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Variational Autoencoders (VAEs)

Given a dataset x characterized by P(x) and a latent random vector z, we model the
data as a distribution pθ(x), with θ being the parameter.

pθ(x) =
∫

z
pθ(x|z)pθ(z) dz

• Prior pθ(z)
• Likelihood (probabilistic decoder) pθ(x|z)
• Posterior (probablistic encoder) pθ(z|x)

pθ(x) needs to compute high-d integral, so we need to approximate the posterior
distribution as

qφ(z|x) ≈ pθ(z|x)

where φ is the parameter.
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Variational Autoencoders (VAEs)

Figure 1: Model Architecture of VAEs.a

aImage credits to Wikipedia on Variational autoencoder.
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VAE Loss

Evidence Lower Bound (ELBO)

We would like to maximize pθ(x) through maximizing the lower bound of it.

log pθ(x) ≥ log pθ(x)−

≥0︷ ︸︸ ︷
DKL

(
qφ(z|x)‖pθ(z|x)

)
= Ez∼qφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

Reconstruction

−DKL
(
qφ(z|x)‖pθ(z)

)︸ ︷︷ ︸
Regularization︸ ︷︷ ︸

ELBO

Therefore, during implementation, we have the VAE loss (negative ELBO):

Lθ,φ(x) = −Ez∼qφ(z|x) [log pθ(x|z)] + DKL
(
qφ(z|x)‖pθ(z)

)
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Disentanglement

Disentanglement = Independence + Semantics

• Unsupervised learning of a disentangled posterior distribution over the underlying
generative factors of sensory data is a major challenge in AI
research [BCV13] [LUTG17].
• Motivations include discovering independent components, controllable sample
generation, and generalization/robustness.
• Facilitates interpretable decision making and controlled transfer.

Figure 2: Axis-aligned traversal in the representation
space and Global interpretability in data space. Figure 3: Traversal of the rotational

latent dimension.

Credits to Ricky Chen’s talk at NIPS 2018.
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Datasets

Figure 4: Real samples from the training datasets.
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DC-IGN

• Deep Convolutional Inverse Graphics Network (DC-IGN) [KWKT15] has an
architecture similar to VAE with special graphics code as the latent space.

Figure 5: DC-IGN Architecture.

Figure 6: Structure of the
representation vector.

Figure 7: Training on a minibatch in which only φ, the azimuth angle of the face, changes.
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InfoGAN

The GAN formulation uses a simple factored continuous input noise vector z, but
imposing no restrictions on how the generator may use it. So the generator may use
it in a highly entangled way.
However, in InfoGAN [CDH+16],
• Uses a set of structured latent variables c = (c1, . . . , cL), and assuming

p(c) =
∏L

i=1 p(ci ).
• The generator becomes G(z, c).
• With no constraints, the generator could ignore c, pG (x|c) = pG (x).
• There should be high mutual information between latent code c and the
generator distribution, meaning I (c;G(z, c)) should be high.
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A Note on Karush-Kuhn-Tucker (KKT) Conditions

Non-linear Programming

Optimize f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m

hj (x) = 0, j = 1, . . . , r

Forming the Lagrangian function

L(x,µ,λ) = f (x) + µT [g1(x), . . . , gm(x)]T + λT [h1(x), . . . , hl (x)]
T

Karush-Kuhn-Tucker Conditions

1 Stationarity: ∇f (x∗) +
∑m

i=1 µi∇gi (x∗) +
∑r

j=1 λj∇hj (x∗) = 0 for minimization.

2 Primal Feasibility: gi (x∗) ≥ 0, i = 1, . . . ,m and hj (x∗) = 0, j = 1, . . . , r .

3 Dual Feasibility: µi ≥ 0, i = 1, . . . ,m.

4 Complementary Slackness:
∑m

i=1 µigi (x∗) = 0.
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VAE Loss as an Optimization Problem

If we take a look at the VAE loss again

θ, φ = argmin
θ,φ

{
−Ez∼qφ(z|x) [log pθ(x|z)] + DKL

(
qφ(z|x)‖pθ(z)

)
]
}

We can formulate it as a constrained optimization problem:

Optimization Problem from ELBO

min
θ,φ
−Ez∼qφ(z|x) [log pθ(x|z)] subject to DKL

(
qφ(z|x)‖pθ(z)

)
] < ε

Rewriting it as a Lagrangian under KKT conditions, we have

F(θ, φ, β; x, z) = −Ez∼qφ(z|x) [log pθ(x|z)] + β
(
DKL

(
qφ(z|x)‖pθ(z)

)
]− ε

)
Since β, ε ≥ 0 according to the complementary slackness.

F(θ, φ, β; x, z) ≥ L(θ, φ, β; x, z) = −Ez∼qφ(z|x) [log pθ(x|z)] + βDKL
(
qφ(z|x)‖pθ(z)

)
]
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New Objective

β-VAE Loss

L(θ, φ, β; x, z) = −Ez∼qφ(z|x) [log pθ(x|z)] + βDKL
(
qφ(z|x)‖pθ(z)

)
]

• Setting β = 1 corresponds to the original VAE formulation.
• Setting β > 1 puts a stronger constraint on the latent bottleneck

• Limiting the capacity of z while trying to maximize the log-likelihood should encourage
the model to learn a more efficient representation.

• Higher value of β should encourage the conditional independence in qφ(z|x) because
more weights are put on the DKL term.

• Disentangled representation emerge when the right balance is found between
reconstruction and latent capacity restriction.
• Create a trade-off between reconstruction fidelity and the quality of the

disentanglement.

• Note: In real implementations, β is usually a training-step dependent variable,
from 0 to the set value. The intuition behind this warm-up is to first get the
network to be able to learn reconstruction.
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Measure Disentanglement

The Higgins’ Metric

The accuracy that a low VC-dimension linear
classifier can achieve at identifying a fixed
ground truth factor [CLGD18].

1 Choose a factor y ∼ U [1 . . .K ].
2 For a batch of L samples:

a Sample two data points x1,l , x2,l from the
dataset where the chosen factor y has the
same value.

b Obtain the latent representation z1,l , z2,l ,
and compute the difference
zl
diff = |z1,l − z2,l |.

3 Use the average zb
diff = 1

L
∑L

l=1 zl
diff to

predict p(y |zb
diff) and report the

predictor’s accuracy as disentanglement
metric score.
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Results

Figure 8: Disentanglement metric
classification accuracy for 2D shapes
dataset.

Figure 9: Representations learned by a β-VAE.
Each column represents a latent zi , ordered
according to the learned Gaussian variance.
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The Effect of β

• β is a mixing coefficient that weighs the gradients magnitudes between
reconstruction and the prior-matching. So it is natural to consider normalized β
in analysis by the latent space dimension M and input data dimension N,
βnorm = βM

N .
• β being too low or too high, the model would learn a entangled representation
due to either too much or too little capacity in the latent z bottleneck.
• Good disentanglement representations often lead to blurry reconstructions.
However, in general, β > 1 is necessary to achieve good disentanglement.

Figure 10: Positive correlation is present between the size of z and the optimal normalised values
of β for disentangled factor learning for a fixed β-VAE architecture. Orange approximately
corresponds to unnormalized β = 1.
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The Problem with β-VAE

β-VAE Loss

L(θ, φ, β; x, z) = −Ez∼qφ(z|x) [log pθ(x|z)] + βDKL
(
qφ(z|x)‖pθ(z)

)
]

Although tuning β > 1 showed promising results in disentanglement, β-VAE has
several problems
• The trade-off between reconstruction and disentanglement.
• No mathematical explanation on the source of disentanglement by penalizing

DKL(qφ(z|x)‖pθ(z)).
• The metric used lacks axis-alignment detection, tends to be ad-hoc, and
sensitive to hyperparameters.
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Decompose ELBO More

Mutual Information

Let (X ,Y ) be a pair of r.v.s over the space X × Y. Then their mutual information is

1 I (X ;Y ) = DKL(p(X ,Y )‖p(X )p(Y ))

2 I (X ;Y ) = EX [DKL(p(Y |X )‖p(Y ))] = EY [DKL(p(X |Y )‖p(X ))]

I (X ;Y ) intuitively measures how much could you infer about the other random variable if you are given
knowledge about one of them. I (X ;Y ) = 0 means independence because nothing can be inferred (not
related at all).

ELBO TC-Decomposition

Define a uniform random variable on {1, 2, . . . ,N} with which each data point relates. Denote
q(z|n) = q(z|xn) and q(z, n) = q(z|n)p(n) = q(z|n) 1

N . q(z) =
∑N

n=1 q(z|n)p(n) is the aggregated
posterior. Then, we can decompose the regularization term in the ELBO as

1
N

N∑
n=1

DKL (q(z|xn)‖p(z)) = Ep(n) [DKL (q(z|n)‖p(z))]

= DKL(q(z|n)‖p(z))︸ ︷︷ ︸
Index-Code MI

+DKL(q(z)‖
∏

j

q(zj ))

︸ ︷︷ ︸
Total Correlation

+
∑

j

DKL
(
q(zj‖p(zj )

)
)

︸ ︷︷ ︸
Dimension-wise KL

Dachun Sun Dapartment of Computer Science, UIUC

Disentanglement 30 / 41



Problem and Motivation Related Works β-VAE β-TCVAE References

Decompose ELBO More

ELBO TC-Decomposition

Ep(n) [DKL (q(z|n)‖p(z))] = DKL(q(z|n)‖p(z))︸ ︷︷ ︸
Index-Code MI

+DKL(q(z)‖
∏

j

q(zj ))

︸ ︷︷ ︸
Total Correlation

+
∑

j

DKL (q(zj‖p(zj )))

︸ ︷︷ ︸
Dimension-wise KL

• The index-code MI is the mutual information Iq(z; n). It is argued that higher mutual information
can lead to better disentanglement, but recent investigations also claim that a penalized one
encourages compact and disentangled representations.

• The total correlation is one of many generalization of mutual information. It is a measure of
dependency between the variables. This is claimed to be the main source of disentanglement.

• The dimension-wise KL divergence mainly prevents individual latent dimensions from deviating too
far from priors. It acts like a complexity penalty.

β-TCVAE Loss

L = −Eq(z|n)p(n) [log p(n|z)] + αIq(z; n) + βDKL(q(z)‖
∏

j

q(zj )) + γ
∑

j

DKL (q(zj‖p(zj )))
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Decompose ELBO More

β-TCVAE Loss

L = −Eq(z|n)‖p(n) [log p(n|z)] + αIq(z; n) + βDKL(q(z)‖
∏

j

q(zj )) + γ
∑

j

DKL (q(zj‖p(zj )))

• With ablation studies, tuning β
leads to the best results. The
proposed model uses
α = γ = 1, which is the same
object as in
FactorVAE [KM18].
• Provides better trade-off
between density estimation and
disentanglement. Different
from β-VAE, higher value of β
would not penalize the mutual
information term too much.
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Decompose ELBO More

β-TCVAE Loss

L = −Eq(z|n)p(n) [log p(n|z)] + αIq(z; n) + βDKL(q(z)‖
∏

j

q(zj )) + γ
∑

j

DKL (q(zj‖p(zj )))

• Decomposition expression requires the evaluation of the density
q(z) = Ep(n) [q(z|n)], which depends on the entire dataset.
• Simple Monte Carlo approximation is not likely to work because if we view q(z)
as a mixture distribution where the data index n indicates the mixture
component, a randomly sampled component q(z|n) is likely to be close to 0.
• q(z|n) would be large if n is the component that z comes from. So we should
perform weighted sampling.
• Given a minibach of samples {n1, . . . , nm}, we use the estimator

Eq(z) [log q(z)] ≈
1
M

M∑
i=1

log 1
NM

M∑
j=1

q(z(ni )|nj )


where z(ni ) ∼ q(z|ni ).
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Measure Disentanglement

Mutual Information Gap (MIG)

• Estimate the mutual information between a latent variable zi and a ground truth factor vk

by q(zj , vk ) =
∑N

n=1 p(vk )p(n|vk )q(zj |n), and use it in some way.

• A higher mutual information implies that zj contains a lot of information about vk . MI is
maximal if there exists a deterministic, invertible relationship between zj and vk .

1 For each vk , take zj , zl that has the highest and the second highest mutual information with
vk .

2 MIG = 1
K

∑K
k=1

1
H(vk )

(I (zj ; vk )− I (zl ; vk ))

• Averaging by K and normalizing by the entropy H(vk ) provides a value between 0 and 1.

• MIG→ 1 implies good disentanglement.
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