CSci 8980: ML at Large Scale and High Dimensions

Instructor: Arindam Banerjee

$$
\text { January 29, } 2014
$$

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects
- Shrinking coefficients

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects
- Shrinking coefficients
- Increases bias, lowers variance, improves accuracy

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects
- Shrinking coefficients
- Increases bias, lowers variance, improves accuracy
- Alternatives

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects
- Shrinking coefficients
- Increases bias, lowers variance, improves accuracy
- Alternatives
- Subset selection: Unstable, sensitive to small changes

Regression with OLS

- Given training data $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, n, \mathbf{x}_{i} \in \mathbb{R}^{p}$
- Ordinary least squares (OLS)

$$
\hat{\beta}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Issues/challenges with OLS
- Accuracy: low bias, high variance
- Interpretation: All coefficients are non-zero
- Cannot determine small subsets with strong effects
- Shrinking coefficients
- Increases bias, lowers variance, improves accuracy
- Alternatives
- Subset selection: Unstable, sensitive to small changes
- Ridge regression: Shrinks coefficients, but not to 0

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$
- The non-negative garotte estimator (Breiman, 1996)

$$
(\hat{\alpha}, \hat{c})=\underset{(\alpha, c)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} c_{j} \hat{\beta}_{j}^{0} x_{i j}\right)^{2} \text { s.t. } c_{j} \geq 0, \sum_{j} c_{j} \leq t
$$

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$
- The non-negative garotte estimator (Breiman, 1996)

$$
(\hat{\alpha}, \hat{c})=\underset{(\alpha, c)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} c_{j} \hat{\beta}_{j}^{0} x_{i j}\right)^{2} \text { s.t. } c_{j} \geq 0, \sum_{j} c_{j} \leq t
$$

- Relies on OLS $\hat{\beta}^{0}$: may be problematic in certain settings

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$
- The non-negative garotte estimator (Breiman, 1996)

$$
(\hat{\alpha}, \hat{c})=\underset{(\alpha, c)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} c_{j} \hat{\beta}_{j}^{0} x_{i j}\right)^{2} \text { s.t. } c_{j} \geq 0, \sum_{j} c_{j} \leq t
$$

- Relies on OLS $\hat{\beta}^{0}$: may be problematic in certain settings
- Least absolute shrinkage and selection operator (LASSO)

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2} \text { s.t. } \sum_{j}\left|\beta_{j}\right| \leq t
$$

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$
- The non-negative garotte estimator (Breiman, 1996)

$$
(\hat{\alpha}, \hat{c})=\underset{(\alpha, c)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} c_{j} \hat{\beta}_{j}^{0} x_{i j}\right)^{2} \text { s.t. } c_{j} \geq 0, \sum_{j} c_{j} \leq t
$$

- Relies on OLS $\hat{\beta}^{0}$: may be problematic in certain settings
- Least absolute shrinkage and selection operator (LASSO)

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2} \text { s.t. } \sum_{j}\left|\beta_{j}\right| \leq t
$$

- Parameter $t<t_{0}$ will cause shrinkage

The LASSO

- Let $\hat{\beta}^{0}$ be the OLS solution, and $t_{0}=\sum_{j=1}^{p}\left|\hat{\beta}^{0}\right|$
- The non-negative garotte estimator (Breiman, 1996)

$$
(\hat{\alpha}, \hat{c})=\underset{(\alpha, c)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} c_{j} \hat{\beta}_{j}^{0} x_{i j}\right)^{2} \text { s.t. } c_{j} \geq 0, \sum_{j} c_{j} \leq t
$$

- Relies on OLS $\hat{\beta}^{0}$: may be problematic in certain settings
- Least absolute shrinkage and selection operator (LASSO)

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2} \text { s.t. } \sum_{j}\left|\beta_{j}\right| \leq t
$$

- Parameter $t<t_{0}$ will cause shrinkage
- Some coefficients will become 0

Orthonormal Design Case

- Design matrix $X \in \mathbb{R}^{n \times p}$, assume $X^{T} X=I \in \mathbb{R}^{p \times p}$

Orthonormal Design Case

- Design matrix $X \in \mathbb{R}^{n \times p}$, assume $X^{T} X=I \in \mathbb{R}^{p \times p}$
- Best subset selection picks k largest coefficients

Orthonormal Design Case

- Design matrix $X \in \mathbb{R}^{n \times p}$, assume $X^{T} X=I \in \mathbb{R}^{p \times p}$
- Best subset selection picks k largest coefficients
- For a suitable constant γ, the LASSO solution is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

Orthonormal Design Case

- Design matrix $X \in \mathbb{R}^{n \times p}$, assume $X^{T} X=I \in \mathbb{R}^{p \times p}$
- Best subset selection picks k largest coefficients
- For a suitable constant γ, the LASSO solution is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Ridge regression shrinks the coefficients

$$
\hat{\beta}_{j}^{\text {ridge }}=\frac{1}{1+\gamma} \hat{\beta}_{j}^{0}
$$

Orthonormal Design Case

- Design matrix $X \in \mathbb{R}^{n \times p}$, assume $X^{T} X=I \in \mathbb{R}^{p \times p}$
- Best subset selection picks k largest coefficients
- For a suitable constant γ, the LASSO solution is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Ridge regression shrinks the coefficients

$$
\hat{\beta}_{j}^{\text {ridge }}=\frac{1}{1+\gamma} \hat{\beta}_{j}^{0}
$$

- Garotte estimates

$$
\hat{\beta}_{j}^{\text {garotte }}=\left(1-\frac{\gamma}{\left(\hat{\beta}_{j}^{0}\right)^{2}}\right)_{+} \hat{\beta}_{j}^{0}
$$

Orthonormal Design Case

Shrinkage due to (a) subset selection, (b) ridge regression, (c) the lasso, and (b) the garotte

Geometry of LASSO

- Elliptical contour of the objective

$$
\left(\beta-\hat{\beta}^{0}\right)^{\top} X^{\top} X\left(\beta-\hat{\beta}^{0}\right)
$$

Geometry of LASSO

- Elliptical contour of the objective

$$
\left(\beta-\hat{\beta}^{0}\right)^{T} X^{T} X\left(\beta-\hat{\beta}^{0}\right)
$$

- Level sets of the contour intersects with L_{q} norm ball

Geometry of LASSO

- Elliptical contour of the objective

$$
\left(\beta-\hat{\beta}^{0}\right)^{T} X^{T} X\left(\beta-\hat{\beta}^{0}\right)
$$

- Level sets of the contour intersects with L_{q} norm ball - $q=2$: Ridge regression, shrinkage but no sparsity

Geometry of LASSO

- Elliptical contour of the objective

$$
\left(\beta-\hat{\beta}^{0}\right)^{T} X^{T} X\left(\beta-\hat{\beta}^{0}\right)
$$

- Level sets of the contour intersects with L_{q} norm ball
- $q=2$: Ridge regression, shrinkage but no sparsity
- $q=1$: Lasso, shrinkage and sparsity

Geometry of LASSO

- Elliptical contour of the objective

$$
\left(\beta-\hat{\beta}^{0}\right)^{T} X^{T} X\left(\beta-\hat{\beta}^{0}\right)
$$

- Level sets of the contour intersects with L_{q} norm ball
- $q=2$: Ridge regression, shrinkage but no sparsity
- $q=1$: Lasso, shrinkage and sparsity
- Ridge vs Lasso: Can the sign change from OLS estimate?

Geometry of LASSO: $p=2$

Estimation in (a) the lasso, and (b) ridge regression

Geometry of LASSO: $p>2$

Sign change in LASSO vs OLS is possible for $p>2$

Example: Regularization Path

Shrinkage of parameters over $s=\frac{t}{\sum_{j} \hat{\beta}_{j}^{0}}$

Estimating " t "

- The 'regularized' version of Lasso

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
$$

Estimating " t "

- The 'regularized' version of Lasso

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
$$

- Cross-validation over λ (or t)

Estimating " t "

- The 'regularized' version of Lasso

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
$$

- Cross-validation over λ (or t)
- Pick the value that leads to smallest error

Estimating " t "

- The 'regularized' version of Lasso

$$
(\hat{\alpha}, \hat{\beta})=\operatorname{argmin}_{(\alpha, \beta)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
$$

- Cross-validation over λ (or t)
- Pick the value that leads to smallest error
- Resampling based estimates, e.g., stability selection

Generalized Regression Models

- General regression problem formulation

Generalized Regression Models

- General regression problem formulation
- Constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta) \text { s.t. }\|\beta\|_{1} \leq t
$$

Generalized Regression Models

- General regression problem formulation
- Constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta) \text { s.t. }\|\beta\|_{1} \leq t
$$

- Regularized version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta)+\lambda\|\beta\|_{1}
$$

Generalized Regression Models

- General regression problem formulation
- Constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta) \text { s.t. }\|\beta\|_{1} \leq t
$$

- Regularized version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta)+\lambda\|\beta\|_{1}
$$

- The other constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}}\|\beta\|_{1} \text { s.t. } L(y, X, \beta) \leq a
$$

Generalized Regression Models

- General regression problem formulation
- Constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta) \text { s.t. }\|\beta\|_{1} \leq t
$$

- Regularized version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta)+\lambda\|\beta\|_{1}
$$

- The other constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}}\|\beta\|_{1} \text { s.t. } L(y, X, \beta) \leq a
$$

- Examples: logistic regression, generalized linear models, etc.

Generalized Regression Models

- General regression problem formulation
- Constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta) \text { s.t. }\|\beta\|_{1} \leq t
$$

- Regularized version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} L(y, X, \beta)+\lambda\|\beta\|_{1}
$$

- The other constrained version

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}}\|\beta\|_{1} \text { s.t. } L(y, X, \beta) \leq a
$$

- Examples: logistic regression, generalized linear models, etc.
- We will consider efficient algorithms for such general problems

Analysis of Risk: Donoho et al.

- Consider orthonormal design $X^{T} X=I$, so Lasso estimate is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

Analysis of Risk: Donoho et al.

- Consider orthonormal design $X^{\top} X=I$, so Lasso estimate is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Let β be the 'true' parameter:

$$
y=\beta^{T} \mathbf{x}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

Analysis of Risk: Donoho et al.

- Consider orthonormal design $X^{\top} X=I$, so Lasso estimate is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Let β be the 'true' parameter:

$$
y=\beta^{T} \mathbf{x}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

- Consider risk

$$
R(\hat{\beta}, \beta)=E\|\hat{\beta}-\beta\|^{2}
$$

Analysis of Risk: Donoho et al.

- Consider orthonormal design $X^{T} X=I$, so Lasso estimate is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Let β be the 'true' parameter:

$$
y=\beta^{T} \mathbf{x}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

- Consider risk

$$
R(\hat{\beta}, \beta)=E\|\hat{\beta}-\beta\|^{2}
$$

- Let $R_{D P}$ be the loss of the 'optimal' predictor

$$
T_{D P}\left(\hat{\beta}^{0}, \delta\right)=\left(\delta_{j} \hat{\beta}_{j}^{0}\right), \quad \delta_{j}=I\left(\left|\beta_{j}\right|>\sigma\right) \in\{0,1\}
$$

Analysis of Risk: Donoho et al.

- Consider orthonormal design $X^{T} X=I$, so Lasso estimate is

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}
$$

- Let β be the 'true' parameter:

$$
y=\beta^{T} \mathbf{x}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

- Consider risk

$$
R(\hat{\beta}, \beta)=E\|\hat{\beta}-\beta\|^{2}
$$

- Let $R_{D P}$ be the loss of the 'optimal' predictor

$$
T_{D P}\left(\hat{\beta}^{0}, \delta\right)=\left(\delta_{j} \hat{\beta}_{j}^{0}\right), \quad \delta_{j}=I\left(\left|\beta_{j}\right|>\sigma\right) \in\{0,1\}
$$

- $T_{D P}$ needs knowledge of β, not practical

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk
- Soft threshold estimator $\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}$

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk
- Soft threshold estimator $\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}$
- With $\gamma=\sigma(2 \log n)^{1 / 2}$, has same behavior

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk
- Soft threshold estimator $\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}$
- With $\gamma=\sigma(2 \log n)^{1 / 2}$, has same behavior
- General design matrices

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk
- Soft threshold estimator $\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}$
- With $\gamma=\sigma(2 \log n)^{1 / 2}$, has same behavior
- General design matrices
- Lasso estimator continues to have good properties

Bounds on the Risk: Donoho et al.

- Hard threshold estimator $\tilde{\beta}_{j}=\hat{\beta}_{j}^{0} I\left(\left|\hat{\beta}_{j}^{0}\right|>\gamma\right)$
- Has risk

$$
R(\tilde{\beta}, \beta) \leq(2 \log p+1)\left(\sigma^{2}+R_{D P}\right)
$$

- Threshold $\gamma=\sigma(2 \log n)^{1 / 2}$ to get smallest asymptotic risk
- Soft threshold estimator $\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}_{j}^{0}\right)\left(\left|\hat{\beta}_{j}^{0}\right|-\gamma\right)_{+}$
- With $\gamma=\sigma(2 \log n)^{1 / 2}$, has same behavior
- General design matrices
- Lasso estimator continues to have good properties
- Generalized to other sparsity inducing norms

Norm level sets

(a)

(b)

(c)

(d)

(e)
L_{q} norm level sets: (a) $q=4$, (b) $q=2$, (c) $q=1$, (d) $q=0.5$, (e) $q=0.1$

