Discovering governing equations from data by sparse

identification of nonlinear dynamical systems
Steven L. Bruntona, Joshua L. Proctor , and J. Nathan Kutz

1 Anurendra Kumar
Computer Science, UIUC

CS 598 DGDM, Class Presentation

S

(UIUC) Neural ODE Nov 2, 2021 1/16



A sneak peek into history: Modeling dynamics from data

o Copernicus: Heliocentric theory.
o Kepler’'s three laws driven by data.
@ Newton - Unified theory of motion across the universe.

Kepler’s 3 Laws of Planetary Motion
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The orbits are ellipses
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Symbolic Regression: Modeling dynamics from data

@ Generalization of regression.

@ Search over the space of all possible mathematical formulas best
predict the output variable, starting from a set of base functions like
addition, trigonometric functions, and exponentials.

@ Problems: Computationally expensive, does not clearly scale well to
large-scale dynamical systems of interest, and may be prone to
over-fitting.
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Background: Sparse Regression and Compressive Sensing

o Finding solutions to underdetermined linear systems. Sparsity helps us
break the Nyquist—-Shannon sampling theorem.

X:\US, y:q)X:(DWS

@ x is K sparse.

@ /1 norm regularization.

@ Extensive research on Compressive Sensing. No need to perform a
combinatorially intractable bruteforce search. Sparse solution is found

with high probability using convex methods that scale to large
problems. Terrence Tao.

!Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE signal proce56
magazine, 24(4), 118-121.
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Problem Setup: Dynamical Systems

d

Lx(1) = F(x(1)

@ Change in notation.

@ Vector x(t) denotes state time t, f denotes dynamics.
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Dynamical Systems as sparse regression
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Overrepresented Dictionary

X=0Ww

@ W has sparse coefficients.
@ Each row has separate optimization.

0(X)= # ):( X2 xXPo sin‘(X) cosl(X) ]
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Learnt Dynamical Systmes

x=f(x)=wWTex""

@ Basis functions important.

@ Test many different function bases and use the sparsity and accuracy
of the resulting model as a diagnostic tool to determine the correct

basis to represent the dynamics.
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Approximating derivative

o X is approximated and not known.

(]
X=0W+oZ
@ Z is iid normal distributed.

@ Depending on the noise, it may be necessary to filter X and X. Total
variation regularization to denoise derivative.
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Dynamical Systems with PDE

@ Numerical discretization on a spatial grid is exponentially large.

@ Fluid Dynamics - Simple 2D and 3D flows may require tens of
thousands up to billions of variables to represent the discretized
system.

@ Current formulation ill suited, since each row has separate
optimization.

@ Good news- Many high-dimensional systems of interest evolve on a
low dimensional manifold or attractor that is well-approximated using

a low-rank basis.
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Results: Lorenz System

@ Rich and chaotic dynamics that evolve on an attractor.

@ Only a few terms in the right-hand side of the equation
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Results: Lorenz System
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II. Sparse Regression to Solve for Active Terms in the Dynamics
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Results: Fluid Dynamics

@ Data are collected for the fluid flow past a cylinder using direct
numerical simulations of the 2D Navier-Stokes equations.

@ Hopf bifurcations, Reynolds number

@ 15 years of research into mean field model - low rank basis.
X=px —wy+Axz,
y=awx+ uy +Ayz,

zZ= —/1(2 —x? —yz).
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Results: Lorenz System
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Extensions
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