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Latent Variable Models Recap

e Joint distribution of a latent variable model (LVM)
po(x,z) = po(z)po(x|2) ,

e x denotes the observed variable
e z denotes the latent variable
e 0 denotes the parameters

@ Problems of interest
e Compute marginal or conditional distributions

po(x) = /pe(x,z)dz po(z]x) = po(x,z)

o Estimate 6 by optimizing a function of py(x)
@ Problems need to compute high-d integrals
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Variational Inference

Construct a distribution g4(z|x) with parameters ¢

Choose family g and parameters ¢ to approximate true posterior
qs(z[x) = po(z|x)

For any g4(z|x)
log po(x) > Eq, (z/x)[log po(x, z) — log q(z[x)] = £

Goal: Choosing a more flexible g4(z|x)
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MCMC and Auxiliary Variables

MCMC uses a stochastic transition operator: z; ~ q(z¢|zt—1, %)

Main idea: Variational distribution g based on T steps of MCMC
T

q(z0:71%) = a(20lx) [ ] a(zt|2e-1, %)
t=1
Intermediate auxiliary r.v.s: y = z5.7_1

Variational lower bound
Laux = Eq(y,27(x) [log(p(x, z7)r(y|x, 21)) — log q(y, z7|x)]
= L = Eq(zrp [KL[q(ylze, x) || r(y|zT, x)]
< L < log p(x)

Here L corresponds to ELBO for q(z7|x)
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MCMC and Auxiliary Variables (Contd.)

e Optimal choice r(y|x,z7) = q(y|x,zT1), maybe intractable

@ Approximate using distribution with Markov structure
r(207 e 7ZT—1’X7 ZT) = H rt(zt'fl‘xv Zi‘)

@ Variational lower bound
log p(x) > Eq[log p(x. z1) + log r(zo, coyzr—1) —log q(zo, . . ., z7|X)]

:Eq log X, T +Z| rt Zt— 1\X Zt)

at Zt‘x Zr— 1)

@ Index t = transition g, inverse r; may change with t
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MCMC Lower Bound Estimate

Algorithm 1 MCMC lower bound estimate
Require: Model with joint distribution p(z, z) and a

desired but intractable posterior p(z|x)
Require: Number of iterations 7'
Require: Transition operator(s) q:(z:|x, z¢—1)
Require: Inverse model(s) r¢(z:—1 |z, 2¢)

Draw an initial random variable zg ~ g(zp|x)

Initialize the lower bound estimate as

L =logp(z, z0) — log q(0|z)

fort=1:T do

Perform random transition z; ~ g (z¢|z, zt—1)

p(@,ze)re(ze—1]|m,2¢)
p(x,ze—1)q¢ (z¢|w,20—1)
Update the lower bound L = L + log[oy]
end for

return the unbiased lower bound estimate L

Calculate the ratio oy =
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Optimizing the Lower Bound

Algorithm 2 Markov Chain Variational Inference

(MCVI)
Require: Forward Markov model gg(z) and backward
Markov model r¢(2o, .. ., zi—1|27)

Require: Parameters 6
Require: Stochastic estimate L(6) of the variational
lower bound Ly« (#) from Algorithm 1
while not converged do
Obtain unbiased stochastic estimate ¢ with
E4[4] = VoLaux(0) by differentiating L(6)
Update the parameters # using gradient ¢ and a
stochastic optimization algorithm
end while
return final optimized variational parameters 0
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Example: Bi-variate Gaussians

@ Bi-variate Gaussian model

(21 — 22)2 (21 + 22)2
Z1,2p) X exp | — —
P(z1,22) P { 20% 20%
@ Two approaches for MCMC
o Gibbs sampling based on q(zj|z—;) = N(u;,0?)
e Over-relaxation based on

a(zitlze—1) = N(pi + a(zie1 — i), 07 (1 — o?))

e Equivalent for « =0
o General a may lead to better mixing
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Example: Bi-variate Gaussians

variational lower bound

overrelaxation
05 = = = Gibbs sampling

0 L L L L L L L L
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nr of MCMC steps

Figure 1. The log marginal likelihood lower bound for a bi-
variate Gaussian target and an MCMC variational approx-
imaton, using Gibbs sampling or Adler’s overrelaxation.
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Hamiltonian Dynamics

e State of the system g, momentum p (= mv, mass x velocity)

o Potential energy U(q): height of surface, negative log-likelihood

o Kinetic energy K(p) = %mv2 =2

~ 2m
e Dynamics at a high level (without friction, K 4 U is conserved)
e Flat surface, move with constant velocity
e Upwards slope: K decreases, slows down, stop and slide back down
e Downward slope: K increases, speeds up, reach valley, overshoot

@ System is described by the Hamiltonian H(q, p)

@ Hamilton's equations characterize change in g;, p;,i =1,...,d
dq,- . oH dp,' o oH
dt ~ Opi dt g

e With z = (g, p) € R??, Hamilton's equation is
dz Odxd /dxd]
P _ jVH(z), J=
dt (2) |:_/d><d Odxd

10/32

Instructor: Arindam Banerjee



Hamiltonian Monte Carlo

Hamiltonian as
H(q,p) = U(q)+K(p),  K(p)=p M 'p/2

M is typically diagonal, or scaled identity

Reversible: Mapping Ts : (q(t), p(t)) — (q(t +s),p(t +5)) is
one-one, onto

e Has a well defined inverse T_

Conservation: Hamiltonian is invariant over time, ‘é—’: =0

Volume preservation: Known as Liouville’s Theorem

e T, applied to some region R of (q, p) space with volume V
e The image of R from T will have the same volume
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Hamiltonian Monte Carlo: Leapfrog Method

@ Hamilton's equations characterize change in g;,p;,i =1,...,d
dq,- B oH dp,' o oH
dt op; dt aq;

@ Hamiltonian as
H(a,p) = U(a) + K(p) ,  K(p)=p M 'p/2

@ Leapfron updates
ou
" (q(t))

pi(t+/2)

(A

plt+¢/2) = pt) — (¢/2)

gG(t+e) = qt) + <

p(t+e) = pilt+e/D) = /)5 ta(e+2)
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Hamiltonian Variational Inference

HMC approximates p(z|x) by expanding the space to include v

Auxiliary variables v (momentum) with v{ ~ q(v{|x, z:—1)

Simulate dynamics by iterative updates based on leapfrog on the
Hamiltonian

1
H(v,z) = EVTM_lv — log p(x, z)

Related respectively to the kinetic and potential energies

Dynamics is guided by gradient of exact log-posterior
e Approximation automatically adapts to local shape of true posterior
@ Tradeoffs

o Better quality approximation, lower variance in SGD estimates
o Cost per iteration is higher: m MCMC steps, k leapfrog for each

13/32

Instructor: Arindam Banerjee



Algorithm: Hamiltonian Variational In

Algorithm 3 Hamiltonian variational inference (HVI)

Require: Unnormalized log posterior log p(z, z)
Require: Number of iterations 7'
Require: Momentum initialization distribution(s)
q+(vf]|zt—1, x) and inverse model(s) 7¢(ve|zt, @)
Require: HMC stepsize and mass matrix €, M
Draw an initial random variable zg ~ g(zo|x)
Init. lower bound L = log[p(x, 20)] — log[q(zo|z)]
fort=1:7do
Draw initial momentum v; ~ g, (vi|z, z,—1)
Set z, v, = Hamiltonian_Dynamics(z;—1, v})
Calculate the ratio ay = _p@zgre(eez)
p(@,2t—1)q (vi]@,20 1)
Update the lower bound L = L + log[ay]
end for
return lower bound L, approx. posterior draw zp
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Example: Beta-Binomial Model
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Figure 2. Approximate posteriors for a varying number of
leapfrog steps. Exact posterior at bottom right.
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Example: Beta-Binomial Model
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Figure 3. R-squared accuracy measure (Salimans &
Knowles, 2013) for approximate posteriors using a varying
number of leapfrog steps.
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Example: Hand-written Digits

Table 1. Comparison of our approach to other recent meth-
ods in the literature. We compare the average marginal
log-likelihood measured in nats of the digits in the MNIST
test set. See section 3.2 for details.
Model logp(z) logp(x)
<— __

HVI + fully-connected VAE:
Without inference network:

5 leaptrog steps 90.86 87.16
10 leapfrog steps 87.60 85.56
With inference network:

No leapfrog steps 94.18 88.95
1 leapfrog step 91.70 88.08
4 leapfrog steps 89.82 86.40
8 leapfrog steps 88.30 85.51
HVI + convolutional VAE:

No leapfrog steps 86.66 83.20
1 leapfrog step 85.40 82.98
2 leapfrog steps 85.17 82.96
4 leapfrog steps 84.94 82.78
8 leapfrog steps 84.81 82.72
16 leapfrog steps 84.11 82.22

16 leapfrog steps, np = 800  83.49 81.94
From (Gregor et al., 2015):

DBN 2hl 84.55
EoNADE 85.10
DARN 1hl 88.30 84.13
DARN 12hl 87.72
DRAW 80.97
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Probabilistic Models based on Diffusions

@ Markov chain to convert one distribution to another
e Used in non-equilibrium statistical physics
o Related to sequential Monte Carlo, annealed importance sampling
o Related to Langevin dynamics with target distribution

Forward trajectory: Data distribution to Gaussians, by Diffusions

Generative model is the reverse trajectory

Forward (inference) process is restricted to simple form
e Ensures the reverse process will have the same functional form

Models with thousands of layers (time steps)
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Gaussian Diffusion:

o
o (x0T o o ‘“5¢f o 3
p(x(o'“T)) 0 0 A 0| :

,. 3
£, (x®, ) — x®
e

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q (x(o'"T) . The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-
sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p x(D"'T]). An identity-covariance
Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, ), (x(” s t) — x(‘), for the same reverse diffusion process.
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Binomial Diffusion

t=0
o
5
o o o
299 o o
0---T o a a
e
20
0 5 10 15 0 5 10 15
Bin Bin Bin

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every Sth bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.
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Samples generated on CIFAR-10
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Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (¢) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (¢) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (¢) Samples generated by the diffusion model.
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Forward Trajectory

o Data distribution is g(x(9))
e Target distribution is some well behaved distribution 7(y)
o Forward trajectory goes from q(x(9)) to 7 (y)
o Repeatedly apply Markov diffusion kernel T.(y|y’; 8)
e [ is the diffusion rate
@ Forward trajectory

q(x(t)|x(t71)) = Tx(x (t)|x(t71)- Be)

q( (0--- T Hq (t 1
@ Target distribution

m(y) = / T(yly'; B)w(y")dy’
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Reverse Trajectory

@ Generative model goes in reverse to data distribution
p(x(T)) = r(x(7))

p((OT Hp t1|x(t

@ For continuous diffusion, reverse process has the functional form
o q(x®x(t=1) and g(x(t=D|x(1)) are both Gaussians (or binomial)
e Work with small diffusion rate 3,

@ Need to learn mean and covariance of Gaussian diffusion kernel
o f,(x(t),t), i (x(), t) are modeled as deep nets
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Gaussian and Binomial Diffusions

Gaussian | Binomial

Well behaved
tractable) distribution

(analytically

Forward diffusion kernel
Reverse diffusion kernel
Training targets
Forward distribution
Reverse distribution
Log likelihood

Lower bound on log likelihood

Perturbed reverse diffusion kernel

7 (x) =

g (xOxD) =
»(xD[x®) =

¢ (x0T =
p(x“’"”) _
-
K=

7 (xDx0) =

N (x1);0,T) B (x(1);0.5)
N (xO:;x=DyT= 5, 15:)
N (D38, (xO, 1), B (x0,1))
£, (x0,1), s (x,1), Brp

B (xW;x(=Y (1 8;) +0.58)
B (x:£, (x,1))
£, (x(0,1)
4 (xO) 17 0 (xOx D)
o (<) I 2 (<D [x0)
Jdx©q (x) logp (x@)
T, o) [Pt (g (RO xO) [ (CDx0))] 4 H, (XOXO) — H, (XO[XO) ~ H, (XT)

N (;( g, (60,0 4 £ (x0,0) ")

0 A0, s
w1 “Fwaﬂw”,ﬂNX-U)‘B(w R =)

Table App.1. The key equations in this paper for the specific cases of Gaussian and binomial diffusion processes. A’ (u3 1, 5) is a Gaussian distribution with mean 2 and covariance
. B (uir) is the distribution for a single Bernoulli trial, with u — 1 occurring with probability r, and u — 0 occurring with probability 1 — r. Finally, for the perturbed Bernoulli
trials b = xU™D (1 — B) + 0.58,, ¢t = [f,, (xﬁ”‘),r)] Landd! =1 (IE" = 1). and the distribution is given for a single bit i
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Model Probability

@ Exact computation of probability can be intractable
p(X(O)) _ /p(X(O“'T))dX(l"'T)

@ Instead can be computed based on the forward trajectory

(x(t=D|x
p(x (0 )) / (T) (H P( S 1)) q(X(L..T))dX(l...T)

o If forward and backward distributions are the same

o Need one sample, because of cancellations
o Diffusion rate 8 — 0
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e Training is based on maximizing log-likelihood w.r.t. p(x(t=1|x(t))

L= / log p(x(?)q(x(?)dx®)

T o(x(t= D) x(®)

A [P(X(”) <H M) q(x“-~”)] (<) dx®
‘ t=1

> / log [ (T) <ﬁ P(x (t— l \txi ))] q(X(o..AT))dX(o...T)

th

@ The lower bound (say, K) can be written as
Z/KL (xEDx(O) x )] p(x(t~ 1)|X(t))> g(x(©, x(1))gx(©) g (*)

+ Hg(X(D|XO) — Hy (XWX @) — H,y(x(T))
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Computing Posteriors

Involves multiplying p(x(?)) with positive r(x(?))
o Modified trajectory: p(x(t)) = Z%p(x(t))r(x(t))

Want the perturbed Markov kernel to satisfy
/3(X(t)) _ /ﬁ(x(t)|X(t+l))ﬁ(x(t+l))dx(t+1)

@ Can be satisfied with the reverse transition

BxO x(ET)y = = (5 (8))p(x(2)
PN D) = 5 L)

For smooth r(x(*)), small perturbation to the original p(x(!)|x(t+1))

Over time t, r(x(*)) should be slowly varying
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Results: Log-likelihood

Model Log Likelihood
Dead Leaves
— MCGSM 1.244 bits/pixel
Diffusion 1.489 bits/pixel
MNIST
Stacked CAE 174 + 2.3 bits
el DBN 199 + 2.9 bits
Deep GSN 309 + 1.6 bits
Diffusion 317 £ 2.7 bits
Adversarial net | 325 4 2.9 bits
Perfect model 349 + 3.3 bits

Table 2. Log likelihood comparisons to other algorithms. Dead
leaves images were evaluated using identical training and test data
as in (Theis et al., 2012). MNIST log likelihoods were estimated
using the Parzen-window code from (Goodfellow et al., 2014),
with values given in bits, and show that our performance is com-
parable to other recent techniques. The perfect model entry was
computed by applying the Parzen code to samples from the train-
ing data.
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Results: Samples
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Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (¢) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (¢) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (¢) Samples generated by the diffusion model.
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Results: Dead Leaf Images

(2) (b)
Figure 4. The proposed framework trained on dead leaf images (Jeulin, 1997; Lee et al., 2001). («) Example training image. (b) A sample
from the previous state of the art natural image model (Theis et al., 2012) trained on identical data, reproduced here with permission.
(c) A sample generated by the diffusion model. Note that it demonstrates fairly consistent occlusion relationships, displays a multiscale
distribution over object sizes, and produces circle-like objects, especially at smaller scales. As shown in Table 2, the diffusion model has
the highest log likelihood on the test set.

(©
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Results: Inpainting

Figure 5. Inpainting. (a) A bark image from (Lazebnik et al., 2005). (b) The same image with the central 100 x 100 pixel region replaced
with isotropic Gaussian noise. This is the initialization x™)) for the reverse trajectory. (c) The central 100x 100 region has been

inpainted using a diffusion probabilistic model trained on images of bark, by sampling from the posterior distribution over the missing
region conditioned on the rest of the image. Note the long-range spatial structure, for instance in the crack entering on the left side of the

inpainted region. The sample from the posterior was generated as described in Section 2.5, where 7 (x(o)) was set to a delta function
for known data, and a constant for missing data.
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