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A sneak peek into history: Modeling dynamics from data

Copernicus: Heliocentric theory.

Kepler’s three laws driven by data.

Newton - Unified theory of motion across the universe.
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Symbolic Regression: Modeling dynamics from data

Generalization of regression.

Search over the space of all possible mathematical formulas best
predict the output variable, starting from a set of base functions like
addition, trigonometric functions, and exponentials.

Problems: Computationally expensive, does not clearly scale well to
large-scale dynamical systems of interest, and may be prone to
over-fitting.
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Background: Sparse Regression and Compressive Sensing

Finding solutions to underdetermined linear systems. Sparsity helps us
break the Nyquist–Shannon sampling theorem.

x = Ψs, y = Φx = ΦΨs

x is K sparse.

l1 norm regularization.

Extensive research on Compressive Sensing. No need to perform a
combinatorially intractable bruteforce search. Sparse solution is found
with high probability using convex methods that scale to large
problems. Terrence Tao.

1Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE signal processing
magazine, 24(4), 118-121.
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Problem Setup: Dynamical Systems

d

dt
x(t) = f (x(t))

Change in notation.

Vector x(t) denotes state time t, f denotes dynamics.

(UIUC) Neural ODE Nov 2, 2021 5 / 16



Dynamical Systems as sparse regression
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Overrepresented Dictionary

Ẋ = ΘW

W has sparse coefficients.

Each row has separate optimization.
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Learnt Dynamical Systmes

ẋ = f (x) = W TΘ(xT )T

Basis functions important.

Test many different function bases and use the sparsity and accuracy
of the resulting model as a diagnostic tool to determine the correct
basis to represent the dynamics.
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Approximating derivative

Ẋ is approximated and not known.

Ẋ = ΘW + σZ

Z is iid normal distributed.

Depending on the noise, it may be necessary to filter X and Ẋ. Total
variation regularization to denoise derivative.
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Dynamical Systems with PDE

Numerical discretization on a spatial grid is exponentially large.

Fluid Dynamics - Simple 2D and 3D flows may require tens of
thousands up to billions of variables to represent the discretized
system.

Current formulation ill suited, since each row has separate
optimization.

Good news- Many high-dimensional systems of interest evolve on a
low dimensional manifold or attractor that is well-approximated using
a low-rank basis.
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Results: Lorenz System

Rich and chaotic dynamics that evolve on an attractor.

Only a few terms in the right-hand side of the equation
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Results: Lorenz System
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Results: Fluid Dynamics

Data are collected for the fluid flow past a cylinder using direct
numerical simulations of the 2D Navier–Stokes equations.

Hopf bifurcations, Reynolds number

15 years of research into mean field model - low rank basis.
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Results: Lorenz System
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Extensions
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