (bottom) dimensions. ANODEs are faster. On the right are the
flows learned by NODEs and ANODEs. ANODEs learn simple nearly linear
flows, while NODEs learn complex (expensive) flows

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Number of function evaluations: As ANODEs learn simpler flows, the
NFEs required by ANODEs hardly increase during training whereas it
doubles for NODEs

Figure: Evolution of features during training for ANODEs. The top left pane
shows the feature space for a randomly initialized ANODE and the bottom
right shows the features after training. The right panel shows the evolution of
NFEs during training

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Generalization: In order to test if indeed ANODEs generalize better −→
visualize to which value each point in the input space gets mapped by a
NODE and an ANDOE (both are optimized to approximately zero
training loss).

NODEs (below) can only continuously deform the input space, the
learned flow must squeeze points in the inner circle through the annulus
leading to poor generalization

Figure: (Left) Plots of how NODEs and ANODEs map points in the input
space to different outputs (for zero training loss). ANODEs generalize better.
(Middle) Training and validation losses for NODE, (Right) for ANODE

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Generalization: In order to test if indeed ANODEs generalize better −→
visualize to which value each point in the input space gets mapped by a
NODE and an ANDOE (both are optimized to approximately zero
training loss).

NODEs (below) can only continuously deform the input space, the
learned flow must squeeze points in the inner circle through the annulus
leading to poor generalization

Figure: (Left) Plots of how NODEs and ANODEs map points in the input
space to different outputs (for zero training loss). ANODEs generalize better.
(Middle) Training and validation losses for NODE, (Right) for ANODE

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Generalization: ANODEs, in contrast, map all points in the input space
to reasonable values.

The authors [DDT19] also consider a further test. They create a
validation set by removing random slices of the input space and train
both NODEs and ANODEs on the training set and plot the evolution of
the validation loss during training.

Figure: (Left) Plots of how NODEs and ANODEs map points in the input
space to different outputs (for zero training loss). ANODEs generalize better.
(Middle) Training and validation losses for NODE, (Right) for ANODE

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Toy)

Generalization: ANODEs, in contrast, map all points in the input space
to reasonable values.

The authors [DDT19] also consider a further test. They create a
validation set by removing random slices of the input space and train
both NODEs and ANODEs on the training set and plot the evolution of
the validation loss during training.

Figure: (Left) Plots of how NODEs and ANODEs map points in the input
space to different outputs (for zero training loss). ANODEs generalize better.
(Middle) Training and validation losses for NODE, (Right) for ANODE

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Convolutional architectures for f(h(t), t)

h(t) is now Rc×h×w

Augmented space Rc×h×w → R(c+p)×h×w, i.e. add p channels of zeros
to the input image

ANODEs train faster and obtain lower losses at a smaller computational
cost than NODEs

MNIST

CIFAR10

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Convolutional architectures for f(h(t), t)

h(t) is now Rc×h×w

Augmented space Rc×h×w → R(c+p)×h×w, i.e. add p channels of zeros
to the input image

ANODEs train faster and obtain lower losses at a smaller computational
cost than NODEs

MNIST

CIFAR10

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Convolutional architectures for f(h(t), t)

h(t) is now Rc×h×w

Augmented space Rc×h×w → R(c+p)×h×w, i.e. add p channels of zeros
to the input image

ANODEs train faster and obtain lower losses at a smaller computational
cost than NODEs

MNIST

CIFAR10

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Convolutional architectures for f(h(t), t)

h(t) is now Rc×h×w

Augmented space Rc×h×w → R(c+p)×h×w, i.e. add p channels of zeros
to the input image

ANODEs train faster and obtain lower losses at a smaller computational
cost than NODEs

MNIST

CIFAR10

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST

CIFAR10

On MNIST, ANODEs with p = 10 augmented channels achieves the
same loss in ∼ 10x fewer iterations (for CIFAR10, ANODEs are roughly 5
times faster)

Plot of the NFEs against the loss helps in inferring how complex a flow
(i.e. how many NFEs) are required to model a function that achieves a
certain loss.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST

CIFAR10

On MNIST, ANODEs with p = 10 augmented channels achieves the
same loss in ∼ 10x fewer iterations (for CIFAR10, ANODEs are roughly 5
times faster)

Plot of the NFEs against the loss helps in inferring how complex a flow
(i.e. how many NFEs) are required to model a function that achieves a
certain loss.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST

CIFAR10

For example, to compute a function which obtains a loss of 0.8 on
CIFAR10, a NODE requires approximately 100 function evaluations
whereas ANODEs only require 50

Note that both ANODEs and NODEs have the same number of
parameters for a fair comparison

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST

CIFAR10

For example, to compute a function which obtains a loss of 0.8 on
CIFAR10, a NODE requires approximately 100 function evaluations
whereas ANODEs only require 50

Note that both ANODEs and NODEs have the same number of
parameters for a fair comparison

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST CIFAR10 SVHN

ANODEs achieve higher accuracy at a lower computational cost than
NODEs

Note that both ANODEs and NODEs have the same number of
parameters for a fair comparison

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

MNIST CIFAR10 SVHN

ANODEs achieve higher accuracy at a lower computational cost than
NODEs

Note that both ANODEs and NODEs have the same number of
parameters for a fair comparison

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Generalization: ANODEs achieve lower test losses and higher accuracy on
image datasets as well

MNIST

CIFAR10

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Instabilities:

NFEs could often become prohibitively large (in excess of 1000, which
roughly corresponds to a 1000-layer ResNet). For example, when
overfitting a NODE on MNIST, the learned flow can become so ill posed
the ODE solver requires timesteps that are smaller than machine precision
resulting in underflow.

Further, this complex flow often leads to unstable training resulting in
exploding losses. Augmentation consistently leads to stable training and
fewer NFEs, even when overfitting

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Experiments (Images)

Scaling: Both NODEs and ANODEs on 200 classes of 64× 64 ImageNet

Figure: ANODEs scale better, achieve lower training losses and have
roughly 10x faster training times

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

While ANODEs are faster than NODEs, they are still slower than
ResNets.

Augmentation changes the dimension of the input space which,
depending on the application, may not be desirable

The augmented dimension p can be seen as an extra hyperparameter to
tune.

For excessively large augmented dimensions (e.g. adding 100 channels to
MNIST), the model tends to perform worse with higher losses and NFEs

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

While ANODEs are faster than NODEs, they are still slower than
ResNets.

Augmentation changes the dimension of the input space which,
depending on the application, may not be desirable

The augmented dimension p can be seen as an extra hyperparameter to
tune.

For excessively large augmented dimensions (e.g. adding 100 channels to
MNIST), the model tends to perform worse with higher losses and NFEs

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

While ANODEs are faster than NODEs, they are still slower than
ResNets.

Augmentation changes the dimension of the input space which,
depending on the application, may not be desirable

The augmented dimension p can be seen as an extra hyperparameter to
tune.

For excessively large augmented dimensions (e.g. adding 100 channels to
MNIST), the model tends to perform worse with higher losses and NFEs

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

While ANODEs are faster than NODEs, they are still slower than
ResNets.

Augmentation changes the dimension of the input space which,
depending on the application, may not be desirable

The augmented dimension p can be seen as an extra hyperparameter to
tune.

For excessively large augmented dimensions (e.g. adding 100 channels to
MNIST), the model tends to perform worse with higher losses and NFEs

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

There are classes of functions NODEs cannot represent and, in particular,
that NODEs only learn features that are homeomorphic to the input space

Showed through empirical experiments that this leads to slower learning
and complex flows which are expensive to compute

Proposed Augmented Neural ODEs which learn the flow from input to
features in an augmented space and show that ANODEs can model more
complex functions using simpler flows while achieving lower losses,
reducing computational cost, and improving stability and generalization.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

There are classes of functions NODEs cannot represent and, in particular,
that NODEs only learn features that are homeomorphic to the input space

Showed through empirical experiments that this leads to slower learning
and complex flows which are expensive to compute

Proposed Augmented Neural ODEs which learn the flow from input to
features in an augmented space and show that ANODEs can model more
complex functions using simpler flows while achieving lower losses,
reducing computational cost, and improving stability and generalization.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Conclusions

There are classes of functions NODEs cannot represent and, in particular,
that NODEs only learn features that are homeomorphic to the input space

Showed through empirical experiments that this leads to slower learning
and complex flows which are expensive to compute

Proposed Augmented Neural ODEs which learn the flow from input to
features in an augmented space and show that ANODEs can model more
complex functions using simpler flows while achieving lower losses,
reducing computational cost, and improving stability and generalization.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Table of Contents

1 NODE

2 ODE Flows

3 ANODE

4 Experiments

5 Conclusions

6 Code

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali



NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

Augmented Neural ODE: Code

Pytorch: https:

//github.com/EmilienDupont/augmented-neural-odes

Julia (DiffeqFlux): https://diffeqflux.sciml.ai/dev/

examples/augmented_neural_ode/

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

https://github.com/EmilienDupont/augmented-neural-odes
https://github.com/EmilienDupont/augmented-neural-odes
https://diffeqflux.sciml.ai/dev/examples/augmented_neural_ode/
https://diffeqflux.sciml.ai/dev/examples/augmented_neural_ode/


NODE
ODE Flows

ANODE
Experiments

Conclusions
Code

References

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and
D. Duvenaud.
Neural ordinary differential equations, 2019, 1806.07366.

E. Dupont, A. Doucet, and Y. W. Teh.
Augmented neural odes, 2019, 1904.01681.

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever,
and D. Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible
generative models, 2018, 1810.01367.

Emilien Dupont, Arnaud Doucet, Yee Whye Teh CS598 NODE 2: Augmented Neural ODEs – Bhavesh Shrimali

http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1904.01681
http://arxiv.org/abs/1810.01367

	NODE
	ODE Flows
	ANODE
	Experiments
	Conclusions
	Code

	anm0: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


