Ladder VAE

Hantao Zhang
Introduction

• Ladder VAE (LVAE) was introduced in 2016, just after VAE.
• Explores variational inference part of VAE model

Main change

• recursively corrects the generative distribution by a data dependent approximate likelihood
Review of VAE

- variational inference -> generative
- hierarchies of conditional stochastic variables
The Problem

• VAE models are hierarchical

• Difficult to optimize when `num_layers++`
 • (high order layers learns nothing)
 • Constrained complexity
Main Contribution

• Proposed Ladder VAE architecture to support deep hierarchical encoder.
• Verified the importance of BatchNorm (BN) and Warm-Up (WU)
Model Architecture

- Shared information between encoder and decoder
- Deterministic upward pass
- Followed by stochastic downward pass
Model cont.

• **Objective**
 \[
 \log p(x) \geq E_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] = L(\theta, \phi; x) = -KL \left(q_{\phi}(z|x) || p_{\theta}(z) \right) + E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right]
 \]

• **Generative arch (Decoder)**
 \[
 p_{\theta}(z) = p_{\theta}(z_L) \prod_{i=1}^{L-1} p_{\theta}(z_i|z_{i+1}) \\
 p_{\theta}(z_i|z_{i+1}) = N(z_i|\mu_{p,i}(z_{i+1}), \sigma_{i+1}^2(z_{i+1})) \quad p_{\theta}(z_L) = N(z_L|0, I) \\
 p_{\theta}(x|z_1) = N(x|\mu_{p,0}(z_1), \sigma_{p,0}^2(z_1))
 \]
Model cont. (Inference arch)

• VAE

 \[q_\phi(z|x) = q_\phi(z_1|x) \prod_{i=2}^L q_\phi(z_i|z_{i-1}) \]

 \[q_\phi(z_1|x) = N(z_1|\mu_{q,1}(x), \sigma_{q,1}^2(x)) \]

 \[q_\phi(z_i|z_{i-1}) = N(z_i|\mu_{q,i}(z_{i-1}), \sigma_{q,i}^2(z_{i-1})), i = 2 \ldots L \]

 \[d(y) = \text{MLP}(y) \]

 \[\mu(y) = \text{Linear}(d(y)) \]

 \[\sigma^2(y) = \text{Softplus}(\text{Linear}(d(y))) \]

• LVAE

 \[\sigma_{q,i} = \frac{1}{\hat{\sigma}_{q,i}^2 + \sigma_{p,i}^2} \]

 \[\mu_{q,i} = \frac{\hat{\mu}_{q,i}\hat{\sigma}_{q,i}^2 + \mu_{p,i}\sigma_{p,i}^2}{\hat{\sigma}_{q,i}^2 + \sigma_{p,i}^2} \]

 \[\sigma_{q,L} = \hat{\sigma}_{q,L}, \mu_{q,L} = \hat{\mu}_{q,L} \]

 \[q_\phi(Z_i|\cdot) = N(z_i|\mu_{q,i}, \sigma_{q,i}^2) \]

 \[d_n = \text{MLP}(d_{n-1}), d_0 = x \]

 \[\hat{\mu}_{q,i} = \text{Linear}(d_i), i = 1 \ldots L \]

 \[\hat{\sigma}_{q,i}^2 = \text{Softplus}(\text{Linear}(d_i)), i = 1 \ldots L \]
Warm-Up

• Motivation
• Large number of units becomes inactive in early stage of training
• Solution
• Initialize training using reconstruction error only

\[
\log p (x) \geq E_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] = L(\theta, \phi; x)
\]

\[
= -\beta KL \left(q_{\phi}(z|x) || p_{\phi}(z) \right) + E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right]
\]
Experiments

MNIST

OMNIGLOT
Experiments

Samples from Prior
Experiments: active unit comparison
Experiments: PCA analysis