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SBM 2: Score-based Models
CS 598: Deep Generative and Dynamical Models

Instructor: Arindam Banerjee

November 16, 2021
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Diffusion based Probabilistic Models

Reverse process starts from xT (noise)

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt)

Generative model pθ(x0) =
∫
x1:T

pθ(x0:t)dx1:T

Forward process starts from x0 (signal)

q(x1:T |x0) :=
T∏
t=1

q(x1:T |x0)
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Forward and Reverse Processes

Reverse process is the generative model

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt), pθ(xt+1|xt) := N (xt−1;µθ(xt , t),Σθ(xt , t))

Forward process is the diffusion process, note βt < 1,∀t

q(x1:T |x0) :=
T∏
t=1

q(x1:T |x0), q(xt |xt−1) := N (xt ;
√

1− βtxt−1, βtI)
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Variational Inference with Forward Process

Recall the generative model: pθ(x0) =
∫
x1:T

pθ(x0:T )dx1:T

Variational inference using the forward process q

− log pθ(x0) = Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt |xt−1)

 =: L

Inference with the forward process: Easy to sample from at any t

q(xt |x0) = N (xt ;
√
α̃tx0, (1− α̃t)I)

where

αt := 1− βt , α̃t :=
t∏

s=1

αs
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Optimizing the Variational Objective

Variational objective can be written as

Eq

DKL(q(xT |x0)‖p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt−1|xt , x0)‖pθ(xt−1‖xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0


First terms in the KL-divergences are conditional probabilities of
the forward process

q(xt−1|xt , x0) = N (xt−1; µ̃t(xt , x0), β̃tI)

where

µ̃t(xt , x0) :=

√
α̃t−1βt

1− α̃t
x0 +

√
αt(1− α̃t−1)

1− α̃t
xt , β̃t :=

1− α̃t−1

1− α̃t
βt
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Representation: Forward and Reverse Processes

Forward process: Choose βt to be constants, nothing to learn

Can be made learnable, gradient descent using reparameterization

Reverse process: Choose x0 ∼ N (0, I) or a fixed point

Set Σθ(xt , t) = σ2
t I with σ2

t = βt or β̃t
KL-divergence between Gaussians is (scaled) square loss
Choose µθ(xt , t) to minimize

Lt−1 = Eq

[
1

2σ2
t

‖µ̃t(xt , x0)− µθ(xt , t)‖22

]
+ C

The expression can be simplified by recalling

xt(x0, ε) =
√
α̃tx0 +

√
1− α̃tε

and the form for µ̃t(xt , x0)
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Learning the Reverse Process

Plugging in xt(x0, ε) and µ̃t(xt , x0)

Lt−1 = Ex0,ε

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt(x0, ε)−

βt√
1− α̃t

ε

)
− µθ(xt(x0, ε), t)

∥∥∥∥2
]

+C

With xt denoting xt(x0, ε), choose

µθ(xt , t) =
1
√
αt

(
xt −

βt√
1− α̃t

εθ(xt , t)

)

Sampling xt−1 ∼ pθ(xt−1|xt) is essentially

xt−1 =
1
√
αt

(
xt −

βt√
1− α̃t

εθ(xt , t)

)
+ σtz , z ∼ N (0, I)
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Diffusion Models and Denoising Score Matching

Plugging in the form for µθ(xt , t), the objective is

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− α̃t)

∥∥∥ε− εθ(
√
α̃tx0 +

√
1− α̃tε, t)

∥∥∥2]+ C

Resembles denoising score matching at multiple scales t

Scaling of terms across t is inversely proportional to variance σ2t

Training of εθ(·, t) at all scales t simultaneously
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Algorithms: Training and Sampling
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Results: Log-likelihood
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Results: Training Objective, Ablation
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Results: Samples (CelebA, CIFAR10)
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Results: Samples (LSUN)
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Results: Rate Distortion
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Results: Progressive Generation
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Results: Interpolation
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Recap: Denoising Score Matching

Consider data-conditioned noisy pσ(x̃|x) := N (x̃; x, σ2I)
Marginal pσ(x̃) =

∫
x
p(x)p(x̃|x)dx

Sequence σ1 < σ2 < · · · < σN

Weighted sum of denoising score matching

θ∗ = argminθ

N∑
i=1

σ2
i Ep(x)Epσi

(x̃|x)
[
‖sθ(x̃, σi )−∇x̃ log pσi (x̃ |x)‖22

]
Learned score function sθ∗(x, σ) matches ∇x log pσ(x)

Sampling based on Langevin dynamics, with z ti ∼ N (0, I)

xti = xt−1i + εi sθ∗(xt−1i , σi ) +
√

2εiz
t
i
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Recap: Denoising Diffusion Probabilistic Models

Choose a sequence of positive noise scales 0 < β1, . . . , βN < 1
Forward process x0 ∼ p(x), p(xi |xi−1) = N (xi ;

√
1− βixi−1, βi I)

pαi (xi |x0) = N (xi ;
√
αix0, (1− αi )I) , αi =

i∏
j=1

(1− βj)

Marginal pαi (x) =
∫
p(x)pαi (x̃|x)dx

Forward process does variational inference on generative model

pθ(xi−1|xi ) = N
(

xi−1;
1√

1− βi
(xi + βi sθ(xi , i)), βi I

)
Training based on reweighted ELBO

θ∗ = argminθ

n∑
i=1

(1− αi )Ep(x)Epσi
(x̃|x)

[
‖sθ(x̃, σi )−∇x̃ log pσi (x̃ |x)‖22

]
Ancestral sampling using the reverse process

xt−1i = xti + εi sθ∗(xti , σi ) +
√

2εiz
t
i
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SBMs with Stochastic Differential Equations (SDEs)

Instead of discrete steps, make the processes continuous

Forward process: data x0 ∼ p(x) to prior xT
Reverse process is the generative model: xT ∼ pT (x) to data x0

Forward process is a SDE with drift-diffusion
dx = f (x, t)dt + g(t)dw

f (x, t) is the drift, g(t) determines variance of the Wiener process w

Samples can be generated by reversing the SDE

dx = [f (x, t)− g(t)2∇x log pt(x)]dt + g(t)dw̄
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SDE based Modeling
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Forward and Reverse SDE
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Estimating Scores for the SDE

Train a score based model for all scales

θ∗ = argminθ Et

[
λ(t)Ex(0)Ex(t)|x(0)

[ ∥∥sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))
∥∥2
2

]]

λ : [0,T ] 7→ R++ is a positive weighting function

Typically choose λ(t) ∝ 1.E[‖∇x(t) log p0t(x(t)|x(0))‖2]

Need to know the transition kernel p0t(x(t)|x(0))

Affine drift f (x, t) keeps the kernel Gaussian
In general, solve Kolmogorov forward equation

Instructor: Arindam Banerjee Score-based Models
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Example SDEs

Variance exploding (VE) SDE, variance ‘explodes’ as t →∞

dx =

√
d [σ2(t)]

dt
dw

Variance Preserving (VP) SDE, process with fixed variance

dx = −1

2
β(t)xdt +

√
β(t)dw

Sub-VP SDE, variance bounded by VP SDE

dx = −1

2
β(t)xdt +

√
β(t)(1− e−2

∫ t
0
β(s)ds)dw
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Reverse SDE Solvers

General purpose numerical SDE solvers

Predictor-Corrector samplers

Score based MCMC, e.g., Langevin MCMC, or Hamiltonian MC
Predictor: Numerical SDE first gives a numerical estimate
Corrector: Score-based MCMC corrects the marginal distribution

Author’s claim: Deterministic process with same marginal as SDE

dx =

[
f (x, t)− 1

2
g2(t)∇x log pt(x)

]
dt

Called “probability flow”
Score modeled by neural model, example of neural ODE
Allows exact likelihood computation, embedding
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Results: Reverse SDE Solver
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Results: NLL and FID on CIFAR-10
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Results: FID and IS in CIFAR-10
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Results: Adaptive Sampling
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Results: Sampling, Inpainting
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Results: Samples
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Results: Samples
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