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NSDE 1: Stochastic Dynamics
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

November 9, 2021

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Latent Variable Models Recap

Joint distribution of a latent variable model (LVM)

pθ(x, z) = pθ(z)pθ(x|z) ,

x denotes the observed variable
z denotes the latent variable
θ denotes the parameters

Problems of interest

Compute marginal or conditional distributions

pθ(x) =

∫
z

pθ(x, z)dz pθ(z|x) =
pθ(x, z)

pθ(x)

Estimate θ by optimizing a function of pθ(x)

Problems need to compute high-d integrals

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Variational Inference

Construct a distribution qφ(z|x) with parameters φ

Choose family q and parameters φ to approximate true posterior

qφ(z|x) ≈ pθ(z|x)

For any qφ(z|x)

log pθ(x) ≥ Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] = L

Goal: Choosing a more flexible qφ(z|x)

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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MCMC and Auxiliary Variables

MCMC uses a stochastic transition operator: zt ∼ q(zt |zt−1, x)

Main idea: Variational distribution q based on T steps of MCMC

q(z0:T |x) = q(z0|x)
T∏
t=1

q(zt |zt−1, x)

Intermediate auxiliary r.v.s: y = z0:T−1

Variational lower bound

Laux = Eq(y ,zT |x)[log(p(x , zT )r(y |x , zT ))− log q(y , zT |x)]

= L − Eq(zT |x)[KL[q(y|zt , x)‖r(y|zT , x)]

≤ L ≤ log p(x)

Here L corresponds to ELBO for q(zT |x)

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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MCMC and Auxiliary Variables (Contd.)

Optimal choice r(y|x, zT ) = q(y|x, zT ), maybe intractable

Approximate using distribution with Markov structure

r(z0, . . . , zT−1|x, zT ) =
T∏
t=1

rt(zt−1|x , zt)

Variational lower bound

log p(x) ≥ Eq[log p(x, zT ) + log r(z0, . . . , zT−1)− log q(z0, . . . , zT |x)]

= Eq

[
log

p(x, zT )

q(z0|x)
+

T∑
t=1

log
rt(zt−1|x, zt)
qt(zt |x, zt−1)

]
Index t ⇒ transition qt , inverse rt may change with t

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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MCMC Lower Bound Estimate

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Optimizing the Lower Bound

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Example: Bi-variate Gaussians

Bi-variate Gaussian model

p(z1, z2) ∝ exp

[
−(z1 − z2)2

2σ2
1

− (z1 + z2)2

2σ2
2

]
Two approaches for MCMC

Gibbs sampling based on q(zi |z−i ) = N (µi , σ
2
i )

Over-relaxation based on

q(zi,t |zt−1) = N (µi + α(zi,t−1 − µi ), σ
2
i (1− α2))

Equivalent for α = 0
General α may lead to better mixing

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Example: Bi-variate Gaussians

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Hamiltonian Dynamics

State of the system q, momentum p (= mv , mass × velocity)

Potential energy U(q): height of surface, negative log-likelihood

Kinetic energy K (p) = 1
2mv2 = p2

2m

Dynamics at a high level (without friction, K + U is conserved)

Flat surface, move with constant velocity
Upwards slope: K decreases, slows down, stop and slide back down
Downward slope: K increases, speeds up, reach valley, overshoot

System is described by the Hamiltonian H(q, p)

Hamilton’s equations characterize change in qi , pi , i = 1, . . . , d
dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

With z = (q, p) ∈ R2d , Hamilton’s equation is
dz

dt
= J∇H(z) , J =

[
0d×d Id×d
−Id×d 0d×d

]

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Hamiltonian Monte Carlo

Hamiltonian as

H(q, p) = U(q) + K (p) , K (p) = pTM−1p/2

M is typically diagonal, or scaled identity

Reversible: Mapping Ts : (q(t), p(t)) 7→ (q(t + s), p(t + s)) is
one-one, onto

Has a well defined inverse T−s

Conservation: Hamiltonian is invariant over time, dH
dt = 0

Volume preservation: Known as Liouville’s Theorem

Ts applied to some region R of (q, p) space with volume V
The image of R from Ts will have the same volume

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Hamiltonian Monte Carlo: Leapfrog Method

Hamilton’s equations characterize change in qi , pi , i = 1, . . . , d
dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

Hamiltonian as

H(q, p) = U(q) + K (p) , K (p) = pTM−1p/2

Leapfron updates

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Hamiltonian Variational Inference

HMC approximates p(z|x) by expanding the space to include v

Auxiliary variables v (momentum) with v ′t ∼ q(v ′t |x, zt−1)

Simulate dynamics by iterative updates based on leapfrog on the
Hamiltonian

H(v , z) =
1

2
vTM−1v − log p(x, z)

Related respectively to the kinetic and potential energies

Dynamics is guided by gradient of exact log-posterior

Approximation automatically adapts to local shape of true posterior

Tradeoffs

Better quality approximation, lower variance in SGD estimates
Cost per iteration is higher: m MCMC steps, k leapfrog for each

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Algorithm: Hamiltonian Variational Inference

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Example: Beta-Binomial Model

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Example: Beta-Binomial Model

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Example: Hand-written Digits

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Probabilistic Models based on Diffusions

Markov chain to convert one distribution to another

Used in non-equilibrium statistical physics
Related to sequential Monte Carlo, annealed importance sampling
Related to Langevin dynamics with target distribution

Forward trajectory: Data distribution to Gaussians, by Diffusions

Generative model is the reverse trajectory

Forward (inference) process is restricted to simple form

Ensures the reverse process will have the same functional form

Models with thousands of layers (time steps)

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Gaussian Diffusion: Forward and Reverse Trajectories

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Binomial Diffusion

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Samples generated on CIFAR-10

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Forward Trajectory

Data distribution is q(x(0))

Target distribution is some well behaved distribution π(y)

Forward trajectory goes from q(x(0)) to π(y)

Repeatedly apply Markov diffusion kernel Tπ(y|y′;β)
β is the diffusion rate

Forward trajectory

q(x(t)|x(t−1)) = Tπ(x(t)|x(t−1);βt)

q(x(0···T )) = q(x(0))
T∏
t=1

q(x(t)|x(t−1))

Target distribution

π(y) =

∫
Tπ(y|y′;β)π(y′)dy′

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Reverse Trajectory

Generative model goes in reverse to data distribution

p(x(T )) = π(x(T ))

p(x(0···T )) = p(x(T ))
T∏
t=1

p(x(t−1)|x(t))

For continuous diffusion, reverse process has the functional form

q(x(t)|x(t−1)) and q(x(t−1)|x(t)) are both Gaussians (or binomial)
Work with small diffusion rate βt

Need to learn mean and covariance of Gaussian diffusion kernel

fµ(x(t), t), fΣ(x(t), t) are modeled as deep nets

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Gaussian and Binomial Diffusions

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Model Probability

Exact computation of probability can be intractable

p(x(0)) =

∫
p(x (0...T ))dx(1...T )

Instead can be computed based on the forward trajectory

p(x(0)) =

∫
p(x(T ))

(
T∏
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

)
q(x (1...T ))dx(1...T )

If forward and backward distributions are the same

Need one sample, because of cancellations
Diffusion rate β → 0

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Training

Training is based on maximizing log-likelihood w.r.t. p(x(t−1)|x(t))

L =

∫
log p(x (0))q(x (0))dx(0)

=

∫
log

[
p(x(T ))

(
T∏
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

)
q(x (1...T ))

]
q(x (0))dx(0)

≥
∫

log

[
p(x(T ))

(
T∏
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

)]
q(x (0...T ))dx(0···T )

The lower bound (say, K ) can be written as

K = −
T∑
t=2

∫
KL
(
q(x(t−1)|x(t), x(0))‖p(x(t−1)|x(t))

)
q(x(0), x(t))dx(0)dx(t)

+ Hq(X (T )|X (0))− Hq(X (1)|X (0))− Hp(X (T ))

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Computing Posteriors

Involves multiplying p(x(0)) with positive r(x(0))

Modified trajectory: p̃(x(t)) = 1
Z̃t
p(x(t))r(x(t))

Want the perturbed Markov kernel to satisfy

p̃(x(t)) =

∫
p̃(x(t)|x(t+1))p̃(x(t+1))dx(t+1)

Can be satisfied with the reverse transition

p̃(x(t)|x(t+1)) =
1

Z̃t(x(t+1))
p(x(t))r(x(t))

For smooth r(x(t)), small perturbation to the original p(x(t)|x(t+1))

Over time t, r(x(t)) should be slowly varying

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Results: Log-likelihood

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Results: Samples

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Results: Dead Leaf Images

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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Results: Inpainting

Instructor: Arindam Banerjee Stochastic Dynamics (HMC, Diffusion, etc.)
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