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Introduction: PINNs

PINNs - Neural networks that are trained to solve supervised learning tasks
while respecting physical laws (PDEs)

Data-driven solution [Raissi et al.(2017a)Raissi, Perdikaris, and Karniadakis]
Data-driven discovery of PDEs
[Raissi et al.(2017b)Raissi, Perdikaris, and Karniadakis]

Two distinct types of algorithms

New family of data-efficient spatio-temporal function approximators
Arbitrary accurate RK time steppers with potentially unlimited number of
stages

Paper: [Raissi et al.(2019)Raissi, Perdikaris, and Karniadakis]
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DNNs: Universal Approximators

Identify a nonlinear map from a few – potentially very high dimensional –
input and output pairs of data

However, many physical and biological systems consist of prior knowledge
encoded in physical laws, e.g. Newton’s laws of motion, Maxwell’s laws of
electromagnetism

This prior information can act as a regularization constraint that reduces
the space of admissible solutions =⇒ remove unrealistic solutions that
violate fundamental conservation laws (mass, momentum, energy)

Previous ideas employed Gaussian process regression, but these were limited
in their ability to handle nonlinear problems

PDEs

Need both initial conditions and boundary conditions

Point Collocation methods: Function Approximation + point evaluation, e.g.
consider an approximation problem for a function u(x) on x ∈ (0, 1),

u(x) ∼ ũ(x) = a0 + a1x + a2x
2; with ũ (xj) = ûj , j = 1, 2
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u(x) ∼ ũ(x) = a0 + a1x + a2x
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Problem setup

Parameterized, nonlinear PDE(s)

ut +N [u;λ] = 0, x ∈ Ω ⊂ RD , t ∈ [0,T ]; (·)t =
∂ (·)
∂t

where u(t, x) denotes the latent (hidden) solution, N [·;λ] is a nonlinear
operator parametrized by λ

The above setup covers a wide range of PDEs in math. physics, including
conservation laws, diffusion, reac-diff-advec. PDE, kinetics etc. E.g., Burger’s
equation in 2D

N [u;λ] = λ1uux − λ2uxx and λ = (λ1, λ2) ; (·)x =
∂ (·)
∂x

(·)xx =
∂2 (·)
∂x2

Given λ what is u(t, x) (Inference, filtering and smoothing or simply
data-driven solutions of PDEs)

Find λ that best describes observations u (ti , xj) (Learning, system
identification, or data-driven discovery of PDEs)
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Data-driven solutions

Rewrite the PDE as f (u; t, x) = 0

f (u; t, x)
.

= ut +N [u], along with u = uθ (t, x)

Along with the above constraint (+ AD) this gives Physics-informed neural
network parameterized by θ

L = Lu + Lf

Lu =
1

Nu

Nu∑
i=1

∣∣u (t iu, x iu)− ui
∣∣2 ; Lf =

1

Nf

Nf∑
i=1

∣∣f (t if , x if )∣∣2
{
t iu, x

i
u, u

i
}Nu

i=1
denote the initial and boundary training data on u(t, x){

t if , x
i
f

}Nf

i=1
specify the collocation points for f (u; t, x)

Lu helps to enforce initial and boundary data accurately, while Lf imposes
the structure of the PDE into the total loss
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Data-driven solutions: Examples

Most examples that follow have a small number of training data

Optimizer: L-BFGS (quasi-second order)
Full-batch

No theoretical guarantees, but as long as the PDE is well-posed =⇒
optimizer will find the solution
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Schrödinger equation

Strong form of the PDE (note that h(t, x) = u(t, x) + i v(t, x))

f
.

= iht + 0.5hxx + |h|2h = 0, x ∈ [−5, 5], t ∈ [0, π/2]

h(0, x) = 2 sech(x)

h(t,−5) = h(t, 5)

hx(t,−5) = hx(t, 5)

Total loss is given as
L = L0 + Lb︸ ︷︷ ︸

=Lu

+Lf

Initial/Boundary data:

L0 =
1

N0

N0∑
i=1

∣∣h (0, x i0)− hi0
∣∣2 ; Lf =

1

Nf

Nf∑
i=1

∣∣f (t if , x if )∣∣2
Lb =

1

Nb

Nb∑
i=1

(∣∣hi (t ib,−5
)
− hi

(
t ib, 5

)∣∣2 +
∣∣hix (t ib,−5

)
− hix

(
t ib, 5

)∣∣2)
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Schrödinger equation

Training data

Integrate the PDE using a Spectral solver (Chebfun) in space (x)

A fourth order explicit RK time-stepper to integrate in time (t)
(scipy.integrate.solve ivp){
x i0, h

i
0

}N0

i=1
are measurements of h(t, x) at time t = 0. Specifically they

choose, N0 = Nb = 50 and Nf = 20, 000

Representation

h(t, x) = [u(t, x)v(t, x)] using a 5-layer deep neural network with 100
neurons per layer

The choice is purely empricial (no theoretical basis (yet)). Bayesian
optimization to fine-tune the design of the DNN

Potential issues

Continuous time NN models require a large number of collocation points
through the domain Nf
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Schrödinger equation

Figure: Top: Boundary and Initial data (150 points), Bottom: Snapshots of the solution
of the Schrödinger equation using a PINN
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Schrödinger equation

Flexible time-steppers:

Use a generalized RK method with, say, q stages

un+ci = un −∆t

q∑
j=1

aijN
[
un+cj

]
, i = 1, . . . , q

un+1 = un −∆t

q∑
j=1

bjN
[
un+cj

]
The above update can be rewritten as

un = uni , i = 1, . . . , q ; and un = unq+1

with

uni
.

= un+ci + ∆t

q∑
j=1

aijN
[
un+cj

]
, i = 1, . . . , q

unq+1
.

= un+1 + ∆t

q∑
j=1

bjN
[
un+cj

]
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Allen-Cahn Equation

Make use of the above adaptive time-stepper

ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = x2 cos(πx),

u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1).

The differential operator: N [un+cj ] = −0.0001u
n+cj
xx + 5 (un+cj )

3 − 5un+cj

The loss function is the sum of squared losses

SSEn =

q+1∑
j=1

Nn∑
i=1

∣∣unj (xn,i)− un,i
∣∣2

SSEb =

q∑
i=1

∣∣un+ci (−1)− un+ci (1)
∣∣2 +

∣∣un+1(−1)− un+1(1)
∣∣2

+

q∑
i=1

∣∣un+ci
x (−1)− un+ci

x (1)
∣∣2 +

∣∣un+1
x (−1)− un+1

x (1)
∣∣2
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Data-driven discovery of PDEs: Navier Stokes

Navier-Stokes Equations

Describe the physics of many phenomena, such as weather, ocean currents,
water flow in a pipe and air flow around a wing.

ut + λ1 (uux + vuy ) = −px + λ2 (uxx + uyy )

vt + λ1 (uvx + vvy ) = −py + λ2 (vxx + vyy )
; where (·)x =

∂ (·)
∂x

u(t, x , y) denotes the x-component of the velocity, v(t, x , y) denotes the y
component and p(t, x , y) the pressure

Conservation of mass: ux + vy = 0 =⇒ u = ψy , v = −ψx

Given a set of observations:
{
t i , x i , y i , ui , v i

}N
i=1

f
.

= ut + λ1 (uux + vuy ) + px − λ2 (uxx + uyy )

g
.

= vt + λ1 (uvx + vvy ) + py − λ2 (vxx + vyy )

Learn λ = {λ1, λ2}, and pressure field p(t, x , y) by jointly approximating
[ψ(t, x , y) p(t, x , y)] with a single NN with two outputs
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Data-driven discovery of PDEs: Navier Stokes

Navier-Stokes Equations

Train by minimizing the total loss

L .
=

1

N

N∑
i=1

(∣∣u (t i , x i , y i
)
− ui

∣∣2 +
∣∣v (t i , x i , y i

)
− v i

∣∣2)
+

1

N

N∑
i=1

(∣∣f (t i , x i , y i
)∣∣2 +

∣∣g (t i , x i , y i
)∣∣2)

Consider the prototypical problem of an incompressible flow past a (rigid)
cylinder, with various values of the Reynolds number Re = u∞D/ν

Training data is generated using a high-res spectral solver (NekTar)

Higher order piecewise approximation in space (tenth-order jacobi
polynomials), third-order approximation in time (stable for stiff problems)

Given stream-wise u(t, x , y) and transverse v(t, x , y) velocity data, identify
unknown λ = {λ1, λ2} as well as reconstruct p(t, x , y)

M. Raissi, P. Perdikaris, GE. Karniadakis PINNs November 18, 2021 21 / 30
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Navier-Stokes PDE

Figure: Navier-Stokes equation: Top: Incompressible flow and dynamic vortex shedding past a
circular cylinder at Re = 100. The spatio-temporal training data correspond to the depicted
rectangular region in the cylinder wake. Bottom: Locations of training data-points for the

stream-wise and transverse velocity components, u(t, x , y) and v(t, x , t), respectively.
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Navier-Stokes PDE: Observations

Set N = 5000 ∼1% of the total available data

Figure: Results for predicted pressure field

Correct PDE ut + (uux + vuy ) = −px + 0.01 (uxx + uyy )
vt + (uvx + vvy ) = −py + 0.01 (vxx + vyy )

Identified PDE (clean data) ut + 0.999 (uux + vuy ) = −px + 0.01047 (uxx + uyy )
vt + 0.999 (uvx + vvy ) = −py + 0.01047 (vxx + vyy )

Identified PDE (1% noise) ut + 0.998 (uux + vuy ) = −px + 0.01057 (uxx + uyy )
vt + 0.998 (uvx + vvy ) = −py + 0.01057 (vxx + vyy )

Table: Correct partial differential equation along with the identified one obtained by
learning λ1, λ2 and p(t, x , y).
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Korteweg-de Vries equation

KdV equation has higher order derivatives (models shallow water waves)

ut + λ1uux + λ2uxxx = 0

Learn a set of parameters (similar to NS)

N
[
un+cj

]
= λ1u

n+cju
n+cj
x − λ2u

n+cj
xxx

Figure: Results for the KdV equation
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Korteweg-de Vries equation

Correct PDE ut + uux + 0.0025uxxx = 0
Identified PDE (clean data) ut + 1.000uux + 0.0025002uxxx = 0
Identified PDE (1% noise) ut + 0.999uux + 0.0024996uxxx = 0

Remarks

Traditional spectral solvers require a smaller time-increment to achieve
similar accuracy

The authors chose q (hyperparameter) using a tolerance ε (in this case set to
machine precision)

q = 0.5 log ε/ log(∆t)

Time step for this problem is ∆t = 0.6

For the case of noise-free training data, the error in estimating λ1 and λ2 is
0.023%, and 0.006%, respectively, while the case with 1% noise in the
training data returns errors of 0.057%, and 0.017%, respectively.

Even for large temporal variations in the solution, the model is able to resolve
the dynamics accurately
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Conclusion

Introduced physics-informed neural networks, a new class of universal
function approximators that are capable of encoding any underlying physical
laws that govern a given data-set (described by PDEs)

Design data-driven algorithms for inferring solutions to general nonlinear
PDEs, and constructing computationally efficient physics-informed surrogate
models.

Questions

How deep/wide should the neural network be ? How much data is really
needed ?

Why does the algorithm converge to unique values for the parameters of the
differential operators, i.e., why is the algorithm not suffering from local
optima for the parameters of the differential operator?

Does the network suffer from vanishing gradients for deeper architectures and
higher order differential operators? Could this be mitigated by using different
activation functions?

Can we improve on initializing the network weights or normalizing the data?
Loss function choices (MSE, SSE)? Robustness?
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Code

https://github.com/maziarraissi/PINNs (TensorFlow)

Blog: https://maziarraissi.github.io/PINNs/

NeuralPDE.jl: https://neuralpde.sciml.ai/dev/

IDRLNet: https://github.com/idrl-lab/idrlnet (PyTorch)
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