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Regression with OLS

Given training data (yi , xi ), i = 1, . . . , n, xi ∈ Rp

Ordinary least squares (OLS)

β̂ = argminβ∈Rp

n∑
i=1

(yi − βTxi )2

Issues/challenges with OLS

Accuracy: low bias, high variance
Interpretation: All coefficients are non-zero
Cannot determine small subsets with strong effects

Shrinking coefficients

Increases bias, lowers variance, improves accuracy

Alternatives

Subset selection: Unstable, sensitive to small changes
Ridge regression: Shrinks coefficients, but not to 0
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The LASSO

Let β̂0 be the OLS solution, and t0 =
∑p

j=1 |β̂0|

The non-negative garotte estimator (Breiman, 1996)

(α̂, ĉ) = argmin
(α,c)

n∑
i=1

(yi −α−
∑
j

cj β̂
0
j xij)

2 s.t.cj ≥ 0,
∑
j

cj ≤ t

Relies on OLS β̂0: may be problematic in certain settings

Least absolute shrinkage and selection operator (LASSO)

(α̂, β̂) = argmin(α,β)

n∑
i=1

(yi − α−
∑
j

βjxij)
2 s.t.

∑
j

|βj | ≤ t

Parameter t < t0 will cause shrinkage

Some coefficients will become 0

Instructor: Arindam Banerjee The LASSO



The LASSO

Let β̂0 be the OLS solution, and t0 =
∑p

j=1 |β̂0|
The non-negative garotte estimator (Breiman, 1996)
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(α̂, ĉ) = argmin
(α,c)

n∑
i=1

(yi −α−
∑
j

cj β̂
0
j xij)

2 s.t.cj ≥ 0,
∑
j

cj ≤ t

Relies on OLS β̂0: may be problematic in certain settings

Least absolute shrinkage and selection operator (LASSO)

(α̂, β̂) = argmin(α,β)

n∑
i=1

(yi − α−
∑
j

βjxij)
2 s.t.

∑
j

|βj | ≤ t

Parameter t < t0 will cause shrinkage

Some coefficients will become 0

Instructor: Arindam Banerjee The LASSO



Orthonormal Design Case

Design matrix X ∈ Rn×p, assume XTX = I ∈ Rp×p

Best subset selection picks k largest coefficients

For a suitable constant γ, the LASSO solution is

β̂j = sign(β̂0j )(|β̂0j | − γ)+

Ridge regression shrinks the coefficients

β̂ridgej =
1

1 + γ
β̂0j

Garotte estimates

β̂garottej =

(
1− γ

(β̂0j )2

)
+

β̂0j

Instructor: Arindam Banerjee The LASSO
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Orthonormal Design Case

Shrinkage due to (a) subset selection, (b) ridge regression, (c) the
lasso, and (b) the garotte
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Geometry of LASSO

Elliptical contour of the objective

(β − β̂0)TXTX (β − β̂0)

Level sets of the contour intersects with Lq norm ball

q = 2: Ridge regression, shrinkage but no sparsity
q = 1: Lasso, shrinkage and sparsity

Ridge vs Lasso: Can the sign change from OLS estimate?
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Geometry of LASSO: p = 2

Estimation in (a) the lasso, and (b) ridge regression
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Geometry of LASSO: p > 2

Sign change in LASSO vs OLS is possible for p > 2

Instructor: Arindam Banerjee The LASSO



Example: Regularization Path

Shrinkage of parameters over s = t∑
j β̂

0
j

Instructor: Arindam Banerjee The LASSO



Estimating “t”

The ‘regularized’ version of Lasso

(α̂, β̂) = argmin(α,β)

n∑
i=1

(yi − α−
∑
j

βjxij)
2 + λ

∑
j

|βj |

Cross-validation over λ (or t)

Pick the value that leads to smallest error

Resampling based estimates, e.g., stability selection
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Generalized Regression Models

General regression problem formulation

Constrained version

β̂ = argmin
β

L(y ,X , β) s.t. ‖β‖1 ≤ t

Regularized version

β̂ = argmin
β

L(y ,X , β) + λ‖β‖1

The other constrained version

β̂ = argmin
β

‖β‖1 s.t. L(y ,X , β) ≤ a

Examples: logistic regression, generalized linear models, etc.

We will consider efficient algorithms for such general problems
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Analysis of Risk: Donoho et al.

Consider orthonormal design XTX = I , so Lasso estimate is

β̂j = sign(β̂0j )(|β̂0j | − γ)+

Let β be the ‘true’ parameter:

y = βTx + ε, ε ∼ N(0, σ2)

Consider risk
R(β̂, β) = E‖β̂ − β‖2

Let RDP be the loss of the ‘optimal’ predictor

TDP(β̂0, δ) = (δj β̂
0
j ), δj = I (|βj | > σ) ∈ {0, 1}

TDP needs knowledge of β, not practical
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Bounds on the Risk: Donoho et al.

Hard threshold estimator β̃j = β̂0j I (|β̂0j | > γ)

Has risk
R(β̃, β) ≤ (2 log p + 1)(σ2 + RDP)

Threshold γ = σ(2 log n)1/2 to get smallest asymptotic risk

Soft threshold estimator β̂j = sign(β̂0j )(|β̂0j | − γ)+

With γ = σ(2 log n)1/2, has same behavior

General design matrices

Lasso estimator continues to have good properties
Generalized to other sparsity inducing norms
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Norm level sets

Lq norm level sets: (a) q = 4, (b) q = 2, (c) q = 1, (d) q = 0.5,
(e) q = 0.1
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