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Introduction

It is commonly believed that Gaussian encoder/decoder assumptions reduce the
effectiveness of VAEs in generating realistic samples.

This paper rigorously analyzes that reaching the global optimum does not guarantee
that if VAE model can learn the true distribution of data, i.e., there could exist
alternative solutions that both reach the global optimum and yet do not assign the
same probability measure as ground-truth probability distribution.

The paper proposed a two-stage remedy model, i.e., a two-stage VAE model to
enhance the original VAE so that any globally minimizing solution is uniquely
matched to the ground-truth distribution.
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Introduction

Problem Definition:

The starting point is the desire to learn
a probabilistic generative model of
observable variables x ∈ X where X is
a r -dimensional manifold embedded in
Rd

When r = d , this assumption places
no restrictions on the distribution.
When r � d , this situation is very
applicable in the utility of generative
models.

Denote a ground-truth probability
measure on X as µgt where∫
X µgtdx = 1

The canonical VAE attempts to
approximate this ground-truth measure
using parameterized density pθ(x) where
pθ(x) =

∫
pθ(x |z)p(z)dz , z ∈ Rκ with

κ ≈ r and p(z) = N (z |0, I)
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Introduction

ELBO:

Lθ,φ(x) = −Eqφ(z|x)[log pθ(x , z)− log qφ(z |x)]

= KL(qφ(z |x)||pθ(z)) + Eqφ(z|x)[− log pθ(x , z)]

Another form:

Lθ,φ(x) =

∫
X
{− log pθ(x) + KL[qφ(z |x)||pθ(z |x)]}µgtdx ≥

∫
X
− log pθ(x)µgtdx

Lθ,φ(x) =

∫
X
{−Eqφ(z|x)[log pθ(z |x)] + KL[qφ(z |x)||p(z)]}µgtdx

In principle, qφ(z |x) and pθ(x |z) can be arbitrary distributions. In the practical
implementation, a commonly adopted distributional assumption is that both
distribution are Gaussian, which was previously considered as a limitation of VAE.
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Diagnosing the Non-uniqueness

Ideas: Even with the stated Gaussian distributions, there exist parameters θ, φ that can
simultaneously:

1 Globally optimize the VAE object

2 Recover the ground-truth probability measure in a certain sense

Definition 1

A κ-simple VAE is defined as a VAE model with dim[z] = κ latent dimensions, the
Gaussian encoder qφ(z |X ) = N (z |µz ,Σz) and the Gaussian decoder
pθ(x |z) = N (x |µx ,Σx)

With these definitions, the paper shows that a κ-simple VAE with κ ≥ r can achieve the
above optimality criteria. We will consider this from the simpler case where r = d
followed by the extended scenario with r < d .
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Diagnosing the Non-uniqueness (r = d)

Assuming pgt(x) = µgt(dx)/dx exists everywhere in Rd , the minimal possible value of
negative log-likelihood will necessarily occur if

KL[qφ(z |x)||pθ(z |x)] = 0 and pθ(x) = pgt(x) almost everywhere

Theorem 2

Suppose that r = d and there exists a density pgt(x) associated with the ground-truth
measure µgt that is nonzero everywhere on Rd . Then for any κ ≥ r , there is a sequence
of κ-simple VAE model parameters {θ?t , φ?t } such that

lim
t→∞

KL[qφ?t (z |x)||pθ?t (z |x)] = 0 and lim
t→∞

pθ?t (x) = pgt(x) almost everywhere

The theorem implies that as long as latent dimension is sufficiently large (i.e., κ ≥ r), the
optimal ground-truth probability measure can be recovered, Gaussian assumptions or not.
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Diagnosing the Non-uniqueness (r < d)

When both qφ(z |x) and pθ(x |z) are arbitrary/unconstrained, then
infφ,θ L(θ, φ) = −∞ by forcing qφ(z |x) = pθ(z |x).

To show that this does not need to happen, define a manifold density p̃gt(x) as the
probability density of µgt with respect to the volume measure of the manifold X . If
d = r then this volume is the standard Lebesgue measure in Rd and p̃gt(x) = pgt(x)

Theorem 3

Assume r < d and that there exists a manifold density p̃gt(x) associated with the
ground-truth measure µgt that is nonzero everywhere on X . Then for any κ ≥ r , there is
a sequence of κ-simple VAE model parameters {θ?t , φ?t } such that

1

lim
t→∞

KL[qφ?t (z |x)||pθ?t (z |x)] = 0 and lim
t→∞

∫
X
− log pθ?t (x)µgtdx = −∞

2

lim
t→∞

∫
X∈A

pθ?t (x)dx = µgt(A ∪ X )

for all measurable sets A ⊆ Rd with µgt(∂A∪X ) = 0 where ∂A is the boundary of A.
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Diagnosing the Non-uniqueness (r < d)

Implications of Theorem 3:

From (1), the VAE Gaussian assumptions do not prevent minimization of L(θ, φ)
from converging to minus infinity.

From (2), there exists solutions that assign a probability mass to most all
measurable subsets of Rd that is distinguishable from the ground-truth measure.

In r = d situation, the theorem necessitates that the ground-truth probability
measure has been recovered almost everywhere.

In r < d situation, we have not ruled out the possibility that a different set of
parameters {θ, φ} can push the lost to −∞ and not achieve (2) ,i.e., the VAE can
reach the lower bound of negative log-likelihood but fail to closely approximate µgt .
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Optimal Solution

Necessary Conditions for VAE optima:

Theorem 4

Let {θ?γ , φ?γ} denote an optimal κ-simple VAE solution (with κ ≥ r) where the decoder
variance γ is fixed. Moreover, we assume that µgt is not a Gaussian distribution when
d = r . Then for any γ > 0, there exists a γ′ < γ such that L(θ?γ′ , φ

?
γ′) < L(θ?γ , φ

?
γ)

The theorem implies that if γ is not constrained, it must be that γ → 0 if we wish to
minimize the VAE objective. While in existing practical VAE applications, it is standard
to fix γ ≈ 1 during training.
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Optimal Solution

Theorem 5

Applying the same conditions and definitions in Theorem 4, then for all x drawn from
µgt , we also have that

lim
γ→0

fµx [fµz (x ;φ?γ) + fSz (x ; θγ?)ε;φ?γ ] = lim
γ→0

fµx [fµz (x ;φ?γ); θ?γ ] = x , ∀ε ∈ Rκ

With this theorem, it indicates that any x ∈ X will be perfectly reconstructed by the
VAE model at globally optimal solutions.

Adding dimensions to latent dimension cannot improve the value of the VAE data
term in meaningful way.

If VAE model parameters have learned a near optimal mapping onto X using γ ≈ 0,
then the VAE cost will scale as (d − r) log γ regardless of µgt .
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Two-Stage VAE model

The above analysis suggests the following two-stage remedy:

1 Given n observed samples {x (i)}ni=1, train a κ-simple VAE, with κ ≥ r , to estimate
the unknown r -dimensional ground-truth manifold X embedded in Rd using a
minimal number of active latent dimensions. Generate latent samples {z (i)}ni=1 via
z(i) ∼ qφ(z |x (i)).

2 Train a second κ-simple VAE, with independent parameters {θ′, φ′} and latent
representation u, to learn the unknown distribution qφ(z) as a new ground-truth
distribution and use samples {z (i)}ni=1 to learn it.

3 Samples approximating the original ground-truth µgt can then be formed via the
extended ancestral process u ∼ N (u|0, I), z ∼ pθ′(z |u), x ∼ pθ(x |z)
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Two-Stage VAE Model

If the first stage was successful, then even though they will not generally resemble
N (z |0, I), samples from qφ(z) will have nonzero measure across the full ambient
space Rκ.

If κ > r , then the extra latent dimensions will be naturally filled in via randomness.

Consequently, as long as we set κ ≥ r , the operational regime of the second-stage
VAE is effectively equivalent to the situation that the manifold dimension is equal to
the ambient dimension.
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Two-Stage VAE Model

Figure: The structure of the first-stage of the Two-Stage VAE Model
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Experiment Results

Evaluation Metrics:

Fréchet Inception Distance (FID) Score: used to assess the quality of images created by a
generative model, comparing the generated images with the distribution of real images.

Note: The training of two stages need to be separate. Concatenating two stages and jointly
training does not improve the performance.
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Experiment Results

Evaluation Metrics:

Kernel Inception Distance (KID) applies a polynomial-kernel Maximum Mean
Discrepancy (MMD) measure to estimate the inception distance, as FID score is believed
to exhibit bias in certain circumstances.
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Experiment Results

Analysis:

The second stage of Two-Stage VAE model can reduce the gap between q(z) and
p(z).

γ will converge to zero at any global minimum of the VAE objective, allowing for
tighter image reconstructions with better manifold fit.
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Conclusion

Contribution of this paper

Rigorously proved that VAE global optimum can in fact uniquely learn a mapping to
the correct ground-truth manifold when r < d , but not necessarily the correct
probability measure within this manifold.

The proposed Two-Stage VAE model can resolve this issue and better recover the
ground-truth manifold and reduce the gap between pθ(z |x) and qφ(z |x).

The two-stage mechanism can improve the reconstruction of original distribution so
that it has comparable performance with GAN models. This work narrows the gap
between VAE and GAN models in terms of the realism of generated samples so that
VAEs are worth considering in a broader range of applications.

No need Gaussian assumption in the canonical VAE model to achieve the optimal
solutions.

Minhao Jiang (UIUC) VAE2 09/21/2021 17 / 18



References

1 Dai, B., Wipf, D. (2019). Diagnosing and enhancing VAE models. arXiv preprint
arXiv:1903.05789.

2 Carl Doersch. Tutorial on variational autoencoders.arXiv:1606.05908, 2016

3 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
SeppHochreiter. GANs trained by a two time-scale update rule converge to a local
Nashequilibrium. InAdvances in Neural Information Processing Systems, pages
6626–6637,2017.

4 Miko laj Bi nkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton.
Demystifyingmmd gans.arXiv:1801.01401, 2018

Minhao Jiang (UIUC) VAE2 09/21/2021 18 / 18


