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CS 598: Deep Generative and Dynamical Models
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Motivation

Classical approaches based on normalized models

p(ξ, θ) =
1

Z (θ)
q(ξ; θ)

The normalization involves high-d integration

Z (θ) =

∫
ξ
q(ξ; θ)dξ

Classical approaches based on MCMC or variational inference

Difficult to scale up to high-dimensions

Can we build valid models without using Z (θ)
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Estimation by Score Matching

Consider parametric model family ψ(ξ; θ)

Score function based on gradient of log-likelihood w.r.t. location ξ,
rather than model parameter θ:

ψ(ξ; θ) = ∇ξ log pθ(ξ) =


∂ log p(ξ;θ)

∂ξ1
...

∂ log p(ξ;θ)
∂ξp

 =

ψ1(ξ; θ)
...

ψp(ξ; θ)


Can be computed for an assumed form of ψ(ξ; θ)

Does not depend on Z (θ) since ∇ξZ (θ) = 0

For data distribution Px, score

ψx(ξ) = ∇ξ log px(ξ)

Challenge: Need to know px(ξ) over all ξ
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Main Result: Tractable Score Matching

Goal: minimize the following objective function

J(θ) =
1

2

∫
ξ
px(ξ)‖ψ(ξ; θ)− ψx(ξ)‖2dξ

Assume ψ(ξ; θ) is differentiable and satisfies some regularity
conditions

Theorem: Objective function can be expressed as

J(θ) = EPx

[
p∑

i=1

{
∂2 log p(ξ; θ)

∂ξ2i
+

1

2

(
∂ log p(ξ; θ)

∂ξi

)2
}]

+ c

=

∫
ξ

(
Tr(∇ψ(ξ; θ)) +

1

2
‖ψ(ξ; θ)‖2

)
px(ξ)dξ + c

Only need to compute EPx , not gradients ∇x log px(ξ)
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Finite Sample Objective Function

Replace expectation with average over finite samples {xi}ni=1

J̄(θ) =
1

n

n∑
i=1

(
Tr(∇ψ(xi ; θ)) +

1

2
‖ψ(xi ; θ)‖2

)
Asymptotically equivalent to J

In practice, (nonconvex) optimization problem in θ
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Consistency

If the model is non-degenerate, we have local consistency

Estimation based on J̄ converges in probability
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Example: Multivariate Gaussian

Parameterized by mean µ and precision M = Σ−1

p(x;µ,M) =
1

Z (M)
exp

(
−1

2
(x− µ)TM(x − µ)

)

The finite sample objective

J̄(µ,M) =
1

n

n∑
i=1

(
−Tr(M) +

1

2
(xi − µ)TMM(xi − µ)

)
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Example: Multivariate Gaussian (Contd.)

Gradient w.r.t. µ

∇µJ̄ = MMµ−MM
1

n

n∑
i=1

xi

Gradient w.r.t. M

∇M J̄ =− I + M
1

n

n∑
i=1

(xi − µ)(xi − µ)T

+

(
1

n

n∑
i=1

(xi − µ)(xi − µ)T

)
M

Solution is exactly the same as maximum likelihood estimation
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Example: Independent Component Analysis (ICA)

Basic form of the ICA model

log p(x;W ) =

p∑
k=1

G (wT
k x) + Z (w1, . . . ,wp)

Normalization constant − log | detW |, W has rows wk

Generative model: sk , k = 1, . . . , p are i.i.d. distributed as
exp(G (sk)) x = As , A = W−1

p(x) is the distribution of x

Components sk follow the logistic distribution exp(G (sk)) with

G (s) = −2 log cosh

(
π

2
√

3
s

)
− log 4

Score-based model based on ∇W log p(x;W ), with g(s) = G ′(s)

ψ(x;W ) =

p∑
k=1

wkg(wT
k x)
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Results: ICA
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Results: ICA with Misspecification
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Example: Overcomplete ICA

Number of components m is larger than the data dimensionality p

Log-likelihood is given by

log p(x) =
m∑

k=1

αkG (wT
k x) + Z (w1:m, α1:m)

The vectors wk = (wk1, . . . ,wkp) satisfy ‖wk‖2 = 1

αk handles different distributions for different projections wT
k x

Score function

ψ(x;W , α1:m) =
m∑

k=1

αkwkg(wT
k x)
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Results: Overcomplete ICA, Estimated Filters
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Results: Inner Product Distribution
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Score-based Model

Score ∇x log p(x), samples {xi}ni=1, xi ∈ RD

Score network sθ : RD 7→ RD to approximate score pf p(x)

Recall that

Ep(x)

[
Tr(∇xsθ(x)) +

1

2
‖sθ(x)‖22

]

Arguably not scalable for high-d due to the Tr(∇xsθ(x)) term

Sliced score matching by efficiently estimating trace

Ev∼N (0,I)Ep(x)

[
vT∇xsθ(x)v +

1

2
‖sθ(x)‖22

]
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Score-Matching with Noise

Completely circumvent the Tr(∇xsθ(x)) term

Perturb data x with a pre-specified distribution qσ(x̃ |x)

Objective shown to be
1

2
Eqσ(x̃|x)p(x)

[
‖sθ(x)−∇x̃ log qσ(x̃ |x)‖2

]
The optimal network sθ∗(x) = ∇x log qσ(x)

Close to the true score ∇ log p(x) when qσ(x) ≈ p(x)
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Sampling with Langevin Dynamics

Sampling from p(x) using score function ∇x log p(x)

Sample x̃0 ∼ π (prior), for ‘small’ step-size ε

x̃t = x̃t−1 +
ε

2
∇x log p(x̃t−1) +

√
εzt

zt ∼ N (0, I )

Score-based generative model

Train sθ(x) ≈ ∇ log p(x)
Draw samples based on Langevin dynamics
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Challenges: Low-d Data Manifolds

Real world data lies in low-d manifolds

Score ∇x log p(x) is gradient taken in ambient space

Adding small amount of (ambient) noise seems to help
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Challenges: Low Density Regions

Low density regions may not have enough samples

Cannot estimate ∇x log p(x)
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Challenges: Mixing of Langevin Dynamics

Low density regions separating modes

Hard to recover relative weights of such disjoint modes

Modes with disjoint support: πp1(x) + (1− π)p2(x)

Score function does not depend on π
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Noise Conditional Score Networks

Choose a decreasing sequence {σi}Li=1 with σi
σi+1

> 1

Noise level σ1 is big enough to address low-density issues
Noise level σL is small, does not pertub true distribution by much

Perturbed distribution

qσ(x) =

∫
p(t)N (x|t, σ2I)dt

Score network jointly estimates score at all perturbations

sθ(x, σ) ≈ ∇x log qσ(x) , ∀σ ∈ {σi}Li=1

sθ(x, σ): Noise Conditional Score Network (NCSN)

Architecture for NCSN: U-nets with dilated/atrous convolutions
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Learning NCSNs via Score Matching

Score matching with denoise using

qσ(x̃|x) = cN(x̃|x, σ2I) ⇒ ∇x̃ log qσ(x̃|x) = −(x̃− x)2

σ2

Denoising score matching objective at any fixed σ

`(θ;σ) =
1

2
Ep(x)Ex̃∼N (x,σ2I)

[∥∥∥∥sθ(x̃, σ) +
(x̃− x)2

σ2

∥∥∥∥2
]

Combined objective, for some λ(σi ) > 0

L(θ; {σi}Li=1) =
1

L

L∑
i=1

λ(σi )`(θ;σi )

Choice of λ(σ) ∝ σ2 to make loss invariant to σ

Empirically ‖sθ(x, σ) ∝ 1/σ
Then, σ2`(θ;σ) = O(1)
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NCSN Inference via Annealed Langevin Dynamics

Run Langevin dynamics at different scales

Start from noise σ1, all the way down to σL

Run full dynamics at each level, step decreases for each level
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Results: Comparisons
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Results: Annealed Langevin dynamics
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Results: Samples
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Results: Inpainting
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