

VAE 4: Challenging Assumptions behind Disentanglement

Shengyu Feng

Sep 28, 2021

Disentanglement is impossible without inductive bias

Experimental results

Disentanglement is impossible without inductive bias

Experimental results

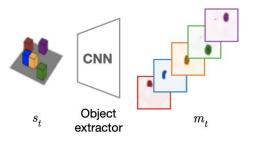
No formal definition, briefly, separating the distinct, informative factors of variations in the data

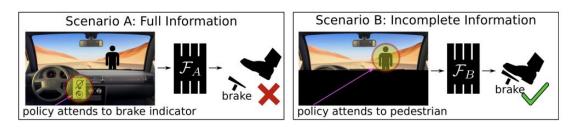
Entanglement: a random variable X = [a+b, a-b, a+2b, b]

Disentanglement: Z = [a,b]

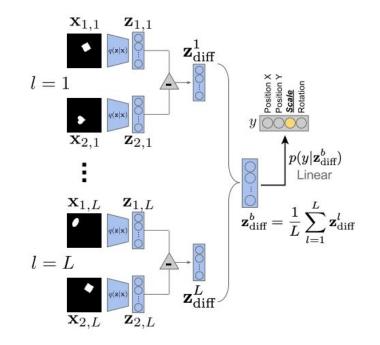
Why is it useful?

- Customized generation
- Causality: $p(x)\underline{p(y|x)}, p(y)p(x|y)$
- Robot tasks





β-VAE



 $\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \geq \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$

Disentanglement is impossible without inductive bias

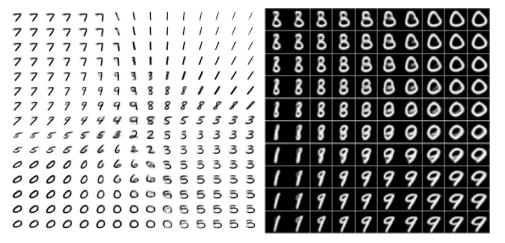
Experimental results

Ι

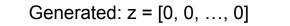
For any disentanglement representation, we can find infinite many equivalent representations. It's impossible to get the disentanglement representation without inductive bias.

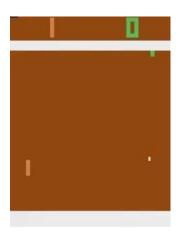
Prior knowledge

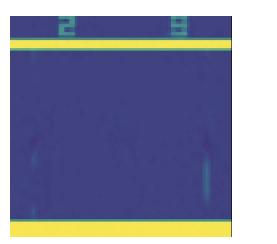
Theorem 1. For d > 1, let $\mathbf{z} \sim P$ denote any distribution which admits a density $p(\mathbf{z}) = \prod_{i=1}^{d} p(\mathbf{z}_i)$. Then, there exists an infinite family of bijective functions $f : \operatorname{supp}(\mathbf{z}) \rightarrow$ $\operatorname{supp}(\mathbf{z})$ such that $\frac{\partial f_i(\mathbf{u})}{\partial u_j} \neq 0$ almost everywhere for all *i* and *j* (i.e., \mathbf{z} and $f(\mathbf{z})$ are completely entangled) and $P(\mathbf{z} \leq \mathbf{u}) = P(f(\mathbf{z}) \leq \mathbf{u})$ for all $\mathbf{u} \in \operatorname{supp}(\mathbf{z})$ (i.e., they have the same marginal distribution).



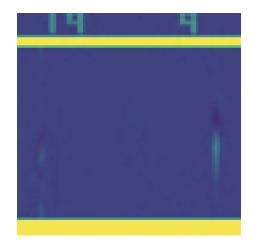
Data







Generated: z = [0, 0, 0, 1, ..., 0]



Disentanglement is impossible without inductive bias

Experimental results

Methods:

- β-VAE
- AnnealedVAE
- FactorVAE
- β-TCVAE
- DIP-VAE-I
- DIP-VAE-II

Metrics:

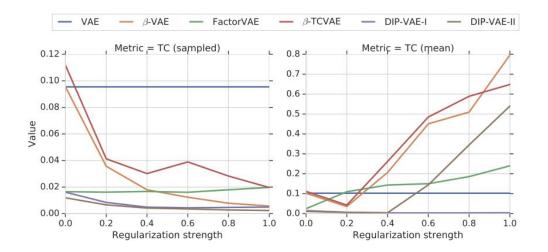
- β-VAE score
- FactorVAE score
- Mutual Information Gap (MIG)
- DCI Disentanglement
- Modularity
- SAP score

Datasets

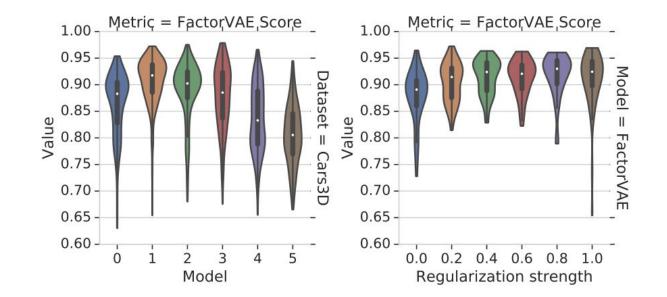
- dSprites
- Cars3D
- SmallNORB
- Shapes3D
- Color-dSprites
- Noisy-dSprites
- Scream-dSprites

Common practice in latent representation:

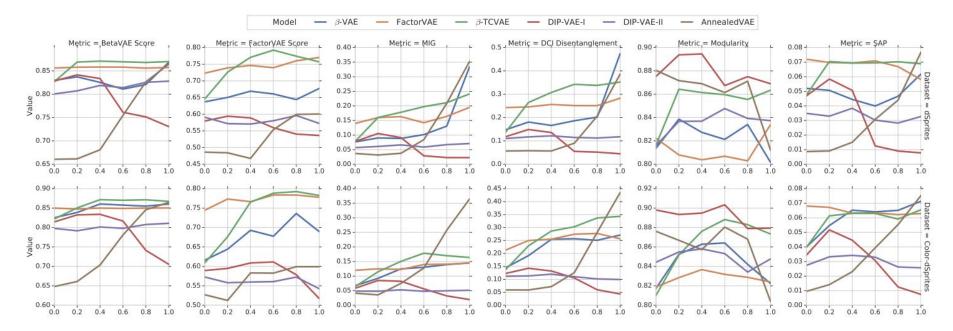
- Training: $z \sim N(\mu(z), \sigma(z))$
- Testig: $\mu(z)$



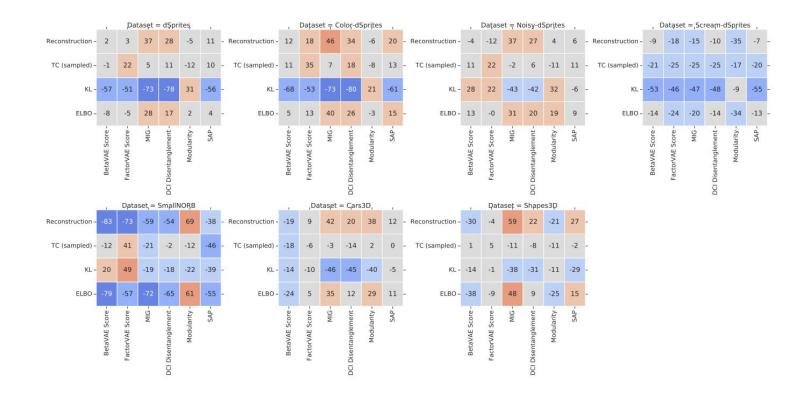
	Dataset = Noisy-dSprites										
BetaVAE Score (A) -	100	80	44	41	46	37	-				
FactorVAE Score (B) -	80	100	49	52	25	38	-				
MIG (C) -	44	49	100	76	6	42	-				
Disentanglement (D) -	41	52	76	100	-8	38	-				
Modularity (E) -	46	25	6	-8	100	13	-				
SAP (F) -	37	38	42	38	13	100	-				
	(Å)	(B)	(C)	(D)	(E)	(F)					



- 1. Strategy should not depend on the score, which needs labels and the full generative model
- 2. No hyperparameters and models work the best every time



Unsupervised loss vs. disentanglement scores



The same dataset and metric: 80.7%

Different datasets and the same metric: 59.3%

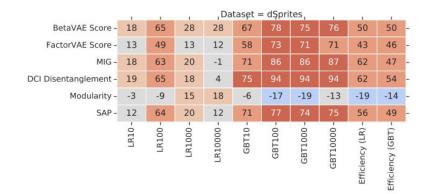
Different datasets and metrics: 54.9%

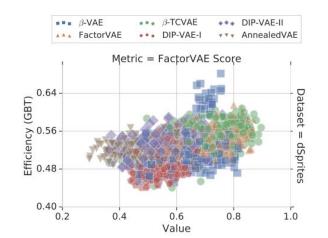
, Metric = PCI Disentanglement											
dSprites (I) -	100	95	65	65	34	64	46 -				
Color-dSprites (II) -	95	100	61	60	21	63	47 -				
Noisy-dSprites (III) -	65	61	100	68	17	64	59 -				
Scream-dSprites (IV) -	65	60	68	100	36	93	69 -				
SmallNORB (V) -	34	21	17	36	100	21	-9 -				
Cars3D (VI) -	64	63	64	93	21	100	85 -				
Shapes3D (VII) –	46	47	59	69	-9	85	100 -				
	(1)	(II)	()	(IV)	(V)	(VI)	VII				

Ι

Basically, better disentanglement score leads to better performance in downstream tasks

But no clear evidence it leads to better sample complexity





Disentanglement is impossible without inductive bias

Experimental results

Make inductive bias explicit, figure out how to select the hyperparameters without labels

Concrete the benefits of the disentanglement

Evaluate disentanglement methods over diverse datasets

- 2017 (ICLR): I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner. <u>beta-VAE: Learning basic visual concepts with a constrained variational framework</u>. ICLR, 2017.
- 2019 (ICML): F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Scholkopf, O. Bachem. <u>Challenging</u> common assumptions in the unsupervised learning of disentangled representations. ICML, 2019.
- 2020 (ICLR): T. Kipf, E. Pol, M. Welling. <u>Contrastive Learning of Structured World Models</u>. ICLR, 2020.
- 2019 (NeurIPS): P. Haan, D. Jayaraman, S. Levine. <u>Causal Confusion in Imitation Learning</u>. NeurIPS, 2019.