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Variational Autoencoders (VAEs)

Given a dataset x characterized by P(x) and a latent random vector z, we model the
data as a distribution pg(x), with 6 being the parameter.

Pal(x) = / Po(xI2)ps(2) dz

® Prior py(z)
® Likelihood (probabilistic decoder) pg(x|z)
® Posterior (probablistic encoder) py(z|x)

pa(x) needs to compute high-d integral, so we need to approximate the posterior
distribution as
dp(zlx) = pe(z|x)

where ¢ is the parameter.
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Variational Autoencoders (VAEs)

Probabilistic Probabilistic
Encoder Decoder

Figure 1: Model Architecture of VAEs.?

9lmage credits to Wikipedia on Variational autoencoder.
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VAE Loss

Evidence Lower Bound (ELBO)

We would like to maximize py(x) through maximizing the lower bound of it.

>0

log pg(x) > log pa(x) — Dki (gg(zIX)lIPe(z|x))
= Eyqy(2lx) [10g po(x|2)] — Dt (ap(2x)lIpe(2))
—_—

Reconstruction Regularization

ELBO

Therefore, during implementation, we have the VAE loss (negative ELBO):

L0,5(X) = ~Eggy(zix) [l0g o(x|2)] + Dir (ap(2lx)l1ps(2))
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Disentanglement

Disentanglement = Independence + Semantics

® Unsupervised learning of a disentangled posterior distribution over the underlying
generative factors of sensory data is a major challenge in Al
research [BCV13] [LUTG17].

® Motivations include discovering independent components, controllable sample
generation, and generalization/robustness.

® Facilitates interpretable decision making and controlled transfer.
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Figure 3: Traversal of the rotational
latent dimension.

Sunglasses

Figure 2: Axis-aligned traversal in the representation
space and Global interpretability in data space.

Credits to Ricky Chen's talk at NIPS 2018.
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Datasets

dSprites (64 x 64)
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Figure 4: Real samples from the training datasets.
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Related Works
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® Deep Convolutional Inverse Graphics Network (DC-IGN) [KWKT15] has an
architecture similar to VAE with special graphics code as the latent space.

Q(zilx)

grophics code
Unpoali (Nearest Neghoor) +

m@@@

Convolution + Pooling,

x
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(Renderer)
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(De-rendering)

Figure 5: DC-IGN Architecture.
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corresponds to ¢ @ ¢, intrinsic properties (shape, texture, etc)

Figure 6: Structure of the
representation vector.
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Figure 7: Training on a minibatch in which only ¢, the azimuth angle of the face, changes
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InfoGAN

The GAN formulation uses a simple factored continuous input noise vector z, but
imposing no restrictions on how the generator may use it. So the generator may use
it in a highly entangled way.
However, in InfoGAN [CDHT16],
® Uses a set of structured latent variables ¢ = (c1, ..., ¢.), and assuming
L
p(c) = ITiz1 p(ci).
® The generator becomes G(z, c).
® With no constraints, the generator could ignore ¢, pg(x|c) = pg(x).
® There should be high mutual information between latent code ¢ and the
generator distribution, meaning /(c; G(z, ¢)) should be high.
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A Note on Karush-Kuhn-Tucker (KKT) Conditions

Non-linear Programming

Optimize f(x)

subjectto  gi(x) <0,i=1,...,m
hi(x)=0,j=1,....r

Forming the Lagrangian function

L A) = F(X) + " [91(%), ..o gm(X)]T + AT [m(x), ..., (x)]"

Karush-Kuhn-Tucker Conditions

@ Stationarity: V£ (x*) + 311, uiVgi(x*) + >5/_; A;Vh;(x*) = 0 for minimization.
@ Primal Feasibility: gi(x*) >0,i=1,....,mand hj(x*)=0,j=1,...,r.

® Dual Feasibility: u; >0,i=1,...,m.

© Complementary Slackness: >, u;igi(x*) = 0.
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VAE Loss as an Optimization Problem

If we take a look at the VAE loss again
0. = arg min {~Ey.q, ) o8 Po(x12)] + Duc. (s (214) ()1

We can formulate it as a constrained optimization problem:

Optimization Problem from ELBO

min —Ez.qy (2 llog ps(x|2)] subject to Dxi (ap(2IX)lIpe(2))] < €

Rewriting it as a Lagrangian under KKT conditions, we have

F(8,8.8:%.2) = ~Ezugy(zlx) [log po(x|2)] + B (Dxi (ap(zlx)llpe(2))] — €)

Since 3, € > 0 according to the complementary slackness.

]—'(9, .8 x, Z) > E(@, . B; x, Z) = _]Ezwqd,(z\x) [lOg pg(XlZ)] + BDxkL (C/¢(Z‘X)HD9(Z))]
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New Objective

VAE Loss

L(6,¢.Bix,z) = _]Ezwqq)(z\x) [log pe(x|2)] + BDkL (Q¢(Z|X)||p9(z))]

® Setting B8 = 1 corresponds to the original VAE formulation.
® Setting B > 1 puts a stronger constraint on the latent bottleneck

® Limiting the capacity of z while trying to maximize the log-likelihood should encourage
the model to learn a more efficient representation.

® Higher value of B should encourage the conditional independence in gy (z|x) because
more weights are put on the Dy term.

® Disentangled representation emerge when the right balance is found between
reconstruction and latent capacity restriction.

® Create a trade-off between reconstruction fidelity and the quality of the
disentanglement.
® Note: In real implementations, B is usually a training-step dependent variable,
from O to the set value. The intuition behind this warm-up is to first get the
network to be able to learn reconstruction.
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Measure Disentanglement

The Higgins' ric

The accuracy that a low VC-dimension linear

classifier can achieve at identifying a fixed - ;;‘X;}F zhig
A 1
ground truth factor [CLGD18]. Sl
I=1 Tl £
® Choose a factor y ~U[L...K]. u @F = 23
® For a batch of L samples: X2l 71 vioexd
® Sample two data points x;./, Xz, from the . ‘ Ojl?(!f\lﬁ}m)
dataset where the chosen factor y has the H N Linear
same value. X171 711 [ & L
© Obtain the latent representation z; /, 22, . "“)JE i = 7 D 2
and compute the difference oj =1
zl = |z1) — 22 =1 A8
diff 1./ 2,11 Sj 4
. L
© Use the average Zgiff = % Z/L:1 zéiff to x- f,‘,,‘,,ig Zdifr
predict p(y|z5) and report the 2L 22l

predictor’s accuracy as disentanglement
metric score.
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(a) Azimuth (rotation)

(b) emotion (smile)

() hair (fringe)

anure 1: Manipulating latent variables on celebA: Qudlmuve results comparing disentangling
performance of 3-VAE (3 = 250), VAE (Kingma & Welling, 2014) (3 = 1) and InfoGAN (Chen
etal., 2016). In all figures of latent code traversal each block corresponds to the traversal of a single
latent variable while keeping others fixed to either their inferred (3-VAE, VAE and DC-IGN where
applicable) or sampled (InfoGAN) values. Each row represents a different seed image used to infer
the latent values in the VAE-based models, or a random sample of the noise variables in InfoGAN.
B-VAE and VAE traversal is over the [-3, 3] range. InfoGAN traversal is over ten dimensional
categorical latent variables. Only 3-VAE and InfoGAN learnt to disentangle factors like azimuth
(a), emotion (b) and hair style (c), whereas VAE learnt an entangled representation (e.g. azimuth is
entangled with emotion, presence of glasses and gender). InfoGAN images adapted from Chen et al.
(2016). Reprinted with permission.
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Figure 2: Manipulating latent variables on 3D chairs: Qualitative results comparing disentangling
performance of 3-VAE (8 = 5), VAE (Kingma & Welling, 2014) (8 = 1), InfoGAN (Chen et al.,
2016) and DC-IGN (Kulkarni et al., 2015). InfoGAN traversal is over the [-1, 1] range. VAE always
learns an entangled representation (e.g. chair width is entangled with azimuth and leg style (b)).
All models apart from VAE learnt to disentangle the labelled data generative factor, azimuth (a).
InfoGAN and /3-VAE were also able to discover unlabelled factors in the dataset, such as chair width
(b). Only 3-VAE, however, learnt about the unlabelled factor of chair leg style (c). InfoGAN and
DC-IGN images adapted from Chen et al. (2016) and Kulkarni et al. (2015), respectively. Reprinted
with permission.
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(c) Elevation
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Figure 3: Manipulating latent variables on 3D faces: Qualitative results comparing disentangling

performance of 3-VAE (3 = 20), VAE (Kingma & Welling, 2014) (3 = 1), InfoGAN (Chen et al.,

2016) and DC-IGN (Kulkarni et al., 2015). InfoGAN traversal is over the [-1, 1] range. All models
learnt to disentangle lighting (b) and elevation (c). DC-IGN and VAE struggled to continuously
interpolate between different azimuth angles (a), unlike 3-VAE, which additionally learnt to encode a
wider range of azimuth angles than other models. InfoGAN and DC-IGN images adapted from Chen
et al. (2016) and Kulkarni et al. (2015), respectively. Reprinted with permission.
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(c) Image saturation

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.
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Model Disenta.nglement
metric score
Ground truth 100%
Raw pixels 45.75 + 0.8%
PCA 84.9 +0.4%
ICA 42.03 £+ 10.6%
DC-IGN 99.3 +0.1%
InfoGAN 73.5+0.9%
VAE untrained 44.14 £+ 2.5%
VAE 61.58 + 0.5%
B-VAE 99.23 £ 0.1%

Figure 8: Disentanglement metric
classification accuracy for 2D shapes
dataset.
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Figure 9: Representations learned by a B-VAE.
Each column represents a latent z;, ordered
according to the learned Gaussian variance.
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The Effect of B

® (3 is a mixing coefficient that weighs the gradients magnitudes between
reconstruction and the prior-matching. So it is natural to consider normalized 3
in analysis by the latent space dimension M and input data dimension N,
ﬁnorm = WM

® 3 being too low or too high, the model would learn a entangled representation
due to either too much or too little capacity in the latent z bottleneck.

® Good disentanglement representations often lead to blurry reconstructions.
However, in general, B > 1 is necessary to achieve good disentanglement.

Disentanglement Metric Score
(normalised)

Original

Reconstruction

3 (normalised)

J
oo0: 0N
0

100
Size of =
Figure 10: Positive correlation is present between the size of z and the optimal normalised values
of B for disentangled factor learning for a fixed B-VAE architecture. Orange approximately
corresponds to unnormalized B = 1.
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The Problem with B-VAE

B-VAE Loss

L(6,¢.8:%.2) = —Eqzqy(zpx) [l08 Po(x|2)] +BDxL (ap(2lx)lIpe(2))]

Although tuning B > 1 showed promising results in disentanglement, B-VAE has
several problems

® The trade-off between reconstruction and disentanglement.

® No mathematical explanation on the source of disentanglement by penalizing
D (g (2I%)[1ps(2))-

® The metric used lacks axis-alignment detection, tends to be ad-hoc, and
sensitive to hyperparameters.
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Framework
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Decompose ELBO More

Mutual Information

Let (X, Y) be a pair of r.v.s over the space X x ). Then their mutual information is
® /(X;Y) = Dx(p(X, Y)lIp(X)p(Y))
® /(X Y) =Ex [Du(p(YIX)Ip(Y))] = Ey [Dur (P(X]|Y)[IP(X))]

1(X; Y) intuitively measures how much could you infer about the other random variable if you are given
knowledge about one of them. /(X; Y) = 0 means independence because nothing can be inferred (not
related at all).

ELBO TC-Decomposition

Define a uniform random variable on {1,2, ..., N} with which each data point relates. Denote
q(z|n) = q(z|x») and q(z, n) = q(z|n)p(n) = q(z|n)%A q(z) = Z’nvzl q(z|n)p(n) is the aggregated
posterior. Then, we can decompose the regularization term in the ELBO as

N
& 3 D (a@bx)lIp(@) = By (O (0l p(@)]

n=1
= Dr(a@@In)llp@) + D (@@ T T a@) + D Dre (a(zlp(2)))
—’—’ J J

Index-Code M|

Total Correlation Dimension-wise KL
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Decompose ELBO More

ELBO TC-Decomposition

Epn) [Dxe (a(zn)llp(2))] = Dri(a(z|n)llp(2)) + D (a (@)l H a(z)) + Z Dui (a(zlIp(5)))

4 4
Index-Code MI

Total Correlation Dimension-wise KL

® The index-code Ml is the mutual information /q(z; n). It is argued that higher mutual information
can lead to better disentanglement, but recent investigations also claim that a penalized one
encourages compact and disentangled representations.

® The total correlation is one of many generalization of mutual information. It is a measure of
dependency between the variables. This is claimed to be the main source of disentanglement.

® The dimension-wise KL divergence mainly prevents individual latent dimensions from deviating too
far from priors. It acts like a complexity penalty.

B-TCVAE Loss

£ = ~Eq(zinp(n) llog p(nl2)] + atlo(zi n) + 8Ok (a(2)I| [ [ a(z) + Z Dr (a(zllp(2)))

J
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Decompose ELBO More

VAE Loss

L = —Eq(zin)|p(n) llog p(n|2)] + alg(z; n) + BDkL(q(2)]| H a(z)) + Z D« (a(z1lp(2)))

J J

Comparison on 2D dSprites

® \With ablation studies, tuning 8 .
leads to the best results. The o g
proposed model uses 2" ST 2
a = = 1, which is the same 150 N =
object as in g g T
FactorVAE [KM18]. T T bew s

Comparison on 3D Faces

® Provides better trade-off -0 o
between density estimation and 9™ go
disentanglement. Different T o ~ o
from B-VAE, higher value of 3 T A T
would not penalize the mutual e — o — e
information term too much. Figure S8: ELBO vs. Disentanglement plots showing 3-TCVAE (4) but with a set to 0.
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Decompose ELBO More

CVAE Loss

L = —Eqzn)p(n) [log p(n|z)] + alq(z; n) +BDk (a(2)]| ]___[ (7)) + ’YZ Dx1 (a(zlIp()))

J

® Decomposition expression requires the evaluation of the density
q(z) = Ep(ny [a(z[n)], which depends on the entire dataset.

® Simple Monte Carlo approximation is not likely to work because if we view g(z)
as a mixture distribution where the data index n indicates the mixture
component, a randomly sampled component g(z|n) is likely to be close to 0.

® g(z|n) would be large if n is the component that z comes from. So we should
perform weighted sampling.

® Given a minibach of samples {n1, ..., nm}, we use the estimator
1Y 1 U

z) [log q(2)] = — Z log Z a(z(nj)n;)
M P NI\/I o

where z(n;) ~ q(z|n;).
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Measure Disentanglement

1al Information Gap (MIG

® Estimate the mutual information between a latent variable z; and a ground truth factor vi
by q(zj, vk) = Z,,NZI p(vk)P(n|vk)a(z|n), and use it in some way.

® A higher mutual information implies that z; contains a lot of information about vx. Ml is
maximal if there exists a deterministic, invertible relationship between z; and vx.

@ For each vy, take z, z; that has the highest and the second highest mutual information with
Vi .

© MIG = & 30, iy (i vi) — 1z w))

® Averaging by K and normalizing by the entropy H(vx) provides a value between 0 and 1.

vg : Hair color oo . o o

vy + Skin color bl )

® MIG — 1 implies good disentanglement.

v : Hair color

vy : Skin color

va : Glasses va : Glasses

20 21 22 23 20 Z1 22 23
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B-TCVAE (Our)

(a) Baldness (-6, 6) (b) Face width (0, 6) (¢) Gender (-6, 6) (d) Mustache (-6, 0)
Figure 1: Qualitative comparisons on CelebA. Traversal ranges are shown in parentheses. Some

attributes are only manifested in one direction of a latent variable, so we show a one-sided traversal.
Most semantically similar variables from a 3-VAE are shown for comparison.
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(a) dSprites

(b) 3D Faces

Figure 2: Compared to 3-VAE, 3-TCVAE creates more disentangled representations while preserving
a better generative model of the data with increasing 8. Shaded regions show the 90% confidence

intervals. Higher is better on both metrics.
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o VAE  InoGAN  BVAE FactorVAE B-TCVAE VAE  INfGAN  BVAE FactorVAE B-TCVAE
(a) dSprites (b) 3D Faces

Total correlation

(a) dSprites

Total correlation

(b) 3D Faces

Figure 3: Distribution of disentanglement score Figure 4: Scatter plots of the average MIG and TC

(MIG) for different modeling algorithms.

per value of 3. Larger circles indicate a higher j.
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