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Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S
e f is smooth, i.e., gradient Vf is 8-Lipschitz: Vx,y € S

[VF(x) = V()| < Blx =yl
@ Gradient descent for smooth functions:
Xt41 = Xt — T]Vf(Xt)

o Withn= % we have
281x0 — x*|?
- T+ 4

@ Rate can be O(%) using “accelerated” gradient descent
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Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S
o Sub-differential set 9f(x) is convex, compact
e Each g € 0f(x) is a sub-gardient

@ Lipschitz convex functions f on domain S:

e f has a minimizer x* in S

e fis convex on S

e fis G-Lipschitz on S, i.e., for any g € Jf(x), we have
lell <G
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Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

@ Projected sub-gradient descent

Yi+1 = Xt —ngt , Where gy € Of(x¢)
Nerq = {Yt-;l ; ff lyer1ll <R
e Ye+l if |lyerall > R
e Withn = %, XT = % 2;1 X; satisfies

_ . _ RG
Fixr) =) = 7=

e Step-size is more conservative, compared to smooth functions
o Rate cannot be improved by “acceleration”
o Bound holds for X7 = argmin; ., 7 f(xt)
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@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)
o AGD for smooth functions: T = O(ﬁ)

e ‘GD’ for non-smooth functions: T = O(%)
@ The minimax optimization error for function class F

OCG(F) = fbomiﬁt ?g?: <f(xt) — Xlgﬁ( f(x))

@ Oracle complexity: T so that OCy(F) < e
e Smooth functions: T = O(#)

o Non-smooth functions: T = O(%)
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Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(e%)
o Number of iterations O(%)
o Runtime in each iteration m

Main idea:
o Decease the runtime in each iteration

e Possibly increase the number of iterations
o The decrease should be more than the increase

@ Simplest case: m =1, i.e., compute only 1 gradient
@ Questions: What is the algorithm? Will this converge?
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@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
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@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t
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Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

o Output wr = + Z;l W
o Choosing step-size: Assume E[|g|?] < G2

¢ Foed = (8 > Elf(n] - f(w) < Sk
w2 4G||lw*]|2

o Decaying: 7, = ‘Gf = E[f(Wr)] - f(w") < *ebx
o Unknown G, ||w*|:

ne = PEAE = Elf(wr)] - f(w*) < *0l max(s, §)
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@ SGD convergence rate:

sl - rw) < 0 (=)
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1
Iteration complexity T = O <2>
€
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Smooth Functions: SGD vs GD

@ SGD convergence rate:

1
E[f(wr)] — f(w") <O | —
)]~ fw) < 0 ()
Iteration complexity T = O <12>
€
’ Smooth functions H GD ‘ SGD ‘
Number of iterations | O(1) | O(%)
Each iteration m 1
Total runtime o(2) | 0(%)
m = 10° ¢ =107 10 | 10

o GD vs SGD: full gradient vs random gradient

@ SGD is memory efficient, extends to mini-batches
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Non-smooth Functions: SGD vs GD

@ SGD convergence rate:
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Non-smooth Functions: SGD vs GD

@ SGD convergence rate:

EIf(Wr)] - f(w") < O <%>
lteration complexity T = O <1>

€2

]Non—smooth functions H GD \ SGD ‘

Number of iterations O(E%) O(e%)
Each iteration m 1
Total runtime 0(%) | 0(%)
m=10° ¢=10" 101 | 10*

e GD is O(m) slower than SGD
e Examples: Hinge loss (SVMs)
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Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T

o Learner picks a vector w; € S
o Receive convex function f; : S — R
o Incur loss fy(wy)

@ Regret w.r.t. comparator class U

T T
RegretT(U) = Z fr(we) — Engg z ft(u)
t=1 t=1
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Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s
o Need to maintain all functions

@ Use simple (sub)gradient descent

Algorithm Online Gradient Descent (OGD)
Set: >0
Initialize wi =0
fort=1,2,3,... do
Wip1 = Wi — 77Vft(Wt)
end for
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OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regretr = Z fe(we) — Tég Z fi(u) = O(V'T)
t=1 t=1

e Example: Hinge loss
o Let f; be strongly convex functions

e Sequence of vectors produced by OGD: wy,wo, ...
e Then
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OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regrett = Z fr(we) — Telg Z fe(u) = O(ﬁ)
t=1 t=1

e Example: Hinge loss
o Let f; be strongly convex functions

e Sequence of vectors produced by OGD: wy,wo, ...
e Then

Regrett = Z fe(we) — m|n Z fe(u O(log(T))

o Example: Least square regression
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Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w)

. 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — WkH%

. 1
= argmin,, (V F(w ), w)-+ > |[w — w3
P
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Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w) 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — w3

. 1
= argmin,, (V F(w ), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)
@ Replace the quadratic term by other functions?
@ Mirror descent 1

Wi = argminw<Vf(wk),w>+Q—kB¢(w, wy)

o The convergence rate is the same as GD (SGD)

@ Let distance-generating function ¢ be differentiable, strictly
convex function, Bregman divergence is defined as

By(w,wy) = p(w) — p(wk) — (Vo(wi), w — wy)
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o By(w,wyi) = dp(w) — p(wi) — (Vp(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
o Quadratic: ¢(w) = 3| w||3

@ Squared loss:
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Bregman Divergence

o By(w,wi) = p(w) — ¢(wi) — (Vo(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
Quadratic: ¢(w) = 3|lw/||3

Squared loss:

1 1
B (w, wi) = 3 w3 — 3 w3 — i, w — w)

1 2
= Sliw — w3
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Bregman Divergence

o By(w,wi) = p(w) — ¢(wi) — (Vo(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
Quadratic: ¢(w) = 3|lw/||3

Squared loss:

1 1
B (w, wi) = 3 w3 — 3 w3 — i, w — w)

1 2
= Sliw — w3

Entropy: ¢(w) = 27:1 w(i)log(w(i)), w(i) is the i-th entry
Relative entropy (un-normalized)

Buww) = 3 {W" o <vvvvk((?>> - +Wk(i)}

i=1
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Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>
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Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>

@ Setting the derivative to zero yields
1
Vi(wi) + Ik(v¢(wk+1) — Vo(wy)) =0

= Wi = Vo (Vo(wi) — axVF(wy))

Dual space Original space

Vi
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