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Motivation

I ELBO is lower bound of the log-probability term. Hence,
maximizing it is not the same as maximizing the
log-probability.

I Approaches such as the importance weighted auto-encoder
(IWAE) hope to obtain tighter bounds on the log-probability
with the hope of improving the performance of the VAE.

I This paper talks about the inference/recognition/encoder
network, and how tighter bounds affect its fidelity.



Background

I x ∈ X : Random variable (r.v.) whose distribution we wish to
model. z ∈ Z: Latent variable. Joint distribution pθ(x , z).

I Vanilla VAE:
I qφ(z |x): Approximate inference model, realized using a NN

with parameters φ.
I ELBO:

L0(θ, φ, x) = Eqφ(z|x) log
pθ(x , z)

qφ(z |x)
(1)

I VAE trained by maximizing L0 using estimates of
∇θ,φL0(θ, φ, x) after reparametrizing qφ.



Background: Importance weighted autoencoder (IWAE)

I IWAE builds tighter lower bounds to log pθ(x) by considering
the following loss term:

LIWAE (z1:K , x) = EQ

[
log Ẑdz1:K

]
≤ log pθ(x) (2)

where

Q(z1:K |x) =
K∏

k=1

qφ(zk |x) (3)

Ẑ (z1:K , x) =
1
K

K∑
k=1

pθ(x , zk)

qφ(zk |x)
(4)

zk are iid samples from qφ.
I As seen in the IWAE paper, K > 1 is good for generative

performance.



Contributions of this paper

I Lower bound gets tighter, but how are gradient updates
affected?

I Gradient estimate over M samples:

∆M,K =
1
M

M∑
m=1

∇θ,φ log
1
K

K∑
k=1

wm,k (5)

where wm,k =
pθ(x ,zm,k )
qφ(zm,k |x) .

I Simple case: M = 1,K → +∞: Ẑ → pθ(x). Therefore, both
mean and variance of the gradient update with respect to φ,
∆M,K (φ) go to zero.



Contributions of this paper

I Need to assess relative strength of gradient update vs noise in
it.

I Define (elementwise) signal to noise ratio in the gradient
update:

SNRM,K (θ) =

∣∣∣∣E[∆M,K (θ)]

σ[∆M,K (θ)]

∣∣∣∣ (6)

SNRM,K (φ) =

∣∣∣∣E[∆M,K (φ)]

σ[∆M,K (φ)]

∣∣∣∣ (7)

(8)

I The paper shows that

SNRM,K (θ) = O(
√
MK ) (9)

SNRM,K (φ) = O(
√

M/K ). (10)



Contributions of the paper

I Effect of M: This corresponds to the outer average, hence by
law of large numbers, variance reduces at O(1/M) rate.

I Effect of K : Prior work shows that the bias of a
self-normalized importance sampler converges at O(1/K ) rate
and standard deviation converges at O(1/

√
K ) rate.

Therefore, if the mean is 0, SNR goes down as O(1/
√
K ). If

the mean is non-zero, SNR goes up at a rate O(
√
K ). Hence

the difference in behavior in the gradient updates of φ and θ.
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