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NODE 2: Approximation Capabilities of Neural
ODEs and Invertible Residual Networks
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

November 4, 2021
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Invertible Residual Networks

ResNet: xt+1 = xt + ft(xt , θt)

Usually the same function form in every layer, use fΘ(xt , t)

i-ResNets and Residual Flows

fΘ is Lipschitz as a function of x for fixed t
Lipschitz constant is less than 1, i.e., Lip(fΘ) < 1

Constraint is sufficient to ensure invertibility of the ResNet

xt 7→ xt+1 is a one-to-one mapping

For a mapping x 7→ 2x , one layer i-ResNet is insufficient

Need two layers x 7→ x + (
√

2− 1)x , due to Lipshitz constraint

In general, i-ResNets have Lipschitz constant Lip(I + fΘ) < 2

Can we approximate any invertible mapping with Lipschitz
constant K using i-ResNets?

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Neural ODEs

Quick recap:
dxt
dt

= fΘ(xt , t)

xT = x0 +

∫ T

0
fΘ(xt , t)dt

p-dimensional ODE-Net (neural ODE)

Input / output must be p-dimensional
Inner layers can potentially use higher dimensions

ODE-Nets are invertible by design, i.e., reverse limits of integral

Adjoint sensitivity method based reverse time integration helps
gradient descent

Neural ODEs on its own are not universal approximators

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets



4/18

Background: Flows

A mapping h : X 7→ X is a homeomorphism if h is one-to-one,
onto, and both h and h−1 are continuous

A topological transformation group or flow is a triple (X ,G,Φ)

G is an additive group with neural element 0
Φ : X ×G 7→ X , Φ(x , 0) = x ,Φ(Φ(x , s), t) = Φ(x , s + t)
Φ is continuous w.r.t. the first argument

We consider X ⊂ Rp, so p-homeomorphisms, p-flows

Given a flow, an orbit or trajectory associated with x ∈ X is a
subspace G (x) = {Φ(x , t) : t ∈ G}
Given x , y ∈ X , either G (x) = G (y) or G (x) ∩ G (y) = ∅

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Background: Discrete and Continuous Flows

A discrete flow is defined by setting G = Z
For arbitrary homeomorphism h, the corresponding discrete flow is
a discrete dynamical system:
φ0(x) = x , φt+1 = h(φt(x)), φt−1(x) = h−1(φt(x))

Setting f (x) = h(x)− x gives a ResNet: xt+1 = xt + f (xt)

A continuous flow is defined by setting G = R
Neural ODEs are continuous flows with continuous dΦ/dt

Continuous flows orbits are continuous

Implications on what homeomorphisms φt can result from a flow

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Background: Continuous Flows and ODEs

For a continuous flow (X ,R,Φ), consider V (x) = dΦ(x , t)/dt|t=0

ODE dx/dt = V (x) corresponds to continuous flow (X ,R,Φ)

Note: Φ(x0,T ) = x0 +
∫ T

0 V (xt)dt, φ(S+T )(x0) = φT (φS(x0))

V (x) is continuous over x ∈ X , constant over t: autonomous ODE

Time dependent ODE can be converted to autonomous ODE

Rewrite fΘ(xt , t) by augmenting x by one dimension x [p + 1] = t
We also have dx [p + 1]/dt = 1 and x0[p + 1] = 0

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Background: Flow Embedding Problem

Given a p-flow, we can always find an ODE

Given an ODE, under some conditions, we can find a flow, and the
flow is necessarily a homeomorphism

Given a homeomorphism h, does a p-flow such that φT = h exist?

For a homeomorphism h : X 7→ X , its restricted embedding into a
flow is a flow (X ,R,Φ) such that h(x) = Φ(x ,T )

Does not always exist (⇒ not universal approximator)

An unrestricted embedding into a flow is a flow (Y,R,Φ) on Y of
dimensionality higher than X
Involves a homeomorphism g : X 7→ Z, where Z ⊂ Y such that
the flow on Y results in mappings on Z that are equivalent to h on
X , i.e., g(h(x)) = Φ(g(x),T )

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Approximating Homeomorphisms by Neural ODEs

Assume fΘ(xt) is a universal approximator

Modeling with the same dimensionality is restricted

E.g., mirror reflections cannot be handled

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Neural ODEs with Extra Dimensions

Let Neural ODEs operate in a higher dimensional space q > p

For h : X 7→ X , q = 2p suffices

Uses an ODE which maps [x , 0(p)] 7→ [h(x), 0(p)]

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Examples: Mapping using Extra Dimensions

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Recipe for Training Neural ODEs

Simple approach to approximate continuous, invertible mapping h,
and also get its inverse h−1

Pad the input x ∈ Rp with p zeroes

Output is split into two parts

First p-dimensions use loss function w.r.t. h(x)
Remaining p-dimensions penalized deviation from 0

Can approximate (x , h(x)) on the training set

Generalization: Need not be invertible out-of-sample

Perhaps transport and Jacobian regularization can help

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Approximating Homeomorphisms by i-ResNets

Recall: Neural ODEs (q = p) cannot model reflections

i-ResNets with same dimensions cannot model f (x) = −x

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Approximating Homeomorphisms by i-ResNets

Leads to more general conclusions in high dimensions

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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i-Resnets with Extra Dimensions

As before, using q = 2p dimensions by zero-padding helps

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Recipe for Training iResNets

Order k layers may be needed to approximate homeomorphisms
h(x) with Lip(h) ≤ k

Only the first and last layer depends on h(x) and need to be trained

Middle layers are simple fixed linear layers

Approach: As before, zero-padding to 2p dimensions

Do not need differentiability in the time domain

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Invertible Networks as Universal Approximators

Neural ODE or i-ResNet followed by a simple linear layer

Universal approximator similar to wide networks

Consider f : Rp 7→ Rr , (x , y) such that y = f (x)

The mapping (x , 0) 7→ (x , y) is a (p + r)-homoemorphism

Can be approximated by a 2(p + r) Neural ODE or i-ResNet
y can be extracted by a simple linear layer

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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Results: Approximations with increased Dimensionality

Instructor: Arindam Banerjee Approximation by Neural ODEs, i-ResNets
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