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Motivation

● Progress in VAEs have led to good generative performance.
● Training via ELBO does not necessarily lead to good representation 

performance.
● This work focuses on developing losses that give good representations.



Mutual information based loss

● “Good” representation is analogous to higher mutual information between the 
observations and the latents

● Computing the mutual information can be intractable, lower and upper bounds 
can be developed:



Mutual information based loss
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Distortion-Rate phase maps
● Assuming that obtaining tighter bounds to 

MI is good, it is of interest to get closer to 
the D + R = H line.

● It can be shown that a “perfect” m(z) and a 
“perfect” d(x|z) will take us to the D + R = 
H line.



Distortion-Rate based loss

● Low distortion implies better encoding 
and decoding of data. 

● Therefore, a good loss function must 
minimize R while also keeping D as low 
as possible. 



Distortion-Rate based loss

Consider the following optimization problem and its equivalent form:

Corresponds to the standard VAE loss



Experiments: Toy problem



Experiments: Binary MNIST
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