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Regression with OLS

e Given training data (y;,x;),i =1,...,n,x; € RP
@ Ordinary least squares (OLS)
n
A . Ty.\2
B = argmingere Y (vi — B7xi)
i=1
@ Issues/challenges with OLS
e Accuracy: low bias, high variance
o Interpretation: All coefficients are non-zero
e Cannot determine small subsets with strong effects
@ Shrinking coefficients
e Increases bias, lowers variance, improves accuracy
@ Alternatives

o Subset selection: Unstable, sensitive to small changes
o Ridge regression: Shrinks coefficients, but not to 0
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The LASSO

o Let (3° be the OLS solution, and ty = - 30|

@ The non-negative garotte estimator (Breiman, 1996)
n
(&, ¢) = argmin Z(y,- —oz—z chJ(-)x,-j)2 s.t.c; >0, Z ¢ <t
(ayc) i=1 j j

o Relies on OLS 3°: may be problematic in certain settings

o Least absolute shrinkage and selection operator (LASSO)

n

(6,8) =argminge g > (i—a—> Bixj) st Y |8
J J

i=1
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@ Parameter t < tp will cause shrinkage
e Some coefficients will become 0
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Orthonormal Design Case

Design matrix X € R"*P, assume XX = | € RP*P

Best subset selection picks k largest coefficients

For a suitable constant v, the LASSO solution is

By = sign(B7)(157 — 7)+

o Ridge regression shrinks the coefficients
A 1 4

ridge 0

5T 751

@ Garotte estimates
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Orthonormal Design Case
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Shrinkage due to (a) subset selection, (b) ridge regression, (c) the
lasso, and (b) the garotte
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Geometry of LASSO

@ Elliptical contour of the objective

(B—B0TXTX(B -

@ Level sets of the contour intersects with L, norm ball
e g = 2: Ridge regression, shrinkage but no sparsity
e g = 1: Lasso, shrinkage and sparsity

@ Ridge vs Lasso: Can the sign change from OLS estimate?
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Geometry of LASSO: p =2

Estimation in (a) the lasso, and (b) ridge regression
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Geometry of LASSO: p > 2

(b)

Sign change in LASSO vs OLS is possible for p > 2

Instructor: Arindam Banerjee
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Estimating “t”

@ The ‘regularized’ version of Lasso

(&, B) argmin(, 3 Z Q—ZBJXU +)\Z\BJ
i=1

o Cross-validation over A (or t)
e Pick the value that leads to smallest error

@ Resampling based estimates, e.g., stability selection
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Generalized Regression Models

@ General regression problem formulation
e Constrained version

N

B =argmin L(y, X,5) st. ||fllL <t
B

e Regularized version

N

B= argg\in Ly, X,B8) + AlIBll
e The other constrained version
B = argmin |||y st. L(y,X,8)<a
B

o Examples: logistic regression, generalized linear models, etc.

o We will consider efficient algorithms for such general problems
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Analysis of Risk: Donoho et al.

o Consider orthonormal design X7 X =/, so Lasso estimate is

Bj = sign(B)(I157] — )+

Let 8 be the ‘true’ parameter:
y=8"x+¢ e~ N(0,07)

@ Consider risk

R(5,8) = E|IB - Bl
Let Rpp be the loss of the ‘optimal’ predictor
Tor(3°,6) = (53], 6 =I(|8j| > o) € {0,1}

Tpp needs knowledge of 3, not practical
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Bounds on the Risk: Donoho et al.

o Hard threshold estimator f; = ﬂAJOI(|BAJO| > )

o Hasrisk  R(5.5) < (2logp + 1)(0 + Rop)

o Threshold v = (2log n)!/? to get smallest asymptotic risk
o Soft threshold estimator 5; = sign(5?)(157] — 7)+

o With v = o(2log n)*/?, has same behavior
@ General design matrices

e Lasso estimator continues to have good properties
o Generalized to other sparsity inducing norms
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Norm level sets

B O ¢+ +
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Lg norm level sets: (a) g =4, (b) g=2,(c) g=1, (d) g=0.5,
() g=0.1
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