# Optimization Review CSci 8980: ML at Large Scale and High Dimensions

Arindam Banerjee

January 29, 2014

Arindam Banerjee Optimization Review

• Smooth convex function f on domain S

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S
  - f is convex and continuously differentiable on S

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S
  - f is convex and continuously differentiable on S
  - f is smooth, i.e., gradient  $\nabla f$  is  $\beta$ -Lipschitz:  $\forall x, y \in S$

 $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$ 

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S
  - f is convex and continuously differentiable on S
  - f is smooth, i.e., gradient  $\nabla f$  is  $\beta$ -Lipschitz:  $\forall x, y \in S$

 $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$ 

• Gradient descent for smooth functions:

 $x_{t+1} = x_t - \eta \nabla f(x_t)$ 

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S
  - f is convex and continuously differentiable on S
  - f is smooth, i.e., gradient  $\nabla f$  is  $\beta$ -Lipschitz:  $\forall x, y \in S$

 $\|\nabla f(x) - \nabla f(y)\| \leq \beta \|x - y\|$ 

• Gradient descent for smooth functions:

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

• With  $\eta = rac{1}{eta}$ , we have  $f(x_T) - f(x^*) \leq rac{2eta\|x_0 - x^*\|^2}{T+4}$ 

- Smooth convex function f on domain S
  - f has a minimizer  $x^*$  in S
  - f is convex and continuously differentiable on S
  - f is smooth, i.e., gradient  $\nabla f$  is  $\beta$ -Lipschitz:  $\forall x, y \in S$

 $\|\nabla f(x) - \nabla f(y)\| \leq \beta \|x - y\|$ 

• Gradient descent for smooth functions:

 $x_{t+1} = x_t - \eta \nabla f(x_t)$ 

• With  $\eta = rac{1}{eta}$ , we have  $f(x_T) - f(x^*) \leq rac{2eta\|x_0 - x^*\|^2}{T+4}$ 

• Rate can be  $O(\frac{1}{T^2})$  using "accelerated" gradient descent

• Often work with "non-smooth" functions

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

$$f(y) \ge f(x) + \langle y - x, g \rangle$$
,  $\forall y \in S$ 

• A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 

- $\bullet$  Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact
  - Each  $g \in \partial f(x)$  is a sub-gardient

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact
  - Each  $g \in \partial f(x)$  is a sub-gardient
- Lipschitz convex functions f on domain S:

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact
  - Each  $g \in \partial f(x)$  is a sub-gardient
- Lipschitz convex functions f on domain S:
  - f has a minimizer  $x^*$  in S

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact
  - Each  $g \in \partial f(x)$  is a sub-gardient
- Lipschitz convex functions f on domain S:
  - f has a minimizer  $x^*$  in S
  - f is convex on S

- Often work with "non-smooth" functions
  - Hinge loss,  $L_1$  norm, etc.
- Consider a non-smooth function f on domain S
- Sub-differential set  $\partial f(x)$ :  $g \in \partial f(x)$  if

- A non-smooth function is convex if  $\partial f(x) \neq \emptyset, \forall x \in S$ 
  - Sub-differential set  $\partial f(x)$  is convex, compact
  - Each  $g \in \partial f(x)$  is a sub-gardient
- Lipschitz convex functions f on domain S:
  - f has a minimizer  $x^*$  in S
  - f is convex on S
  - f is G-Lipschitz on S, i.e., for any  $g \in \partial f(x)$ , we have  $||g|| \leq G$

• Assume  $||x^*|| \leq R$ 

• Assume  $||x^*|| \leq R$ 

• Assume f is G-Lipschitz in the R-ball, i.e.,  $||g|| \le G$  for  $g \in \partial f(x)$  for  $||x|| \le R$ 

- Assume  $||x^*|| \leq R$
- Assume f is G-Lipschitz in the R-ball, i.e.,  $||g|| \le G$  for  $g \in \partial f(x)$  for  $||x|| \le R$
- Projected sub-gradient descent

$$y_{t+1} = x_t - \eta g_t , \text{ where } g_t \in \partial f(x_t)$$
$$x_{t+1} = \begin{cases} y_{t+1} , & \text{if } \|y_{t+1}\| \le R \\ \frac{R}{\|y_{t+1}\|} y_{t+1} , & \text{if } \|y_{t+1}\| > R \end{cases}$$

- Assume  $||x^*|| \leq R$
- Assume f is G-Lipschitz in the R-ball, i.e., ||g|| ≤ G for g ∈ ∂f(x) for ||x|| ≤ R
- Projected sub-gradient descent

 $y_{t+1} = x_t - \eta g_t , \quad \text{where } g_t \in \partial f(x_t)$  $x_{t+1} = \begin{cases} y_{t+1} , & \text{if } \|y_{t+1}\| \le R\\ \frac{R}{\|y_{t+1}\|} y_{t+1} , & \text{if } \|y_{t+1}\| > R \end{cases}$ • With  $\eta = \frac{R}{G\sqrt{T}}, \ \bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t \text{ satisfies}$  $f(\bar{x}_T) - f(x^*) \le \frac{RG}{\sqrt{T}}$ 

- Assume  $||x^*|| \leq R$
- Assume f is G-Lipschitz in the R-ball, i.e.,  $||g|| \le G$  for  $g \in \partial f(x)$  for  $||x|| \le R$
- Projected sub-gradient descent

 $y_{t+1} = x_t - \eta g_t , \quad \text{where } g_t \in \partial f(x_t)$  $x_{t+1} = \begin{cases} y_{t+1} , & \text{if } \|y_{t+1}\| \le R \\ \frac{R}{\|y_{t+1}\|} y_{t+1} , & \text{if } \|y_{t+1}\| > R \end{cases}$ • With  $\eta = \frac{R}{G\sqrt{T}}, \ \bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t \text{ satisfies}$  $f(\bar{x}_T) - f(x^*) \le \frac{RG}{\sqrt{T}}$ 

• Step-size is more conservative, compared to smooth functions

- Assume  $||x^*|| \leq R$
- Assume f is G-Lipschitz in the R-ball, i.e.,  $||g|| \le G$  for  $g \in \partial f(x)$  for  $||x|| \le R$
- Projected sub-gradient descent

 $y_{t+1} = x_t - \eta g_t , \quad \text{where } g_t \in \partial f(x_t)$  $x_{t+1} = \begin{cases} y_{t+1} , & \text{if } \|y_{t+1}\| \le R\\ \frac{R}{\|y_{t+1}\|} y_{t+1} , & \text{if } \|y_{t+1}\| > R \end{cases}$ • With  $\eta = \frac{R}{G\sqrt{T}}, \ \bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t \text{ satisfies}$  $f(\bar{x}_T) - f(x^*) \le \frac{RG}{\sqrt{T}}$ 

- Step-size is more conservative, compared to smooth functions
- Rate cannot be improved by "acceleration"

- Assume  $||x^*|| \leq R$
- Assume f is G-Lipschitz in the R-ball, i.e.,  $||g|| \le G$  for  $g \in \partial f(x)$  for  $||x|| \le R$
- Projected sub-gradient descent

$$y_{t+1} = x_t - \eta g_t , \quad \text{where } g_t \in \partial f(x_t)$$
$$x_{t+1} = \begin{cases} y_{t+1} , & \text{if } \|y_{t+1}\| \le R\\ \frac{R}{\|y_{t+1}\|} y_{t+1} , & \text{if } \|y_{t+1}\| > R \end{cases}$$
$$\bullet \text{ With } \eta = \frac{R}{G\sqrt{T}}, \ \bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t \text{ satisfies}$$
$$f(\bar{x}_T) - f(x^*) \le \frac{RG}{\sqrt{T}}$$

- Step-size is more conservative, compared to smooth functions
- Rate cannot be improved by "acceleration"
- Bound holds for  $\tilde{x}_T = \operatorname{argmin}_{1 \le t \le T} f(x_t)$

• Algorithm needs access to an oracle

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

 $x_t = \phi_t(\{x_\tau, f(x_\tau), \nabla f(x_\tau)\}, \tau = 0, \dots, t-1)$ 

• Iteration complexity: T to get  $f(x_T) - f(x^*) \le \epsilon$ 

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - 'GD' for non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - 'GD' for non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$
- $\bullet\,$  The minimax optimization error for function class  ${\cal F}$

$$OC_t(\mathcal{F}) = \inf_{\phi_0, \dots, \phi_t} \sup_{f \in \mathcal{F}} \left( f(x_t) - \inf_{x \in \mathcal{X}} f(x) \right)$$

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

 $x_t = \phi_t(\{x_\tau, f(x_\tau), \nabla f(x_\tau)\}, \tau = 0, \dots, t-1)$ 

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - 'GD' for non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$
- $\bullet\,$  The minimax optimization error for function class  ${\cal F}$

$$OC_t(\mathcal{F}) = \inf_{\phi_0, \dots, \phi_t} \sup_{f \in \mathcal{F}} \left( f(x_t) - \inf_{x \in \mathcal{X}} f(x) \right)$$

• Oracle complexity:  ${\mathcal T}$  so that  ${\mathcal OC}_{{\mathcal T}}({\mathcal F}) \leq \epsilon$
# Iteration Complexity, Oracle Complexity

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

 $x_t = \phi_t(\{x_\tau, f(x_\tau), \nabla f(x_\tau)\}, \tau = 0, \dots, t-1)$ 

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - 'GD' for non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$
- $\bullet\,$  The minimax optimization error for function class  ${\cal F}$

$$OC_t(\mathcal{F}) = \inf_{\phi_0,...,\phi_t} \sup_{f \in \mathcal{F}} \left( f(x_t) - \inf_{x \in \mathcal{X}} f(x) \right)$$

- Oracle complexity:  $\mathcal{T}$  so that  $\mathcal{OC}_{\mathcal{T}}(\mathcal{F}) \leq \epsilon$ 
  - Smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$

# Iteration Complexity, Oracle Complexity

- Algorithm needs access to an oracle
  - $0^{th}$  order: Given x, what is f(x)
  - $1^{st}$  order: Given x, what is  $\nabla f(x)$  (or sub-gradient)
- An algorithm with a 1<sup>st</sup> order oracle is a mapping:

 $x_t = \phi_t(\{x_\tau, f(x_\tau), \nabla f(x_\tau)\}, \tau = 0, \ldots, t-1)$ 

- Iteration complexity: T to get  $f(x_T) f(x^*) \le \epsilon$ 
  - GD for smooth functions:  $T = O(\frac{1}{\epsilon})$
  - AGD for smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - 'GD' for non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$
- $\bullet\,$  The minimax optimization error for function class  ${\cal F}$

$$OC_t(\mathcal{F}) = \inf_{\phi_0,...,\phi_t} \sup_{f \in \mathcal{F}} \left( f(x_t) - \inf_{x \in \mathcal{X}} f(x) \right)$$

- Oracle complexity: T so that  $OC_T(\mathcal{F}) \leq \epsilon$ 
  - Smooth functions:  $T = O(\frac{1}{\sqrt{\epsilon}})$
  - Non-smooth functions:  $T = O(\frac{1}{\epsilon^2})$

• Can we do better than gradient descent?

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration m

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration *m*
- Main idea:

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration m
- Main idea:
  - Decease the runtime in each iteration

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration *m*
- Main idea:
  - Decease the runtime in each iteration
  - Possibly increase the number of iterations

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration *m*
- Main idea:
  - Decease the runtime in each iteration
  - Possibly increase the number of iterations
  - The decrease should be more than the increase

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration *m*
- Main idea:
  - Decease the runtime in each iteration
  - Possibly increase the number of iterations
  - The decrease should be more than the increase
- Simplest case: m = 1, i.e., compute only 1 gradient

- Can we do better than gradient descent?
- Gradient descent for smooth functions:  $O(\frac{m}{\epsilon})$ 
  - Number of iterations  $O(\frac{1}{\epsilon})$
  - Runtime in each iteration *m*
- Sub-gradient descent for non-smooth functions:  $O(\frac{m}{\epsilon^2})$ 
  - Number of iterations  $O(\frac{1}{\epsilon^2})$
  - Runtime in each iteration *m*
- Main idea:
  - Decease the runtime in each iteration
  - Possibly increase the number of iterations
  - The decrease should be more than the increase
- Simplest case: m = 1, i.e., compute only 1 gradient
- Questions: What is the algorithm? Will this converge?

• Assume: Samples  $(\mathbf{x}_i, y_i)$  are i.i.d., consider  $\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$ 

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• For 
$$t = 1, \ldots, T$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Randomly draw 
$$i \in \{1, \ldots, m\}$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

- Stochastic gradient descent:
  - For  $t = 1, \ldots, T$ 
    - Randomly draw  $i \in \{1, \ldots, m\}$
    - Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

- Stochastic gradient descent:
  - For  $t = 1, \ldots, T$ 
    - Randomly draw  $i \in \{1, \ldots, m\}$
    - Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t g_t$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

- Randomly draw  $i \in \{1, \ldots, m\}$
- Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{g}_t$$

• Output 
$$\bar{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Stochastic gradient descent:

- Randomly draw  $i \in \{1, \ldots, m\}$
- Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t g_t$$

• Output 
$$\bar{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

• Choosing step-size: Assume  $E[\|g\|^2] \leq G^2$ 

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Stochastic gradient descent:

- Randomly draw  $i \in \{1, \ldots, m\}$
- Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t g_t$$

• Output 
$$\bar{\mathbf{w}}_T = rac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

• Choosing step-size: Assume  $E[||g||^2] \leq G^2$ 

• Fixed: 
$$\eta_t = \frac{\|\mathbf{w}^*\|_2}{G\sqrt{T}} \Rightarrow E[f(\bar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \le \frac{G\|\mathbf{w}^*\|_2}{\sqrt{T}}$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Stochastic gradient descent:

• For 
$$t = 1, \ldots, T$$

- Randomly draw  $i \in \{1, \ldots, m\}$
- Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t g_t$$

• Output 
$$\bar{\mathbf{w}}_T = rac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

• Choosing step-size: Assume  $E[||g||^2] \leq G^2$ 

• Fixed: 
$$\eta_t = \frac{\|\mathbf{w}^*\|_2}{G\sqrt{T}} \Rightarrow E[f(\bar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \le \frac{G\|\mathbf{w}^*\|_2}{\sqrt{T}}$$

• Decaying: 
$$\eta_t = \frac{\|\mathbf{w}^*\|_2}{G\sqrt{t}} \Rightarrow E[f(\bar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \le \frac{4G\|\mathbf{w}^*\|_2}{\sqrt{T}}$$

• Assume: Samples 
$$(\mathbf{x}_i, y_i)$$
 are i.i.d., consider  

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell((\mathbf{x}_i, y_i), \mathbf{w})$$

• Stochastic gradient descent:

- Randomly draw  $i \in \{1, \ldots, m\}$
- Compute (sub)gradient  $g_t = \nabla \ell((\mathbf{x}_i, y_i), \mathbf{w}_t)$

• 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t g_t$$

• Output 
$$\bar{\mathbf{w}}_T = rac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

• Choosing step-size: Assume  $E[\|g\|^2] \leq G^2$ 

• Fixed: 
$$\eta_t = \frac{\|\mathbf{w}^*\|_2}{G\sqrt{T}} \Rightarrow E[f(\bar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \le \frac{G\|\mathbf{w}^*\|_2}{\sqrt{T}}$$

• Decaying: 
$$\eta_t = \frac{\|\mathbf{w}^*\|_2}{G\sqrt{t}} \Rightarrow E[f(\bar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \le \frac{4G\|\mathbf{w}^*\|_2}{\sqrt{T}}$$

• Unknown 
$$G$$
,  $\|\mathbf{w}^*\|$ :  
 $\eta_t = \frac{\beta \|\mathbf{w}^*\|_2}{G\sqrt{t}} \Rightarrow E[f(\mathbf{\bar{w}}_T)] - f(\mathbf{w}^*) \le \frac{4G \|\mathbf{w}^*\|_2}{\sqrt{T}} \max(\beta, \frac{1}{\beta})$ 

# Smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_{\mathcal{T}})] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{\mathcal{T}}}
ight)$$
teration complexity  $\mathcal{T} = O\left(rac{1}{\epsilon^2}
ight)$ 

| Smooth functions                   | GD                      | SGD                       |
|------------------------------------|-------------------------|---------------------------|
| Number of iterations               | $O(\frac{1}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                     | m                       | 1                         |
| Total runtime                      | $O(\frac{m}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}, \ \epsilon = 10^{-2}$ | 10 <sup>8</sup>         | 104                       |

### Smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_{\mathcal{T}})] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{\mathcal{T}}}
ight)$$
teration complexity  $\mathcal{T} = O\left(rac{1}{\epsilon^2}
ight)$ 

| Smooth functions                   | GD                      | SGD                       |
|------------------------------------|-------------------------|---------------------------|
| Number of iterations               | $O(\frac{1}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                     | m                       | 1                         |
| Total runtime                      | $O(\frac{m}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}, \ \epsilon = 10^{-2}$ | 10 <sup>8</sup>         | 104                       |

• GD vs SGD: full gradient vs random gradient

# Smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_{\mathcal{T}})] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{\mathcal{T}}}
ight)$$
teration complexity  $\mathcal{T} = O\left(rac{1}{\epsilon^2}
ight)$ 

| Smooth functions                   | GD                      | SGD                       |
|------------------------------------|-------------------------|---------------------------|
| Number of iterations               | $O(\frac{1}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                     | m                       | 1                         |
| Total runtime                      | $O(\frac{m}{\epsilon})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}, \ \epsilon = 10^{-2}$ | 10 <sup>8</sup>         | 104                       |

- GD vs SGD: full gradient vs random gradient
- SGD is memory efficient, extends to mini-batches

#### Non-smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_T)] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{T}}
ight)$$
teration complexity  $T = O\left(rac{1}{\epsilon^2}
ight)$ 

| Non-smooth functions                | GD                        | SGD                       |
|-------------------------------------|---------------------------|---------------------------|
| Number of iterations                | $O(\frac{1}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                      | m                         | 1                         |
| Total runtime                       | $O(\frac{m}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}$ , $\epsilon = 10^{-2}$ | 10 <sup>10</sup>          | 10 <sup>4</sup>           |

#### Non-smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_{\mathcal{T}})] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{\mathcal{T}}}
ight)$$
teration complexity  $\mathcal{T} = O\left(rac{1}{\epsilon^2}
ight)$ 

| Non-smooth functions               | GD                        | SGD                       |
|------------------------------------|---------------------------|---------------------------|
| Number of iterations               | $O(\frac{1}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                     | m                         | 1                         |
| Total runtime                      | $O(\frac{m}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}, \ \epsilon = 10^{-2}$ | 10 <sup>10</sup>          | 10 <sup>4</sup>           |

• GD is O(m) slower than SGD

#### Non-smooth Functions: SGD vs GD

• SGD convergence rate:

$$\mathbb{E}[f(ar{\mathbf{w}}_{\mathcal{T}})] - f(\mathbf{w}^*) \leq O\left(rac{1}{\sqrt{\mathcal{T}}}
ight)$$
teration complexity  $\mathcal{T} = O\left(rac{1}{\epsilon^2}
ight)$ 

| Non-smooth functions                | GD                        | SGD                       |
|-------------------------------------|---------------------------|---------------------------|
| Number of iterations                | $O(\frac{1}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| Each iteration                      | m                         | 1                         |
| Total runtime                       | $O(\frac{m}{\epsilon^2})$ | $O(\frac{1}{\epsilon^2})$ |
| $m = 10^{6}$ , $\epsilon = 10^{-2}$ | 10 <sup>10</sup>          | 10 <sup>4</sup>           |

- GD is O(m) slower than SGD
- Examples: Hinge loss (SVMs)

• 'Sequential' optimization with convex losses

# Online Convex Optimization (OCO)

- 'Sequential' optimization with convex losses
- For t = 1, 2, ..., T

# Online Convex Optimization (OCO)

- 'Sequential' optimization with convex losses
- For t = 1, 2, ..., T
  - Learner picks a vector  $\mathbf{w}_t \in S$

# Online Convex Optimization (OCO)

- 'Sequential' optimization with convex losses
- For t = 1, 2, ..., T
  - Learner picks a vector  $\mathbf{w}_t \in S$
  - Receive convex function  $f_t: S \mapsto \mathbb{R}$
# Online Convex Optimization (OCO)

- 'Sequential' optimization with convex losses
- For t = 1, 2, ..., T
  - Learner picks a vector  $\mathbf{w}_t \in S$
  - Receive convex function  $f_t: S \mapsto \mathbb{R}$
  - Incur loss  $f_t(\mathbf{w}_t)$

# Online Convex Optimization (OCO)

- 'Sequential' optimization with convex losses
- For t = 1, 2, ..., T
  - Learner picks a vector  $\mathbf{w}_t \in S$
  - Receive convex function  $f_t: S \mapsto \mathbb{R}$
  - Incur loss  $f_t(\mathbf{w}_t)$
- Regret w.r.t. comparator class  ${\cal U}$

$$Regret_T(\mathcal{U}) = \sum_{t=1}^T f_t(\mathbf{w}_t) - \min_{\mathbf{u} \in \mathcal{U}} \sum_{t=1}^T f_t(\mathbf{u})$$

• Apply gradient descent for OCO

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$ 
  - May be difficult for more complicated  $f_{\tau}$ 's

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$ 
  - May be difficult for more complicated  $f_{\tau}$ 's
  - Need to maintain all functions

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$ 
  - May be difficult for more complicated  $f_{\tau}$ 's
  - Need to maintain all functions
- Use simple (sub)gradient descent

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$ 
  - May be difficult for more complicated  $f_{\tau}$ 's
  - Need to maintain all functions
- Use simple (sub)gradient descent

- Apply gradient descent for OCO
- FoReL minimizes  $\sum_{\tau=1}^{t-1} f_{\tau}(\mathbf{w})$ 
  - May be difficult for more complicated  $f_{\tau}$ 's
  - Need to maintain all functions
- Use simple (sub)gradient descent

#### **Algorithm** Online Gradient Descent (OGD)

Set: 
$$\eta > 0$$
  
Initialize  $\mathbf{w}_1 = 0$   
for  $t = 1, 2, 3, ...$  do  
 $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f_t(\mathbf{w}_t)$   
end for

• Let  $f_t$  be general convex functions

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots$

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\mathbf{w}_1, \mathbf{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\mathbf{w}_1, \mathbf{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

• Example: Hinge loss

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\mathbf{w}_1, \mathbf{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

- Example: Hinge loss
- Let  $f_t$  be strongly convex functions

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

- Example: Hinge loss
- Let  $f_t$  be strongly convex functions
  - $\bullet$  Sequence of vectors produced by OGD:  $\textbf{w}_1, \textbf{w}_2, \ldots$

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\mathbf{w}_1, \mathbf{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

- Example: Hinge loss
- Let  $f_t$  be strongly convex functions
  - Sequence of vectors produced by OGD:  $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\log(T))$$

- Let  $f_t$  be general convex functions
  - Sequence of vectors produced by OGD:  $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\sqrt{T})$$

- Example: Hinge loss
- Let  $f_t$  be strongly convex functions
  - Sequence of vectors produced by OGD:  $\textbf{w}_1, \textbf{w}_2, \ldots$
  - Then

$$Regret_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{w}_{t}) - \min_{\mathbf{u} \in S} \sum_{t=1}^{T} f_{t}(\mathbf{u}) = O(\log(T))$$

• Example: Least square regression

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

æ

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

• Setting the derivative to zero yields  $\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k)$ 

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

- Setting the derivative to zero yields  $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$
- Replace the quadratic term by other functions?

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

- Setting the derivative to zero yields  $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$
- Replace the quadratic term by other functions?
- Mirror descent

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{\alpha_k} B_{\phi}(\mathbf{w}, \mathbf{w}_k)$$

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

- Setting the derivative to zero yields  $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$
- Replace the quadratic term by other functions?
- Mirror descent

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle 
abla f(\mathbf{w}_k), \mathbf{w} 
angle + rac{1}{lpha_k} B_{\phi}(\mathbf{w}, \mathbf{w}_k)$$

• The convergence rate is the same as GD (SGD)

• Gradient Descent: 
$$\min_{\mathbf{w}} f(\mathbf{w})$$
  
 $\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}_k) + \langle \nabla f(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$   
 $= \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}_k\|_2^2$ 

- Setting the derivative to zero yields  $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$
- Replace the quadratic term by other functions?
- Mirror descent

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle 
abla f(\mathbf{w}_k), \mathbf{w} 
angle + rac{1}{lpha_k} B_{\phi}(\mathbf{w}, \mathbf{w}_k)$$

• The convergence rate is the same as GD (SGD)

• Let distance-generating function  $\phi$  be differentiable, strictly convex function, Bregman divergence is defined as

$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle 
abla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k 
angle$$

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

æ

3

・日・ ・ ヨ・・

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Examples: Squared loss, relative entropy, etc.

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Examples: Squared loss, relative entropy, etc.

• Quadratic: 
$$\phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Examples: Squared loss, relative entropy, etc.

• Quadratic: 
$$\phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

• Squared loss:

$$B_{\phi}(\mathbf{w}, \mathbf{w}_k) = \frac{1}{2} \|\mathbf{w}\|_2^2 - \frac{1}{2} \|\mathbf{w}_k\|_2^2 - \langle \mathbf{w}_k, \mathbf{w} - \mathbf{w}_k \rangle$$
$$= \frac{1}{2} \|\mathbf{w} - \mathbf{w}_k\|_2^2$$

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Examples: Squared loss, relative entropy, etc.

• Quadratic: 
$$\phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

• Squared loss:

$$B_{\phi}(\mathbf{w}, \mathbf{w}_k) = \frac{1}{2} \|\mathbf{w}\|_2^2 - \frac{1}{2} \|\mathbf{w}_k\|_2^2 - \langle \mathbf{w}_k, \mathbf{w} - \mathbf{w}_k \rangle$$
$$= \frac{1}{2} \|\mathbf{w} - \mathbf{w}_k\|_2^2$$

• Entropy:  $\phi(\mathbf{w}) = \sum_{i=1}^{d} \mathbf{w}(i) \log(\mathbf{w}(i))$ ,  $\mathbf{w}(i)$  is the *i*-th entry

• 
$$B_{\phi}(\mathbf{w},\mathbf{w}_k) = \phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Examples: Squared loss, relative entropy, etc.

• Quadratic: 
$$\phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

• Squared loss:

$$B_{\phi}(\mathbf{w}, \mathbf{w}_k) = \frac{1}{2} \|\mathbf{w}\|_2^2 - \frac{1}{2} \|\mathbf{w}_k\|_2^2 - \langle \mathbf{w}_k, \mathbf{w} - \mathbf{w}_k \rangle$$
$$= \frac{1}{2} \|\mathbf{w} - \mathbf{w}_k\|_2^2$$

Entropy: φ(w) = Σ<sup>d</sup><sub>i=1</sub> w(i) log(w(i)), w(i) is the *i*-th entry
 Relative entropy (un-normalized)

$$B_{\phi}(\mathbf{w}, \mathbf{w}_{k}) = \sum_{i=1}^{n} \left\{ \mathbf{w}_{i} \log \left( \frac{\mathbf{w}(i)}{\mathbf{w}_{k}(i)} \right) - \mathbf{w}(i) + \mathbf{w}_{k}(i) \right\}$$

• Mirror descent update:

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{\alpha_k} (\phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

∢母▶ ∢ ≣▶

문 문 문

• Mirror descent update:

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle 
abla f(\mathbf{w}_k), \mathbf{w} 
angle + rac{1}{lpha_k} (\phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle 
abla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k 
angle$$

• Setting the derivative to zero yields

$$\nabla f(\mathbf{w}_k) + \frac{1}{\alpha_k} (\nabla \phi(\mathbf{w}_{k+1}) - \nabla \phi(\mathbf{w}_k)) = 0$$
  
$$\Rightarrow \quad \mathbf{w}_{k+1} = \nabla \phi^{-1} (\nabla \phi(\mathbf{w}_k) - \alpha_k \nabla f(\mathbf{w}_k))$$

• Mirror descent update:

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle 
abla f(\mathbf{w}_k), \mathbf{w} 
angle + rac{1}{lpha_k} (\phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle 
abla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k 
angle$$

• Setting the derivative to zero yields

$$\nabla f(\mathbf{w}_k) + \frac{1}{\alpha_k} (\nabla \phi(\mathbf{w}_{k+1}) - \nabla \phi(\mathbf{w}_k)) = 0$$
  
$$\Rightarrow \quad \mathbf{w}_{k+1} = \nabla \phi^{-1} (\nabla \phi(\mathbf{w}_k) - \alpha_k \nabla f(\mathbf{w}_k))$$

• Mirror descent update:

$$\mathbf{w}_{k+1} = \operatorname{argmin}_{\mathbf{w}} \langle \nabla f(\mathbf{w}_k), \mathbf{w} \rangle + \frac{1}{\alpha_k} (\phi(\mathbf{w}) - \phi(\mathbf{w}_k) - \langle \nabla \phi(\mathbf{w}_k), \mathbf{w} - \mathbf{w}_k \rangle$$

• Setting the derivative to zero yields

$$\nabla f(\mathbf{w}_k) + \frac{1}{\alpha_k} (\nabla \phi(\mathbf{w}_{k+1}) - \nabla \phi(\mathbf{w}_k)) = 0$$
  
$$\Rightarrow \quad \mathbf{w}_{k+1} = \nabla \phi^{-1} (\nabla \phi(\mathbf{w}_k) - \alpha_k \nabla f(\mathbf{w}_k))$$

