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No formal definition, briefly, separating the distinct, informative factors of variations in the data

Entanglement: a random variable X = [a+b, a-b, a+2b, b]

Disentanglement: Z = [a,b]

Why is it useful?
• Customized generation

• Causality: p(x)p(y|x), p(y)p(x|y)

• Robot tasks

Disentanglement
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β-VAE
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For any disentanglement representation, we can find infinite many equivalent representations. It’s 
impossible to get the disentanglement representation without inductive bias.

Disentanglement representations is impossible without inductive bias
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Prior knowledge



         Data       Generated: z = [0, 0, …, 0]           Generated: z = [0, 0, 0, 1, …, 0]

β-VAE generated results (on Atari Pong)
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Methods: 
• β-VAE
• AnnealedVAE
• FactorVAE
• β-TCVAE
• DIP-VAE-I
• DIP-VAE-ll

Metrics:
• β-VAE score
• FactorVAE score
• Mutual Information Gap (MIG) 
• DCI Disentanglement
• Modularity
• SAP score

Experiments

Datasets 
• dSprites
• Cars3D
• SmallNORB
• Shapes3D
• Color-dSprites
• Noisy-dSprites
• Scream-dSprites
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Common practice in latent representation: 
• Training: z ~ N(𝜇(z), 𝝈(z))
• Testig: 𝜇(z)

Mean representation of the latent variables are correlated
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Most disentanglement metrics are correlated
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Hyperparameters and random seeds are important than models
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1. Strategy should not depend on the score, which needs labels and the full generative model
2. No hyperparameters and models work the best every time

Recipes for hyperparameter selection
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Unsupervised loss vs. disentanglement scores



The same dataset and metric: 80.7%

Different datasets and the same metric: 59.3%

Different datasets and metrics: 54.9%
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Bad transfer performance across datasets and metrics



Basically, better disentanglement score leads to better performance in downstream tasks

But no clear evidence it leads to better sample complexity
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Downstream tasks grounded on the disentangled representation
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Make inductive bias explicit, figure out how to select the hyperparameters without labels

Concrete the benefits of the disentanglement

Evaluate disentanglement methods over diverse datasets
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Future directions
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