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NVAE: A Deep Hierarchical Variational Autoencoder



Method: Increasing Long-range Correlation

e Hierarchical multi-scale model
o z,is small-scale
o Double the spatial size gradually

bottom-up model

[epowr umop-doj pareys



Method: Increasing Long-range Correlation

e Larger receptive fields
o Increase the kernel size
o Depthwise (per-channel) convolution to reduce computation
o 1x1 convolution layers before and after to scale up number of channels

Expansion Convolution block

lu6, Dwise




Method: Improving Residual Cells

e Batch normalization (BN) instead of weight normalization (WN)
o Adjust the momentum hyperparameter
o Regularization on the norm of scaling parameters

e Swish activation

f(u) = 1—|—qu

e Squeeze and Excitation (SE) layer
o Basically a channel-wise attention module
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Method: Improving Residual Cells

e Final residual cell architecture (left: decoder, right: encoder):
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Method: Stabilizing Training

e The original KL divergence is unstable when two distributions are far away
o Encoder outputs log(o?), and in KL loss there is a term o2 = exp[log(o?)]

e Use residual Normal distribution instead:

| p(2i|z<1) == N (pi(2<1), 0i(2<1))
q(2f|2<1, %) == N (pi(z<1) + Api(z<i,x), 0i(2<1) - Aoi(z<i, T)).

e Therefore the KL term becomes:

KL ) = 5 (4

+ Ac? —log Ao? — 1)

e Dropping the exponential term!



Method: Stabilizing Training

e Spectral Regularization (SR):
o We want the encoder to be Lipschitz
o So we regularize the largest singular value s{) of the i-th layer

ESR = )\ Zz S(i)

e Additional normalizing flow (NF) layers after encoder output
o This makes the posterior distribution more expressive



Experiments

e SOTA results among all VAE models

Method MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28%28 32x32 32x32 64x64 256x256  256x256
NVAE w/o flow 78.01 293 - 2.04 - 0.71
NVAE w/ flow 78.19 291 3.92 2.03 0.70 0.69
VAE Models with an Unconditional Decoder
BIVA [36] 78.41 3.08 3.96 2.48 - -
IAF-VAE [4] 79.10 3.11 - - - -
DVAE++ [20] 78.49 3.38 - - - -
Conv Draw [42] - 3.58 4.40 - - -
Flow Models without any Autoregressive Components in the Generative Model
VFlow [59] - 2.98 - - - -
ANF [60] - 3.05 392 - 0.72 -
Flow++ [61] - 3.08 3.86 - - -
Residual flow [50] - 3.28 4.01 - 0.99 -
GLOW [62] - 3.35 4.09 - 1.03 -
Real NVP [63] - 3.49 428 3.02 - -
VAE and Flow Models with Autoregressive Components in the Generative Model
6-VAE [25] - 2.83 3.77 - - -
Pixel VAE++ [35] 78.00 2.90 - - - -
VampPrior [64] 78.45 - - - - -
MAE [65] 77.98 2.95 - - - -
Lossy VAE [66] 78.53 2.95 - - - -
MaCow [67] - 3.16 - - 0.67 -



Experiments

e Not as good as autoregressive models
o  Will try to solve this problem in the next paper!

Autoregressive Models

SPN [68] - - 3.85
PixelSNAIL [34] - 2.85 3.80
Image Transformer [69] - 2.90 3.77
Pixel CNN++ [70] - 2.92 -

PixelRNN [41] - 3.00 3.86

Gated PixelCNN [71] - 3.03 3.83




Experiments

e Some qualitative results...
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Experiments

e And ablation study on all aforementioned components:

Table 3: Residual cells in NVAE

Table 2: Normalization & activation

Bottom-up Top-down Test Train Mem.

Functions L =10 L =20 L =40 model model (bpd) time (h) (GB)
WN+ELU 336 327 331 Regular Regular 3.11 433 6.3
BN+ELU 336 326 322 Separable Regular 3.12 49.0 10.6
BN+ Swish 334 323 3.16 Regular Separable 3.07 48.0 10.7
Separable Separable 3.07 504 14.9
Table 4: The impact of residual dist. Table 5: SR & SE
Model # Act.  Training  Test Model Test NLL
KL Rec. LL
£ ec. Lvae NVAE 3.16
w/ Res. Dist. 53 1.321.80 3.12 3.16 NVAE w/o SR 3.18

w/o Res. Dist. 54 1.36 1.80 3.16 3.19 NVAEw/oSE 322




Very Deep VAEs Generalize Autoregressive Models and Can
Outperform Them on Images



Motivation: Autoregressive and Latent Variable Models

e Autoregressive Models (e.g. PixelCNN):

o Learn dependencies within observed variables
e Latent Variable Models (e.g. VAE):

o Learn dependency between latent & observed variables
e The latter should theoretically be better

o Faster inference

o Scalable to higher-dimensional data

o Potentially functional with a smaller architecture

e However, Gated PixelCNN still outperforms VAE models...
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Hierarchical VAE

e Use Ladder VAE (LVAE) as base architecture
e The network learns the following probabilities:

po(2) = po(z0)pe(z1]|20)..-po(zN|2<N) 2)
06(2|T) = q4(20|T)q¢ (21|20, T)...q4 (2N |2< N, T) (3)



Two Statements

e N-layer VAEs generalize autoregressive models when N is data dimension
o With the following settings, we only need to learn dependencies among z’s
o That is, dependencies among observed variables

q(zz = xi|z<i7w) = 1, and p(w’l. = zllz) = L

e To visualize:

Latent variables are identical to observed variables



Two Statements

e N-layer VAEs can fully represent N-dimensional latent densities
o Proven in Huang et al. (2017)
e That s, if the data distribution is on a low-dimensional manifold, we can
subsequently reduce the latent dimension and retain full capacity
o Which is usually the case for image datasets



Moreover...

e Hierarchical VAEs can learn conditional independence of variables
o Which enables fast parallel computation
o Formally:

d
_Q¢_(ZN|Z<N73_3) =11, g¢(z](\,)|z<N_,m)‘

Latent variables allow for parallel generation
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Network Design

e So theoretically hierarchical VAEs should outperform autoregressive models
o What is the bottleneck? . .

e Maybe the depth is not enough!
o Solution: very deep VAE with ResBlocks

pool unpool

res block topdown block

res block topdown block
res block topdown block




Network Design

e Gradient skipping to stabilize training

o High threshold so that less than 0.01% of updates are skipped

o Alternatively: spectral regularization (SR) in NVAE

Grad norms over training (4 different seeds on CIFAR-10)

Grad norms over training (5-bit FFHQ-256)
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Experiments

e Group latent variables together to adjust model depth

e Findings:

O

O

Deeper VAE have larger capacity (left)

Higher dimensional latent variables are more powerful (right)

Depth Params Test Loss
3 41M 4.30
6 41M 4.18
12 41M 4.06
24 41M 3.98
48 41M 3.95

Distribution of 48 layers Test Loss
32x32 16x16 8x8 4x4 1x1

10 10 10 10 8 3.98

12 12 10 8 6 3.97

14 14 10 6 4 3.96

16 16 10 4 2 3.95



Experiments

e Also hierarchical VAEs are more efficient
o A small number of latent variables encode most of the information
o Therefore later layers can largely be parallelized
o We don’t need to maintain a latent space as large as the image space

1x1 4x4 8x8 16x16 32x32 64x64 128x128

<0.001% 0.03% 0.15% 1.1% 9.5% 30.1% 74%



Experiments

e Quantitative evaluation:

o Comparable performance as autoregressive models and Transformer

o But less parameters

CIFAR-10

Pixel CNN++ (Salimans et al., 2017)
PixelSNAIL (Chen et al., 2017)

Sparse Transformer (Child et al., 2019)
VLAE (Chen et al., 2016)

IAF-VAE (Kingma et al., 2016)
Flow++ (Ho et al., 2019)

BIVA (Maalge et al., 2019)

NVAE (Vahdat & Kautz, 2020)

Very Deep VAE (ours)

AR
AR
AR
VAE
VAE
Flow
VAE
VAE
VAE

53M*

59M

31M
103M
131M
39M

12

15
30
45
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2.92
2.85
2.80
<295
<3.11
<3.08
<3.08
<291
<2.87



Experiments

e Quantitative evaluation (cont.)

ImageNet-32

Gated PixelCNN

Image Transformer (Parmar et al., 2018)
BIVA

NVAE

Flow++

Very Deep VAE (ours)

ImageNet-64

Gated PixelCNN

SPN (Menick & Kalchbrenner, 2018)
Sparse Transformer

Glow (Kingma & Dhariwal, 2018)
Flow++

Very Deep VAE (ours)

AR
AR
VAE
VAE
Flow
VAE

AR
AR
AR
Flow
Flow
VAE

177M*

103M*
268M
16OM
119M

177M*
150M
152M

73M
125M

10

15
28

78

75
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3.83
3.77
<3.96
<392
<3.86
<3.80

3.57
3.52
3.44
3.81
<3.69
<3.52



Also...

e VAEs can easily scale to very high-dimensional data

o For example, 1024x1024 images
o While PixeCNNs cannot



