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Classical approaches based on normalized models

p(£,0) = Z(lg)q(s; 0)

The normalization involves high-d integration

7(0) = /5 a(¢: 6)de

Classical approaches based on MCMC or variational inference

Difficult to scale up to high-dimensions

Can we build valid models without using Z(0)

2/28

Instructor: Arindam Banerjee



Estimation by Score Matching

e Consider parametric model family ¥(¢&; 0)

@ Score function based on gradient of log-likelihood w.r.t. location &,

rather than model parameter 6:
Jlog p(&:9)

0&1 wl(g; 9)
(& 0) = Ve log p(€) = : =1
O lo &0 .
Dlogrlct) | |y, (€:0)
e Can be computed for an assumed form of ¥ (¢&; 0)
@ Does not depend on Z(f) since V¢Z(0) =0

@ For data distribution P, score

Ux(§) = Ve log px(€)
o Challenge: Need to know py (&) over all £
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Main Result: Tractable Score Matching

@ Goal: minimize the following objective function

50) = 3 [ POl 0) vl

o Assume (&; 0) is differentiable and satisfies some regularity
conditions

@ Theorem: Objective function can be expressed as

°. [ 32logp(&;0) 1 (Dlogp(&0))>
Z{ o2 +2( o%; )

i=1

J(0) = Ep, +ec

_ g : 1 -0)|1% c
= [[(Tvuteon+ o) piera+

@ Only need to compute Ep_, not gradients V log px(£)
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Finite Sample Objective Function

@ Replace expectation with average over finite samples {x;}"_,
n

_ 1 1
J0) = 35 (TH(Tti 0) + S0P
i=1
@ Asymptotically equivalent to J

@ In practice, (nonconvex) optimization problem in 6
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Consistency

o If the model is non-degenerate, we have local consistency

Theorem 2 Assume the pdf of x follows the model: px(.) = p(.;0%) for some 0. Assume
further that no other parameter value gives a pdf that is equal® to p(.; 0*), and that q(€;0) >
0 for all §,0. Then

J(6)=0<0=6"

o Estimation based on J converges in probability

Corollary 3 Under the assumptions of the preceding Theorems, the score matching esti-
mator obtained by minimization of J is consistent, i.e. it converges in probability towards
the true value of @ when sample size approaches infinity, assuming that the optimization
algorithm is able to find the global minimum.
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Example: Multivariate Gaussian

o Parameterized by mean p and precision M = ¥ !

p(x; p, M) = Z(lM) exp (—;(X — )T M(x - u))

@ The finite sample objective
n

J(u, M) = % Z <— Tr(M) + %(x; — )T MM(x; — /L))

i=1
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Example: Multivariate Gaussian (Contd.)

o Gradient w.r.t. u
_ 1<
th:MMuMMnigm
o Gradient w.r.t. M

_ 1<
J=—1+M= i—m)(xi —p)"
Vm + ”Z}X w)(xi — )

i=1
@ Solution is exactly the same as maximum likelihood estimation
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Example: Independent Component Analysis (ICA)

@ Basic form of the ICA model

p
log p(x; W) = Z G(wix)+ Z(w, ..., wp)

k=1
o Normalization constant — log | det W|, W has rows wy

o Generative model: s,k =1,...,p arei.i.d. distributed as
exp(G(sk)) x = As | A= w1
o p(x) is the distribution of x
e Components s follow the logistic distribution exp(G(sk)) with

T
G(s) = —2logcosh| —=s | — log4
(5) = ~2logcosh ( ;75 ) - tog

@ Score-based model based on Vy log p(x; W), with g(s) = G'(s)
P
Wi W) = wig(wix)
k=1
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Results: ICA
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Figure 1: The estimation errors of score matching (solid line) compared with errors of max-
imum likelihood estimation (dashed line) for the basic ICA model. Horizontal
axis: log;, of sample size. Vertical axis: log;y of estimation error.
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Results: ICA with Misspecification
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Figure 2: The estimation errors of score matching compared with errors of maximum likeli-
hood estimation for the basic ICA model. This time, the pdf of the independent
components was slightly misspecified. Legend as in Fig. 1.
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Example: Overcomplete ICA

Number of components m is larger than the data dimensionality p

Log-likelihood is given by
m

log p(x) = Z ak G(W] X) + Z(Wim, a1:m)
k=1
The vectors wy = (Wi, .. ., Wkp) satisfy ||wll2 =1

ay handles different distributions for different projections w,z—x

Score function

m
v W,a1.m) = Z(%kag(le—X)
k=1
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Results: Overcomplete ICA, Estimated Filters
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Figure 3: The overcomplete set of filters w; estimated from natural image data. Note
that no dimension reduction was performed, and we show filters instead of basis
vectors, which is why the results are much less smooth and “beautiful” than some
published ICA results (Hyvérinen et al., 2001).
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Results: Inner Pro Distribution
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Figure 4: The distribution of maximal dot-products of a filter w; with all other filters,
computed in the whitened space.
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Score-based Model

Score V, log p(x), samples {x;}"_;,x; € RP

Score network sy : RP +— RP to approximate score pf p(x)
Recall that

Epey [ TH(Ts00) + 5001

Arguably not scalable for high-d due to the Tr(Vsp(x)) term

Sliced score matching by efficiently estimating trace

1
B0 |+ T + Sl
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Score-Matching with Noise

Completely circumvent the Tr(Vsg(x)) term

Perturb data x with a pre-specified distribution g, (X|x)

Objective shown to be
1 ~
5Bau (xp9p(x) | Iso(x) — Vi log do (X[x)]>

The optimal network sg-(x) = Vi log g, (x)

Close to the true score V log p(x) when g, (x) ~ p(x)
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Sampling with Langevin Dynamics

e Sampling from p(x) using score function Vy log p(x)
e Sample Xy ~ 7 (prior), for ‘small’ step-size €
Xt = Xe—1 + %VX log p(X¢—1) + Vezy
o z; ~ N(0,/)
@ Score-based generative model

o Train sp(x) = V log p(x)
e Draw samples based on Langevin dynamics
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Challenges: Low-d Data Manifolds
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Figure 1: Left: Sliced score matching (SSM) loss

w.r.t. iterations. No noise is added to data. Right:

Same but data are perturbed with A'(0,0.0001).

@ Real world data lies in low-d manifolds
@ Score V, log p(x) is gradient taken in ambient space

e Adding small amount of (ambient) noise seems to help
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Challenges: Low Density Regions

Data scores Estimated scores
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Figure 2: Left: Vx log paaa(x); Right: sg(x).
The data density paaa(x) is encoded using an
orange colormap: darker color implies higher
density. Red rectangles highlight regions where

Vi 10g Paaa (%) = sg(x).

@ Low density regions may not have enough samples

e Cannot estimate V, log p(x)
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Challenges: Mixing of Langevin Dynamics

s i.i.d samples Langevin dynamics samples 8 Annealed Langevin dynamics samples
6 6
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Figure 3: Samples from a mixture of Gaussian with different methods. (a) Exact sampling. (b)
Sampling using Langevin dynamics with the exact scores. (c) Sampling using annealed Langevin
dynamics with the exact scores. Clearly Langevin dynamics estimate the relative weights between
the two modes incorrectly, while annealed Langevin dynamics recover the relative weights faithfully.

@ Low density regions separating modes
@ Hard to recover relative weights of such disjoint modes
e Modes with disjoint support: mpi(x) + (1 — 7)p2(x)

e Score function does not depend on 7
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Noise Conditional Score Networks

Choose a decreasing sequence {c;}5 ; with 2 ->1

o Noise level o is big enough to address Iow—den5|ty issues
o Noise level g, is small, does not pertub true distribution by much

Perturbed distribution
G (x) = /p(t)/\/(x|t, o?l)dt

@ Score network jointly estimates score at all perturbations
L
so(x,0) = Vxlog g-(x) , Vo € {oi}i1

sp(x,0): Noise Conditional Score Network (NCSN)

@ Architecture for NCSN: U-nets with dilated/atrous convolutions
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Learning NCSNs via Score Matching

@ Score matching with denoise using

Go (%) = cN(X|x, 0%I) = Vxlog g, (X[x) = —
@ Denoising score matching objective at any fixed o

% —x)2|?
00;0) = %Ep(X)Ein(X,U2H) [ X ( ) H ]

59(X> O_) + 2
g

e Combined objective, for some A(o;) > 0

L0 o} ) = 1 3 A0 )
i=1

@ Choice of A(0) o 02 to make loss invariant to o

e Empirically ||sp(x,0) x 1/0
o Then, 02(0;0) = O(1)
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NCSN Inference via Annealed Langevin Dynamics

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}L . ¢,T.
1: Initialize Xg
2: fori <+ 1to L do
3 ;< €020 > q is the step size.
4 fort < 1to7T do
5 Draw z; ~ N(0, I)
6: Xy — X1 + %Se(iku 0i) + /5 2
7: end for
8 )~(0 — )~(T
9: end for
return xo

@ Run Langevin dynamics at different scales
@ Start from noise o1, all the way down to o
@ Run full dynamics at each level, step decreases for each level
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Results: Comparisons

Model Inception FID
CIFAR-10 Unconditional

PixelCNN [59] 4.60 65.93
PixelIQN [42] 5.29 49.46
EBM [12] 6.02 40.58
WGAN-GP [18] 7.86+.07  36.4
MoLM [45] 7.90+.10 189
SNGAN [36] 8.224+.05  21.7
ProgressiveGAN [25] 8.80 £+ .05 -
NCSN (Ours) 8.87+.12 25.32
CIFAR-10 Conditional

EBM [12] 8.30 37.9
SNGAN [36] 8.60+.08  25.5
BigGAN [6] 9.22 14.73

Table 1: Inception and FID scores for CIFAR-10
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Results: Annealed Langevin dynamics

Figure 4: Intermediate samples of annealed
Langevin dynamics.
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Results: Samples
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(a) MNIST (b) CelebA (c) CIFAR-10
Figure 5: Uncurated samples on MNIST, CelebA, and CIFAR-10 datasets.
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Results: Inpainting
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Figure 6: Image inpainting on CelebA (left) and CIFAR-10 (right). The leftmost column of each
figure shows the occluded images, while the rightmost column shows the original images.
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