
Efficient Methods for Overlapping Group Lasso
Lei Yuan, Jun Liu, and Jieping Ye, Senior Member, IEEE

Abstract—The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The

nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general

formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however,

much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group

Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and

compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of

algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso

formulation based on the ‘q norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on

the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical

evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into

(overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art

algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.

Index Terms—Sparse learning, overlapping group Lasso, proximal operator, difference of convex programming

Ç

1 INTRODUCTION

PROBLEMS with high dimensionality have become common
over recent years. High dimensionality poses significant

challenges in building interpretable models with high-
prediction accuracy. Regularization has been commonly
employed to obtain more stable and interpretable models. A
well-known example is the penalization of the ‘1 norm of
the estimator, known as the Lasso [1]. The ‘1 norm
regularization has achieved great success in many applica-
tions. However, in some applications [2], we are interested
in finding important explanatory factors in predicting the
response variable, where each explanatory factor is repre-
sented by a group of input features. In such cases, the
selection of important features corresponds to the selection
of groups of features. As an extension of the Lasso, the
group Lasso [2] based on the combination of the ‘1 norm and
the ‘2 norm has been proposed for group feature selection,
and many algorithms [3], [4], [5] have been proposed for
efficient optimization. However, the nonoverlapping group
structure in group Lasso limits its applicability in practice.
For example, in microarray gene expression data analysis,
genes may form overlapping groups as each gene may
participate in multiple pathways [6].

Several recent works [6], [7], [8], [9], [10], [11], [12] have
studied the overlapping group Lasso, where groups of
features are given, potentially with overlaps between the

groups. The resulting optimization is, however, much more
challenging to solve due to the group overlaps. When
solving the overlapping group Lasso problem, one can
reformulate it as a second order cone program and solve it
by a generic toolbox, which, however, does not scale well.
Jenatton et al. [13] proposed an alternating algorithm called
SLasso for solving the equivalent reformulation. However,
SLasso involves an expensive matrix inversion at each
alternating iteration, and there is no known global con-
vergence rate for such an alternating procedure. A
reformulation [14] was also proposed such that the original
problem can be solved by the Alternating Direction Method
of Multipliers (ADMM), which involves solving a linear
system at each iteration and may not scale well for high-
dimensional problems. Argyriou et al. [15] adopted the
proximal gradient method for solving the overlapping
group Lasso, and a fixed point method was developed to
compute the proximal operator. Chen et al. [16] employed a
smoothing technique to solve the overlapping group Lasso
problem. Mairal et al. [9] proposed to solve the proximal
operator associated with the overlapping group Lasso
defined as the sum of the ‘1 norms, which, however, is
not applicable to the formulation considered in this paper.

In this paper, we develop an efficient algorithm for the
overlapping group Lasso penalized problem via the
accelerated gradient descent (AGD) method. The AGD
method has recently received increasing attention in
machine learning due to the fast convergence rate even
for nonsmooth convex problems. One of the key operations
is the computation of the proximal operator associated with
the penalty. We reveal several key properties of the
proximal operator associated with the overlapping group
Lasso penalty and propose several possible reformulations
that can be solved efficiently. The main contributions of this
paper include: 1) We develop a low-cost prepossessing
procedure to identify (and then remove) zero groups in the
proximal operator, which dramatically reduces the size of
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the problem to be solved; 2) we propose one dual
formulation and two proximal splitting formulations for
the proximal operator; and 3) for the dual formulation, we
further derive the duality gap, which can be used to check
the quality of the solution and determine the convergence
of the algorithm.

In addition, we propose two extensions to the proposed
algorithm. First, we generalize our method and theoretical
results to solve the general overlapping group Lasso with
the ‘q norm with q > 1 (when q ¼ 1, there is no grouping
effect). We then tackle a nonconvex overlapping group
Lasso formulation based on the capped norm regulariza-
tion. We propose to decompose the nonconvex capped
norm penalty to the difference of two convex functions and
solve the equivalent problem using DC programming. The
subproblem of each DC step is equivalent to the original
overlapping group Lasso problem.

We have performed empirical evaluations using both
synthetic data and the breast cancer gene expression
dataset, which consists of 8,141 genes organized into
(overlapping) gene sets. Experimental results demonstrate
the efficiency of the proposed algorithm in comparison with
existing state-of-the-art algorithms. Results also demon-
strate the effectiveness of the nonconvex overlapping group
Lasso formulation.

Notations: k � k denotes the euclidean norm, and 0

denotes a vector of zeros. SGNð�Þ and sgnð�Þ are defined in
a component wise fashion as: 1) If t ¼ 0, then SGNðtÞ ¼
½�1; 1� and sgnðtÞ ¼ 0; 2) if t > 0, then SGNðtÞ ¼ f1g and
sgnðtÞ ¼ 1; and 3) if t < 0, SGNðtÞ ¼ f�1g and sgnðtÞ ¼ �1.
Gi � f1; 2; . . . ; pg denotes an index set, and xGi

denote a
subvector of x restricted to Gi.

2 THE OVERLAPPING GROUP LASSO

We consider the following overlapping group Lasso
penalized problem:

min
x2IRp

fðxÞ ¼ lðxÞ þ ��1

�2
ðxÞ; ð1Þ

where lð�Þ is a smooth convex loss function, e.g., the least
squares loss,

��1

�2
ðxÞ ¼ �1kxk1 þ �2

Xg
i¼1

wikxGi
k ð2Þ

is the overlapping group Lasso penalty, �1 � 0 and �2 � 0

are regularization parameters, wi > 0, i ¼ 1; 2; . . . ; g, Gi �
f1; 2; . . . ; pg contains the indices corresponding to the
ith group of features, and k � k denotes the euclidean
norm. We consider the general ‘q norm with q > 1 in
Section 4. Note that the first term in (2) can be absorbed
into the second term, which, however, will introduce
p additional groups. The g groups of features are
prespecified, and they may overlap. The penalty in (2) is
a special case of the more general Composite Absolute
Penalty (CAP) family [10]. When the groups are disjoint
with �1 ¼ 0 and �2 > 0, the model in (1) reduces to the
group Lasso [2]. If �1 > 0 and �2 ¼ 0, then the model in (1)
reduces to the standard Lasso [1].

In this paper, we propose to make use of the AGD [17],
[18], [19] for solving (1), due to its fast convergence rate.
The algorithm is called “FoGLasso,” which stands for
Fast overlapping Group Lasso. One of the key steps in the
proposed FoGLasso algorithm is the computation of the
proximal operator associated with the penalty in (2), and
we present an efficient algorithm for the computation in
the next section.

In FoGLasso, we first construct a model for approximat-
ing fð�Þ at the point x as

fL;xðyÞ ¼ ½lðxÞ þ hl0ðxÞ;y� xi� þ ��2

�1
ðyÞ þ L

2
ky� xk2; ð3Þ

where L > 0. The model fL;xðyÞ consists of the first-order
Taylor expansion of the smooth function lð�Þ at the point x,
the nonsmooth penalty ��2

�1
ðxÞ, and a regularization term

L
2 ky� xk2. Next, a sequence of approximate solutions fxig
is computed as follows: xiþ1 ¼ arg minyfLi;siðyÞ, where the
search point si is an affine combination of xi�1 and xi as
si ¼ xi þ �iðxi � xi�1Þ, for a properly chosen coefficient �i,
Li is determined by the line search according to the
Armijo-Goldstein rule so that Li should be appropriate for
si, i.e., fðxiþ1Þ � fLi;siðxiþ1Þ. A key building block in
FoGLasso is the minimization of (3), whose solution is
known as the proximal operator [20]. The computation of
the proximal operator is the main technical contribution of
this paper. The pseudocode of FoGLasso is summarized in
Algorithm 1, where the proximal operator �ð�Þ is defined in
(4). In practice, we can terminate Algorithm 1 if the change
of the function values corresponding to adjacent iterations
is within a small value, say 10�5.

Algorithm 1. The FoGLasso Algorithm
Input: L0 > 0;x0; k

Output: xkþ1

1: Initialize x1 ¼ x0, ��1 ¼ 0, �0 ¼ 1, and L ¼ L0.

2: for i ¼ 1 to k do

3: Set �i ¼ �i�2�1
�i�1

, si ¼ xi þ �iðxi � xi�1Þ
4: Find the smallest L ¼ 2jLi�1; j ¼ 0; 1; . . . such that

fðxiþ1Þ � fL;siðxiþ1Þ holds, where

xiþ1 ¼ ��1=L
�2=L
ðsi � 1

L l
0ðsiÞÞ

5: Set Li ¼ L and �iþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffi
1þ4�2

i

p
2

6: end for

3 THE ASSOCIATED PROXIMAL OPERATOR AND ITS

EFFICIENT COMPUTATION

The proximal operator associated with the overlapping
group Lasso penalty is defined as follows:

��1

�2
ðvÞ ¼ arg min

x2IRp
g�1

�2
ðxÞ � 1

2
kx� vk2 þ ��1

�2
ðxÞ

� �
; ð4Þ

which is a special case of (1) by setting lðxÞ ¼ 1
2 kx� vk2. It

can be verified that the approximate solution xiþ1 ¼
arg minyfLi;siðyÞ is given by xiþ1 ¼ ��1=Li

�2=Li
ðsi � 1

Li
l0ðsiÞÞ. The

efficient computation of the proximal operator is key to
many sparse learning algorithms [21], [22]. Next, we focus
on the efficient computation of ��1

�2
ðvÞ in (4) for a given v.
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The rest of this section is organized as follows: In Section 3.1,
we discuss some key properties of the proximal operator,
based on which we propose a preprocessing technique that
will significantly reduce the size of the problem. We then
propose to solve it via the dual formulation in Section 3.2,
and the duality gap is also derived. Several alternative
methods for solving the proximal operator via proximal
splitting methods are discussed in Section 3.3.

3.1 Key Properties of the Proximal Operator

Denote 	 as the point-wise product. We first reveal several
basic properties of the proximal operator ��1

�2
ðvÞ.

Lemma 1. Suppose that �1; �2 � 0, and wi > 0, for i ¼ 1;
2; . . . ; g. Let x
 ¼ ��1

�2
ðvÞ. The following holds:

1. if vi > 0, then 0 � x
i � vi;
2. if vi < 0, then vi � x
i � 0;
3. if vi ¼ 0, then x
i ¼ 0;
4. SGNðvÞ � SGNðx
Þ; and
5. ��1

�2
ðvÞ ¼ sgnðvÞ 	 ��1

�2
ðjvjÞ.

Proof. When �1; �2 � 0, and wi � 0, for i ¼ 1; 2; . . . ; g, the
objective function g�1

�2
ð�Þ is strictly convex; thus, x
 is the

unique minimizer. We first show if vi > 0, then
0 � x
i � vi. If x
i > vi, then we can construct a x̂ as
follows: x̂j ¼ x
j , j 6¼ i, and x̂i ¼ vi. Similarly, if x
i < 0,
then we can construct a x̂ as follows: x̂j ¼ x
j , j 6¼ i, and
x̂i ¼ 0. It is easy to verify that x̂ achieves a lower
objective function value than x
 in both cases. We can
prove the second and the third properties using similar
arguments. Finally, we can prove the fourth and the fifth
properties using the definition of SGNð�Þ and the first
three properties. tu

Next, we show that ��1

�2
ð�Þ can be directly derived from

�0
�2
ð�Þ by soft-thresholding. Thus, we only need to focus on

the case when �1 ¼ 0. This simplifies the optimization in
(4). It is an extension of the result for Fused Lasso by
Friedman [23].

Theorem 1. Let u ¼ sgnðvÞ 	maxðjvj � �1; 0Þ, and

�0
�2
ðuÞ ¼ arg min

x2IRp

�
h�2
ðxÞ � 1

2
kx� uk2

þ �2

Xg
i¼1

wikxGi
k
�
:

ð5Þ

Then, the following holds: ��1

�2
ðvÞ ¼ �0

�2
ðuÞ.

Proof. Denote the unique minimizer of h�2
ð�Þ as x
. The

sufficient and necessary condition for the optimality of
x
 is:

0 2 @h�2
ðx
Þ ¼ x
 � uþ @�0

�2
ðx
Þ; ð6Þ

where @h�2
ðxÞ and @�0

�2
ðxÞ are the subdifferential sets of

h�2
ð�Þ and �0

�2
ð�Þ at x, respectively.

Next, we need to show 0 2 @g�1

�2
ðx
Þ. The subdiffer-

ential of g�1

�2
ð�Þ at x
 is given by

@g�1

�2
ðx
Þ ¼ x
 � vþ @��1

�2
ðx
Þ

¼ x
 � vþ �1SGNðx
Þ þ @�0
�2
ðx
Þ:

ð7Þ

It follows from the definition of u that u 2 v� �1SGNðuÞ.
Using the fourth property in Lemma 1, we have
SGNðuÞ � SGNðx
Þ. Thus,

u 2 v� �1SGNðx
Þ: ð8Þ

It follows from (6)-(8) that 0 2 @g�1

�2
ðx
Þ. tu

It follows from Theorem 1 that we only need to focus on
the optimization of (5) in the following discussion. The
difficulty in the optimization of (5) lies in the large number
of groups that may overlap. In practice, many groups will
be zero, thus achieving a sparse solution (a sparse solution
is desirable in many applications). However, the zero
groups are not known in advance. The key question we aim
to address is how we can identify as many zero groups as
possible to reduce the complexity of the optimization. Next,
we present a sufficient condition for a group to be zero.

Lemma 2. Denote the minimizer of h�2
ð�Þ in (5) by x
. If the

ith group satisfies kuGi
k � �2wi, then x
Gi

¼ 0, i.e., the
ith group is zero.

Proof. We decompose h�2
ðxÞ into two parts as follows:

h�2
ðxÞ ¼ 1

2
kxGi

� uGi
k2 þ �2wikxGi

k
� �

þ 1

2
kxGi

� uGi
k2 þ �2

X
j 6¼i

wjkxGj
k

 !
;

ð9Þ

where Gi ¼ f1; 2; . . . ; pg �Gi is the complementary set of
Gi. We consider the minimization of h�2

ðxÞ in terms of
xGi

when xGi
¼ x


Gi
is fixed. It can be verified that if

kuGi
k � �2wi, then x
Gi

¼ 0 minimizes both terms in (9)
simultaneously. Thus, we have x
Gi

¼ 0. tu
Lemma 2 may not identify many true zero groups due to

the strong condition imposed. The lemma below weakens
the condition in Lemma 2. Intuitively, for a group Gi, we
first identify all existing zero groups that overlap with Gi,
and then compute the overlapping index subset Si of Gi as

Si ¼
[

j6¼i;x

Gj
¼0

ðGj \GiÞ: ð10Þ

We can show that x
Gi
¼ 0 if kuGi�Sik � �2wi is satisfied.

Note that this condition is much weaker than the condition
in Lemma 2, which requires that kuGi

k � �2wi.

Lemma 3. Denote the minimizer of h�2
ð�Þ by x
. Let Si, a subset

of Gi, be defined in (10). If kuGi�Sik � �2wi holds, then
x
Gi
¼ 0.

Proof. Suppose that we have identified a collection of zero
groups. By removing these groups, the original problem
(5) can then be reduced to:

min
xðI1Þ2IRjI1 j

1

2
kxðI1Þ � uðI1Þk2 þ �2

X
i2G1

wikxGi�Sik;

where I1 is the reduced index set, i.e., I1 ¼ f1; 2; . . . ; pg �S
i:x


Gi
¼0 Gi, and G1 ¼ fi : x
Gi

6¼ 0g is the index set of the
remaining nonzero groups. Note that 8i 2 G1, Gi � Si 2
I1. By applying Lemma 2 again, we show that if
kuGi�Sik � �2wi holds, then x
Gi�Si ¼ 0. Thus, x
Gi

¼ 0. tu
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Lemma 3 naturally leads to an iterative procedure for
identifying the zero groups: For each group Gi, if
kuGi
k � �2wi, then we set uGi

¼ 0; we cycle through all
groups repeatedly until u does not change. Let p0 ¼ jfui :
ui 6¼ 0gj be the number of nonzero elements in u, g0 ¼
jfuGi

: uGi
6¼ 0gj be the number of the nonzero groups, and

x
 denote the minimizer of h�2
ð�Þ. It follows from Lemma 3

and Lemma 1 that if ui ¼ 0, then x
i ¼ 0. Therefore, by
applying the above iterative procedure, we can find the
minimizer of (5) by solving a reduced problem that has
p0 � p variables and g0 � g groups. With some abuse of
notation, we still use (5) to denote the resulting reduced
problem. In addition, from Lemma 1, we only focus on u >
0 in the following discussion, and the analysis can be easily
generalized to the general case.

3.2 Reformulation as an Equivalent Smooth Convex
Optimization Problem

It follows from the first two properties of Lemma 1 that we
can rewrite (5) as

�0
�2
ðuÞ ¼ arg min

x2IRp

0�x�u

h�2
ðxÞ; ð11Þ

where � denotes the element-wise inequality, and

h�2
ðxÞ ¼ 1

2
kx� uk2 þ �2

Xg
i¼1

wikxGi
k;

and the minimizer of h�2
ð�Þ is constrained to be nonnegative

due to u > 0 (refer to the discussion at the end of Section 3.1).
Making use of the dual norm of the euclidean norm k � k,

we can rewrite h�2
ðxÞ as:

h�2
ðxÞ ¼ max

Y 2�

1

2
kx� uk2 þ

Xg
i¼1

hx; Y ii; ð12Þ

where � is defined as follows:

� ¼ Y 2 IRp�g : Y i
Gi
¼ 0; kY ik � �2wi; i ¼ 1; 2; . . . ; g

n o
;

where Gi is the complementary set of Gi, Y is a sparse
matrix satisfying Yij ¼ 0 if the ith feature does not belong to
the jth group, i.e., i 62 Gj, and Y i denotes the ith column of
Y . As a result, we can reformulate (11) as the following
min-max problem:

min
x2IRp

0�x�u

max
Y 2�

 ðx; Y Þ ¼ 1

2
kx� uk2 þ hx; Y ei

� �
; ð13Þ

where e 2 IRg is a vector of ones. It is easy to verify that
 ðx; Y Þ is convex in x and concave in Y , and the constraint
sets are closed convex for both x and Y . Thus, (13) has a
saddle point, and the min-max can be exchanged.

It is easy to verify that for a given Y , the optimal x

minimizing  ðx; Y Þ in (13) is given by

x ¼ maxðu� Y e;0Þ: ð14Þ

Plugging (14) into (13), we obtain the following minimiza-
tion problem with regard to Y :

min
Y 2IRp�g:Y 2�

!ðY Þ ¼ � ðmaxðu� Y e;0Þ; Y Þf g: ð15Þ

Our methodology for minimizing h�2
ð�Þ, defined in (5), is to

first solve (15) and then construct the solution to h�2
ð�Þ via

(14). Using standard optimization techniques, we can show
that the function !ð�Þ is continuously differentiable with
Lipschitz continuous gradient. We include the detailed
proof in Theorem 2 for completeness. Therefore, we convert
the nonsmooth problem (11) to the smooth problem (15),
making the smooth convex optimization tools applicable.

Theorem 2. The function !ðY Þ is convex and continuously

differentiable with

!0ðY Þ ¼ �maxðu� Y e;0ÞeT: ð16Þ

In addition, !0ðY Þ is Lipschitz continuous with constant g, i.e.,

k!0ðY1Þ � !0ðY2ÞkF � gkY1 � Y2kF ; 8 Y1; Y2 2 IRp�g: ð17Þ

To prove Theorem 2, we first present two technical
lemmas. The first lemma is related to the optimal value
function [24], [25], and it was used in a recent study [26] on
infinite kernel learning.

Lemma 4 [24]. Let X be a metric space and U be a normed space.

Suppose that for all x 2 X, the function  ðx; �Þ is differenti-

able and that  ðx; Y Þ and DY  ðx; Y Þ (the partial derivative of

 ðx; Y Þ with respect to Y ) are continuous on X � U . Let � be

a compact subset of X. Define the optimal value function as

’ðY Þ ¼ infx2�  ðx; Y Þ. The optimal value function ’ðY Þ is

directionally differentiable. In addition, if 8Y 2 U ,  ð�; Y Þ has

a unique minimizer xðY Þ over �, then ’ðY Þ is differentiable at

Y and the gradient of ’ðY Þ is given by ’0ðY Þ ¼
DY ðxðY Þ; Y Þ.

The second lemma shows that the operator y ¼
maxðx;0Þ is nonexpansive.

Lemma 5. 8x;y 2 IRp, we have kmaxðx;0Þ �maxðy;0Þk �
kx� yk.

Proof. The result follows because jmaxðx; 0Þ �maxðy; 0Þj �
jx� yj, 8x; y 2 IR. tu

Proof of Theorem 2. To prove the differentiability of
!ðY Þ, we apply Lemma 4 with X ¼ IRp, U ¼ IRp�g, and � ¼
fx 2 X : uþ �2

P
wie � x � 0g. It is easy to verify that:

1.  ðx; �Þ is differentiable;
2.  ðx; Y Þ and DY  ðx; Y Þ ¼ xeT are continuous on

X � U ;
3. � is a compact subset of X; and
4. 8Y 2 U ,  ðx; Y Þ has a unique minimizer xðY Þ ¼

maxðu� Y e;0Þ over �.

Note that the last result follows from u > 0 and u� Y e �
uþ �2

P
wie, where the latter inequality utilizes

kY ik � �2wi, and this indicates that xðY Þ ¼ maxðu� Y e;

0Þ ¼ arg minx ðx; Y Þ ¼ arg minx2� ðx; Y Þ. It follows from
Lemma 4 that

’ðY Þ ¼ inf
x2�

 ðx; Y Þ ¼  ðmaxðu� Y e;0Þ; Y Þ

is differentiable with ’0ðY Þ ¼ maxðu� Y e;0ÞeT.
In (13),  ðx; Y Þ is convex in x and concave in Y , and the

constraint sets are closed convex for both x and Y ; thus, the
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existence of the saddle point is guaranteed by the well-
known von Neumann Lemma [18]. As a result,

’ðY Þ ¼ inf
x2�

 ðx; Y Þ ¼  ðmaxðu� Y e;0Þ; Y Þ

is concave and !ðY Þ ¼ �’ðY Þ is convex. For any Y1; Y2, we
have

k!0ðY1Þ � !0ðY2ÞkF
¼ kmaxðu� Y1e;0ÞeT �maxðu� Y2e;0ÞeTkF
� kek � kmaxðu� Y1e;0Þ �maxðu� Y2e;0Þk
� kek � kðY1 � Y2Þek
� gkY1 � Y2kF ;

ð18Þ

where the second inequality follows from Lemma 5. We
prove (17).

From Theorem 2, the problem in (15) is a constrained
smooth convex optimization problem, and existing solvers
for constrained smooth convex optimization can be
applied. In this paper, we employ the AGD to solve (15)
due to its fast convergence property. Note that the
euclidean projection onto the set � can be computed in
closed form. We would like to emphasize here that the
problem (15) may have a much smaller size than (4).

3.2.1 Computing the Duality Gap

We show how to estimate the duality gap of the min-max
problem (13), which can be used to check the quality of the
solution and determine the convergence of the algorithm.

For any given approximate solution ~Y 2 � for !ðY Þ, we
can construct the approximate solution ~x ¼ maxðu� ~Y e;0Þ
for h�2

ðxÞ. The duality gap for problem (13) at the point
ð~x; ~Y Þ can be computed as

gapð ~Y Þ ¼ max
Y 2�

 ð~x; Y Þ �min
x2IRp

0�x�u

 ðx; ~Y Þ: ð19Þ

The main result of this section is summarized in the
following theorem.

Theorem 3. Let gapð ~Y Þ be the duality gap defined in (19). Then,
the following holds:

gapð ~Y Þ ¼
Xg
i¼1

ð�2wik~xGi
k � h~xGi

; ~Y i
Gi
iÞ: ð20Þ

In addition, we have

!ð ~Y Þ � !ðY 
Þ � gapð ~Y Þ; ð21Þ

hð~xÞ � hðx
Þ � gapð ~Y Þ: ð22Þ

Proof. Denote ðx
; Y 
Þ as the optimal solution to the min-
max problem (13). From (12)-(15), we have

� !ð ~Y Þ ¼  ð~x; ~Y Þ ¼ min
x2IRp

0�x�u

 ðx; ~Y Þ �  ðx
; ~Y Þ; ð23Þ

 ðx
; ~Y Þ � max
Y 2�

 ðx
; Y Þ ¼  ðx
; Y 
Þ ¼ �!ðY 
Þ; ð24Þ

h�2
ðx
Þ ¼  ðx
; Y 
Þ ¼ min

x2IRp

0�x�u

 ðx; Y 
Þ �  ð~x; Y 
Þ; ð25Þ

 ð~x; Y 
Þ � max
Y 2�

 ð~x; Y Þ ¼ h�2
ð~xÞ: ð26Þ

Incorporating (11), (23)-(26), we prove (20)-(22). tu
In our experiments, we terminate the algorithm when the

estimated duality gap is less than 10�10.

3.3 Proximal Splitting Methods

Recently, a family of proximal splitting methods [27] has
been proposed for converting a challenging optimization
problem into a series of subproblems with a closed-form
solution. We consider two reformulations of the proximal
operator (4), based on the Dykstra-like Proximal Splitting
Method and the ADMM. The efficiency of these two
methods for overlapping group Lasso will be demonstrated
in the next section.

3.3.1 Dykstra-Like Proximal Splitting Method

In the field of signal processing, one classical problem is the
convex feasibility problem:

find x 2
\m
i¼1

Ci; ð27Þ

where Cis are convex sets. Efficient methods have been
designed for (27), where at each iteration only one convex
set is considered and the solution is updated iteratively
by cycling through all convex sets. Under certain conditions,
convergence is guaranteed. For our problem, since (5) can
be considered as the projection of a vector u onto a collection
of convex sets induced by the regularization components
wikxGi

k, the proximal splitting ideas can be applied.
We define fi ¼ �kxGi

k; the proximal operator in (5) can
be rewritten as:

min
x2IRp

1

2
kx� uk2 þ

Xg
i¼1

wifi: ð28Þ

Then, the Dykstra-like proximal algorithm can be summar-
ized in Algorithm 2.

Algorithm 2. Dykstra-like Proximal Splitting Method

1: Set x0 ¼ u, q1;0; . . . ;qg;0 ¼ x0, n ¼ 0

2: repeat

3: for i ¼ 1; . . . ; g do

4: pi;n ¼ proxfiqi;n
5: end for

6: xnþ1 ¼
Pg

i¼1 wipi;n
7: for i ¼ 1; . . . ; g do

8: qi;nþ1 ¼ xnþ1 þ qi;n � pi;n
9: end for

10: n ¼ nþ 1

11: until Convergence

The last piece of the puzzle in Algorithm 2 is to solve
p ¼ proxfiq, defined as:

p ¼ arg min
x2IRp

1

2
kx� qk2 þ �kxGi

k:

Clearly, we have pGi
¼ qGi

. For index set Gi, a closed-form
solution is known to exist:

pGi
¼

maxðkqGi
k � �; 0Þ

kqGi
k qGi

:
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3.3.2 Alternating Direction Method of Multipliers

Besides splitting the proximal operators, we can also bypass
the difficulty brought by overlapping groups by introdu-
cing auxiliary variables, and reformulate (5) as

min
x;z

1

2
kx� uk2 þ �

Xg
i¼1

wikzik

s:t: zi ¼ xGi
; i ¼ 1; . . . ; g:

ð29Þ

We can therefore form the augmented Lagrangian as
follows:

L�ðx; z;yÞ ¼
1

2
kx� uk2 þ �

Xg
i¼1

wikzik

þ
Xg
i¼1

yTi ðzi � xGi
Þ þ �

2

Xg
i¼1

kzi � xGi
k2:

The ADMM consists of the following iterations:

xkþ1 :¼ arg min
x
L�
�
x; zk;yk

�
;

zkþ1 :¼ arg min
z
L�
�
xkþ1; z;yk

�
;

ykþ1
i :¼ yki þ �

�
zkþ1
i � xkþ1

Gi

�
:

ð30Þ

One nice property of ADMM is each iterative step admits
a closed-form solution. We define  as the point-wise
division, e the p-dimensional vector with all ones, and the
indicator vector ~ei such that ~eiðjÞ ¼ 1 if j 2 Gi and 0
otherwise. We further define ~yi; ~zi 2 IRp such that ~yiðGiÞ ¼
yi; ~yiðGC

i Þ ¼ 0 and ~ziðGiÞ ¼ zi; ~ziðGC
i Þ ¼ 0. For updating x,

we have:

@

@x
L�
�
x; zk;yk

�
¼ x� u�

Xg
i¼1

~yki þ �
Xg
i¼1

~ei

 !
	 x

� �
Xg
i¼1

~zki

 !
;

and therefore

xkþ1 ¼ uþ
Xg
i¼1

~yki þ �
Xg
i¼1

~zki

 !
 eþ �

Xg
i¼1

~ei

 !
:

For updating zi, we use the subdifferential method: z
 is
the optimal solution if and only if 0 belongs to the
subdifferential set @L�ðxkþ1; z
;ykÞ. Decoupling the pro-
blem with respect to groups, we have:

0 2 zkþ1
i � xkþ1

Gi
þ 1

�
yki þ

�wi
�
@
		zkþ1

i

		;
where

@
		zkþ1

i

		 ¼ zkþ1
i

kzkþ1
i k

kzkþ1
i k 6¼ 0

ftjt 2 IRjGij; ktk � 1g kzkþ1
i k ¼ 0:

(

Thus, we have:

zkþ1
i ¼

max

		~xkþ1

Gi

		� ~�i; 0
�

		~xkþ1
Gi

		 ~xkþ1
Gi

;

where

~xkþ1
Gi
¼ xkþ1

Gi
� 1

�
yki ;

~�i ¼
�wi
�
:

Reformulation that uses ADMM to solve (1). Boyd et al. [14]

suggested that the original overlapping group lasso

problem (1) can be reformulated and solved by ADMM

directly. We include the implementation of ADMM in our

comparative study, and the details are provided in the
appendix, which can be found in the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2013.17, for completeness.

4 ‘q NORM OVERLAPPING GROUP LASSO

In this section, we extend our previous results to solving the

overlapping group lasso formulation (1) based on the

‘q norm with q > 1. Specifically, we extend the group lasso

penalty (2) to

��1

q;�2
ðxÞ ¼ �1kxk1 þ �2

Xg
i¼1

wikxGi
kq: ð31Þ

To extend to the ‘q norm case, the only change to

Algorithm 1 is to generalize the proximal operator:

��1

q;�2
ðvÞ ¼ arg min

x2IRp
g�1

q;�2
ðxÞ � 1

2
kx� vk2 þ ��1

q;�2
ðxÞ

� �
: ð32Þ

In the rest of the section, we extend the properties of the

proximal operator as well as the dual method from the

‘2 norm case to the general ‘q norm case.

4.1 Properties of the ‘q Proximal Operator

First of all, it is easy to verify that Lemma 1 and Theorem 1

hold for all q > 1 given that the ‘q norm is convex.
Denote the dual norm of the ‘q norm as ‘q with 1=q þ

1=q ¼ 1 and hq;�2
ðxÞ � 1

2 kx� uk2 þ �0
q;�2
ðxÞ. We then extend

the preprocessing techniques in the following two lemmas.

Lemma 6. Denote the minimizer of hq;�2
ð�Þ by x
. If the ith group

satisfies kuGi
kq � �2wi, then x
Gi

¼ 0, i.e., the ith group is zero.

Proof. We decompose hq;�2
ðxÞ into two parts as follows:

hq;�2
ðxÞ ¼ 1

2
kxGi

� uGi
k2 þ �2wikxGi

kq
� �

þ 1

2
kxGi

� uGi
k2 þ �2

X
j6¼i

wjkxGj
kq

 !
;

ð33Þ

where Gi ¼ f1; 2; . . . ; pg �Gi is the complementary set of

Gi. We consider the minimization of hq;�2
ðxÞ in terms of

xGi
when xGi

¼ x

Gi

is fixed.

Clearly, x
Gi
¼ 0 minimizes the second term in (33).

Therefore, we just need to show that x
Gi
¼ 0 minimizes

yðxGi
Þ defined as the following:

yðxGi
Þ ¼ 1

2
kxGi

� uGi
k2 þ �2wikxGi

kq:

Given any direction d 2 IRjGij, we take the directional

derivative of y at point 0:
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Dyð0Þ½d� ¼ lim
�#0

yð�dÞ � yð0Þ
�

¼ lim
�#0

1
2 k�d� uGi

k2 þ �2wik�dkq � 1
2 kuGi

k2

�

¼ �hd;uGi
i þ �2wikdkq

� �kdkqkuGi
kq þ �2wikdkq

� 0 8d;

where the last inequality follows because kuGi
kq � �2wi.

Thus, x
Gi
¼ 0. tu

Similarly to Lemma 3, we have:

Lemma 7. Denote the minimizer of hq;�2
ð�Þ by x
. Let Si, a subset

of Gi, be defined in (10). If kuGi�Sikq � �2wi holds, then
x
Gi
¼ 0.

The proof is similar to Lemma 3 based on the result in
Lemma 6.

4.2 Extending the Dual Method to the ‘q Case

When reformulating (32) as an equivalent smooth problem,
we only need to make two changes:

. The feasible region of the dual variable Y is
generalized as:

�q ¼ fY 2 IRp�g :Y i
Gi
¼ 0; kY ikq � �2wi;

i ¼ 1; 2; . . . ; gg;

. During the optimization process, we need to
compute the euclidean projection onto the ‘q ball,
which can be calculated efficiently [28].

The duality gap is now calculated as

gappð ~Y Þ ¼
Xg
i¼1

ð�2wik~xGi
kq � h~xGi

; ~Y i
Gi
iÞ:

It is easy to verify that this value can still be used to check
the convergence of our proposed dual method in the
‘q norm case.

5 OVERLAPPING GROUP LASSO VIA THE CAPPED

NORM

In this section, we consider the following problem:

min
x2IRp

lðxÞ þ �1kxk0 þ �2

Xg
i¼1

wiIðkxGi
k 6¼ 0Þ; ð34Þ

where Ið�Þ is the indicator function. Note that this is an NP-
hard problem, where convex relaxation such as (1) is
normally applied. However, due to the looseness of convex
relaxation, the ‘1-norm type regularization will introduce
bias to the parameter estimation [29], [30]. Several recent
works use the nonconvex capped norm that is closer to the
‘0 norm than the ‘1 norm as follows [29], [30], [31]:

kxk0 �
Xp
j¼1

min 1;
jxjj
�1

� �
;

Xg
i¼1

wiIðkxGi
k 6¼ 0Þ �

Xg
i¼1

wi min 1;
kxGi
k

�2

� �
;

ð35Þ

for some small �1; �2 > 0. Parameter estimation using the

nonconvex capped norm has been studied. It has been

shown that under appropriate conditions, the local solution

obtained by using the capped norm has better statistical

property than the one based on the convex ‘1 norm penalty.
The approximation used in (35) is still nonconvex.

Following [29], [30], [31], we use the following two

decompositions:

Xp
j¼1

min 1;
jxjj
�1

� �

¼ 1

�1
kxk1 �

Xp
j¼1

maxðjxjj � �1; 0Þ
" # ð36Þ

and

Xg
i¼1

wi min 1;
kxGi
k

�2

� �

¼ 1

�2

Xg
i¼1

wikxGi
k �

Xg
i¼1

wi maxðkxGi
k � �2; 0Þ

" #
:

ð37Þ

Combining (35), (36), and (37), we can approximate (34) as

min
x2IRp

lðxÞ þ �1

�1
kxk1 þ

�2

�2

Xg
i¼1

wikxGi
k � P ðxÞ �DðxÞ; ð38Þ

where

P ðxÞ ¼ �1

�1

Xp
j¼1

maxðjxjj � �1; 0Þ

and

DðxÞ ¼ �2

�2

Xg
i¼1

wiDiðxGi
Þ

¼ �2

�2

Xg
i¼1

wi maxðkxGi
k � �2; 0Þ:

Note that both P and D are convex functions, and therefore

we have converted the problem into a “difference of two

convex functions” (DC) programming.
It can be shown that

@

@xj
P ðxÞ 3

�1

�1
sgnðxjÞ jxjj > �1

0 jxjj � �1

�

and

@

@xGi

DiðxGi
Þ 3

xGi
kxGik

kxGi
k > �2

0 kxGi
k � �2:

(
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We then propose to solve (38) using the DC program-
ming, and the details are provided in Algorithm 3.

Algorithm 3. DC Programming for Overlapping Group
Lasso with the Capped Norm

Input: �1; �2 > 0;x0; k

Output: xkþ1

1: Initialize x1 ¼ x0

2: for i ¼ 1 to k do

3: Choose Uk 2 @P ðxkÞ and V k 2 @DðxkÞ
4: Solve

xkþ1 ¼ arg min
x2IRp

�
lðxÞ þ �1

�1
kxk1 þ

�2

�2

Xg
i¼1

wikxGi
k

� hUk þ V k;xi
� ð39Þ

5: Set k kþ 1

6: end for

The subproblem (39) can be solved using Algorithm 1.
Therefore, by solving a sequence of overlapping group lasso
problems, we can find a local solution for (38).

6 EXPERIMENTS

In this section, we present extensive experiments to
demonstrate the efficiency of our proposed methods. We
use both synthetic datasets and a real-world dataset, and
the evaluation is done in various problem size and precision
settings. The proposed algorithms are mainly implemented
in Matlab, with the proximal operator implemented in
standard C for improved efficiency. The source codes can
be found online [22].

Several state-of-the-art methods are also included for
comparison purposes, including SLasso developed by
Jenatton et al. [13] (with key components implemented in
C), the ADMM reformulation suggested by Boyd et al. [14],
the Prox-Grad method proposed by Chen et al. [16], and the
Picard-Nesterov algorithm [15].

6.1 Synthetic Data

6.1.1 Efficiency of Calculating the Proximal Operator

In the first set of simulation, we consider only the key
component of our algorithm, the proximal operator. The
group indices are predefined such that G1 ¼ f1; 2; . . . ; 10g,
G2 ¼ f6; 7; . . . ; 20g; . . . , with each group overlapping half of

the previous group. The target vector v 2 IRp in (4) is
generated randomly such that vi � Nð0; 1Þ. We fix �1 ¼ 1
and �2 ¼ 10.

One hundred examples are generated for each set of
fixed problem size p and group size g, and for each
particular random example we first run the dual method till
the gap is less than 10�8, then we run ADMM and the
Dykstra method until a smaller function value is attained.
The results are summarized in Fig. 1. As we can observe
from the figure, the dual formulation yields the best
performance, followed closely by ADMM, and then the
Dykstra method. We can also observe that our method
scales very well to high-dimensional problems because
even with p ¼ 106, the proximal operator can be computed
in a few seconds. It is also not surprising that the Dykstra
method is much more sensitive to the number of groups,
which equals the number of projections in one Dykstra step.

To illustrate the effectiveness of our preprocessing
technique, we repeat the previous experiment by removing
the preprocessing step. The results are shown in the right
plot of Fig. 1. As we can observe from the figure, the
proposed preprocessing technique effectively reduces the
computational time. As is evident from Fig. 1, the dual
formulation proposed in Section 3.2 consistently outper-
forms other proximal splitting methods. In the following
experiments, only the dual method with the preprocessing
step will be used for computing the proximal operator, and
our method will then be called as “FoGLasso.”

6.1.2 Sparse Pattern Recovery

Although the focus of this paper is on the efficiency of the
proposed algorithm, it is also interesting to see if the
overlapping group Lasso formulation can recover the under-
lying sparse pattern. For a given problem size n, p, and group
size g, we first define the overlapping groups as in
Section 6.1.1. We then generate the ground-truth model x0

with each entry sampled i.i.d. from a standard Gaussian
distribution. Next, we randomly set half of the predefined
groups and half of the remaining entries of x0 to be 0. We
sample the entries of the data matrix A 2 IRn�p i.i.d. from a
standard Gaussian distribution, and the response vector b is
obtained from b ¼ Ax0 þ 	, where 	 � Nð0; 
2In�nÞ.

We solve (1) with the least squares loss lðxÞ ¼ 1
2 kAx �

bk2, and we set wi ¼
ffiffiffiffiffiffiffiffi
jGij

p
and �1 ¼ �2 ¼ � � �max

1 , where
jGij denotes the size of the ith groupGi, �

max
1 ¼ kATbk1 (the

zero point is a solution to (1) if �1 � �max
1 ), and � is chosen

from the set f0:05; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g. Denote the
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Fig. 1. Time comparison for computing the proximal operators. The group number is fixed in the left figure and the problem size is fixed in the middle
figure. The right figure illustrates the effectiveness of the preprocessing.



obtained solution as x. The following two criteria are used to
evaluate the recovery performance:

. Entry recovery rate:

Pr kx0ðiÞk0 ¼ kxðiÞk0


 �
;

which is the entry-wise accuracy of sparse pattern
recovery.

. Group recovery rate:

Pr Iðkx0ðGiÞk ¼ 0Þ ¼ IðkxðGiÞk ¼ 0Þf g;

where Ið�Þ is the indicator function. This can be
considered as the group-wise accuracy of sparse
pattern recovery.

We set n 2 f200; 300; 400g, p ¼ 600, 
 ¼ 10�3, and g ¼ 60.
For each � value, 100 random instances are generated and
the average performance for different problem sizes is
reported in the top row of Fig. 2.

Using similar problem settings, we also evaluate the
recovery performance of the overlapping group Lasso
formulation with the capped norm. We set �1 ¼ �2 ¼ 0:01,
and instead of using a ratio, we set �1 ¼ �2 ¼ � 2 f0:1; 1;
1:5; 2; 3; 4; 5g. The results are summarized in the bottom row
of Fig. 2.

We can observe from Fig. 2 that as we increase the
sample size, the performance generally improves. The best
performance is normally attained in the middle of the
parameter space, where the solution is not too dense
(mostly nonzeros) or too sparse (mostly zeros). Our
preliminary evaluation shows that using the nonconvex
formulation indeed improves the pattern recovery rate
compared to the original formulation. For example, when
the sample size is 400, the best group recovery rate for the
original formulation is 0.81, while for the formulation with
the capped norm, the rate is about 0.85.

Fig. 2 illustrates the recovery performance across the
parameter space. Here, we also provide results with
parameters selected via cross validation, which is usually
done in practice. For each randomly generated example, we
first use fourfold cross validation to select the parameter
with the smallest error. We then use this parameter to
obtain the model x and compare it to the ground truth to
obtain recovery performance. We repeat this process 100
times and the results are summarized in Table 1. As we can
see in Table 1, using the nonconvex formulation also
improves the pattern recovery rate when the parameters
are selected using cross validation. Further evaluation of
this nonconvex formulation in real-world applications will
be our future work.

6.2 Gene Expression Data

We have also conducted experiments to evaluate the
efficiency of the proposed algorithm using the breast cancer
gene expression dataset [32], which consists of 8,141 genes
in 295 breast cancer tumors (78 metastatic and 217 nonmeta-
static). For the sake of analyzing microarrays in terms of
biologically meaningful gene sets, different approaches
have been used to organize the genes into (overlapping)
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Fig. 2. Performance of sparse pattern recovery of the convex overlapping group Lasso formulation (1) (top row) and the nonconvex overlapping
group Lasso formulation with the capped norm (38) (bottom row) on synthetic data with different problem sizes.

TABLE 1
Cross-Validation Performance of Sparse Pattern Recovery of
the Convex Overlapping Group Lasso Formulation and the

Nonconvex Overlapping Group Lasso Formulation Based on the
Capped Norm on Synthetic Data with Different Problem Sizes



gene sets. In our experiments, we follow Jacob et al. [6] and
employ the following two approaches for generating the
overlapping gene sets (groups): pathways [33] and edges
[34]. For pathways, the canonical pathways from the
Molecular Signatures Database (MSigDB) [33] are used. It
contains 639 groups of genes, of which 637 groups involve
the genes in our study. The statistics of the 637 gene groups
are summarized as follows: The average number of genes in
each group is 23.7, the largest gene group has 213 genes,
and 3,510 genes appear in these 637 groups with an average
appearance frequency of about 4. For edges, the network
built by Chuang et al. [34] will be used, and we follow Jacob
et al. [6] to extract 42,594 edges from the network, leading to
42,594 overlapping gene sets of size 2. All 8,141 genes
appear in the 42,594 groups with an average appearance
frequency of about 10. Here, we set �1 ¼ �2 ¼ � � �max

1 ,
where � is chosen from the set

f5� 10�1; 2� 10�1; 1� 10�1; 5� 10�2; 2� 10�2; 1

� 10�2; 5� 10�3; 2� 10�3; 1� 10�3g:

6.2.1 Comparison with SLasso, Prox-Grad, and ADMM

We first compare our proposed FoGLasso with the SLasso
algorithm [13], ADMM [14], and Prox-Grad [16]. The
comparisons are based on the computational time because
all these methods have efficient Matlab implementations
with key components written in C. For a given �, we first
run SLasso till a certain precision level is reached, and then
run the others until they achieve an objective function value
smaller than or equal to that of SLasso. The precision level
here is used as the convergence condition for SLasso such
that when the change of objective function value is smaller
than a certain value, the algorithm terminates. Different
precision levels of the solutions are evaluated such that a

fair comparison can be made. We vary the number of genes

involved and report the total computational time (seconds)

for all nine regularization parameters in Fig. 3. We can

observe that: 1) For all precision levels, our proposed

FoGLasso is much more efficient than SLasso, ADMM and

Prox-Grad; 2) the advantage of FoGLasso over other three

methods in efficiency grows with the increasing number of

genes (variables), for example, with the grouping by

pathways, FoGLasso is about 25 and 70 times faster than

SLasso for 1,000 and 2,000 genes, respectively; and 3) the

efficiency on edges is inferior to that on pathways due to

the larger number of overlapping groups. An additional

scalability study of our proposed method using larger

problem sizes can be found in Table 2.

6.2.2 Comparison with Picard-Nesterov

Since Picard-Nesterov was implemented purely in Matlab, a

computational time comparison might not be fair. There-

fore, only the number of iterations required for convergence

is reported, as both methods adopt the first order method.

Also note that, unlike the previous three methods (SLasso,

ADMM, and Prox-Grad), the preprocessing technique can

be applied to Picard-Nesterov because it solves the same

proximal operator in each iteration. To further validate the
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Fig. 3. Comparison of SLasso [13], ADMM [14], Prox-Grad [16], and our proposed FoGLasso algorithm in terms of computational time (in seconds
and in the logarithmic scale) when different numbers of genes (variables) are involved. Different precision levels are used for comparison.

TABLE 2
Scalability Study of the FoGLasso Algorithm

under Different Numbers (p) of Genes Involved

The reported results are the total computational time (seconds) for all
nine regularization parameter values.



effectiveness of our preprocessing technique, we apply it to
Picard-Nesterov as an independent method for comparison.

We use edges to generate the groups, and vary the
problem size from 100 to 400 using the same set of
regularization parameters. For each problem, we record
both the number of outer iterations (the gradient steps) and
the total number of inner iterations (the steps required for
computing the proximal operators). The average number of
iterations among all the regularization parameters is
summarized in Table 3. As we can observe from the table,
though Picard-Nesterov often takes less outer iterations to
converge, it takes a lot more inner iterations to compute the
proximal operator. It is easy to verify that the inner
iterations in the Picard-Nesterov method and our proposed
method have the same complexity of OðpgÞ. In terms of
the preprocessing technique, we can see that in all cases the
number of gradient steps remains exactly the same, while
the number of inner iterations is significantly reduced. This
verifies that by using the proposed preprocessing techni-
que, the proximal operator yields the same solution while
solving a smaller problem.

6.2.3 Computation of the Proximal Operator

In this experiment, we run FoGLasso on the breast cancer
dataset using all 8,141 genes. We terminate FoGLasso if the
change of the objective function value is less than 10�5. We
use the 42,594 edges to generate the overlapping groups.
We set � ¼ 0:01. The results are shown in Fig. 4. The left plot
shows that the objective function value decreases rapidly in
the proposed FoGLasso. In the middle plot, we report the

percentage of the identified zero groups by applying
Lemma 3. Our result shows that: 1) After 16 iterations,
50 percent of the zero groups are correctly identified; and
2) after 50 iterations, 80 percent of the zero groups are
identified. Therefore, with Lemma 3, we can significantly
reduce the problem size of the subsequent dual reformula-
tion (see Section 3.1). In the right plot of Fig. 4, we present
the number of inner iterations for solving the proximal
operator via the dual reformulation. We observe from the
figure that the number of inner iterations decreases. This is
because: 1) The size of the reduced problem decreases when
many zero groups are identified (see the middle plot); and
2) in solving the dual reformulation, we can apply the Y
computed in the previous iteration as the “warm” start for
computing the proximal operator in the next iteration.

6.2.4 Convergence with Inexact Proximal Operator

With an inexact proximal operator, the optimal convergence
rate of the AGD might not be guaranteed [35], [36].
However, recent work [37] has shown that if the error
introduced in the proximal operator decreases at a certain
rate, the convergence rate of AGD remains the same as in
the exact case. Specifically, if we denote the duality gap in
the k step as 	k ¼ gapð ~YkÞ, AGD will converge at the optimal
rate Oð 1

k2Þ if 	k is of order Oð 1
k2þ�Þ with � > 0.

One advantage of the proposed dual method is that the
error of the proximal operator can be easily controlled by
the duality gap. Here, we continue to use the gene
expression dataset in Section 6.2.3 to evaluate how the
error in the proximal operator affects the performance of
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TABLE 3
Comparison of FoGLasso, Picard-Nesterov, and Picard-Nesterov with Our Proposed Preprocessing Technique

Using Different Numbers (p) of Genes and Various Precision Levels

For each particular method, the first row denotes the number of outer iterations required for convergence, while the second row represents the total
number of inner iterations.

Fig. 4. Performance of the computation of the proximal operator in FoGLasso. The left plot shows the objective function value during the FoGLasso
iteration. The middle plot shows the percentage of the identified zero groups by applying Lemma 3. The right plot shows the number of inner
iterations for achieving the duality gap less than 10�10 when one solves the proximal operator via the dual reformulation (see Section 3.2).



the algorithm in practice. We use the following ways to
terminate the calculation of (4):

. 	k � 1
kn . Terminate the calculation until the duality

gap is below 1
kn .

. 	k � 	. Terminate the calculation until the duality
gap is below a fixed value 	.

We use the objective function value against the number of
iterations as the evaluation criterion, and the performance
for different termination conditions is illustrated in Fig. 5.

As we can see from Fig. 5, the convergence of the
objective value does not change dramatically with different
termination conditions. For example, setting 	 � 1

k and 	 �
1
k3 performs equally well. This might be due to the fact that
in most cases our proximal operator takes only one step to
converge even with a small duality gap, e.g., 10�10 (as
shown in the right plot of Fig. 4).

6.3 Discussions

Throughout this section, we have performed extensive
experiments to illustrate the empirical performance of our
proposed method. It is also interesting to analyze the
relationship between the proposed method and the existing
methods. In general, the methods for solving overlapping
group lasso formulation can be divided into three groups:

. AGD (FISTA) with proximal operator, such as
FoGLasso and Picard-Nesterov. These methods
solve the nonsmooth optimization by first-order
methods that involve the computation of a proximal
operator. When an analytical solution exists for the
corresponding proximal operator, an optimal con-
vergence rate of Oð 1

k2Þ can be achieved. For
problems such as overlapping group lasso, where
no closed-form solution is known for the proximal
operator, the optimal convergence rate can only be
guaranteed when the error of solving the proximal
operator can be controlled at each iteration. For
both FoGLasso and Picard-Nesterov, the complexity
of the inner iteration for computing the proximal
operator is OðpgÞ. This group of methods often
work quite well when the proximal operator can be
solved efficiently, while one disadvantage is that for
a new class of problems, one needs to design a

dedicated solver for computing the new proximal
operator, which can be challenging for certain cases.

. AGD with Nesterov’s smoothing technique, such as
Prox-Grad. For nonsmooth problems, the smoothing
technique can guarantee a convergence rate of Oð1kÞ,
with per iteration cost being Oðp2 þ pgÞ [16]. One
advantage of Prox-Grad is that it can be easily
applied to a wide range of structured sparse learning
models, including overlapping group lasso and
graph-induced lasso. However, Prox-Grad involves
a smoothing parameter , which can affect the speed
of the algorithm and needs to be tuned properly.

. ADMM. The worst-case convergence rate of ADMM
is Oð 1ffiffi

k
p Þ, and the actual speed of the implementation

may rely on the choice of the penalty parameter �.
In each iteration, ADMM solves a p� p linear
system, which can be solved in Oðp2Þ when the
Cholesky decomposition of the matrix for the
system can be precomputed. Therefore, the per-
iteration cost of ADMM is Oðp2 þ pgÞ. ADMM is
known to work well in certain problems such as
trace norm minimization [38].

7 CONCLUSION

In this paper, we consider the efficient optimization of
the overlapping group Lasso penalized problem based on
the AGD method. We reveal several key properties of the
proximal operator associated with the overlapping group
Lasso, and compute the proximal operator via solving the
smooth and convex dual problem. Numerical experiments
on both a synthetic and the breast cancer datasets
demonstrate the efficiency of the proposed algorithm.
Although with an inexact proximal operator, the optimal
convergence rate of the AGD might not be guaranteed [35],
[36], the algorithm performs quite well empirically. Our
algorithm is extended to tackle the generalized ‘q norm, as
well as a nonconvex formulation based on the capped
norm regularization. Our preliminary results show that the
capped norm leads to improved sparse pattern recovery. In
the future, we plan to extend the theoretical analysis in
[29], [30], [31] to the overlapping group Lasso formulation
considered in this paper. In addition, we plan to apply the
proposed algorithm to other real-world applications invol-
ving overlapping groups.
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