CSci 8980: ML at Large Scale and High Dimensions

Arindam Banerjee

January 29, 2014

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S
o f has a minimizer x* in S

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S
e f is smooth, i.e., gradient Vf is 8-Lipschitz: Vx,y € S

IVF(x) = V)l < Bllx =y

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S
e f is smooth, i.e., gradient Vf is 8-Lipschitz: Vx,y € S

[VF(x) = V()| < Blx =yl
@ Gradient descent for smooth functions:

Xt41 = Xt — T]Vf(Xt)

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S
e f is smooth, i.e., gradient Vf is 8-Lipschitz: Vx,y € S

[VF(x) = V()| < Blx =yl
@ Gradient descent for smooth functions:
Xt41 = Xt — T]Vf(Xt)

o Withn= % we have
281x0 — x*|?
- T+ 4

Arindam Banerjee

Convex Optimization: Smooth Functions

@ Smooth convex function f on domain S

e f has a minimizer x* in S
e f is convex and continuously differentiable on S
e f is smooth, i.e., gradient Vf is 8-Lipschitz: Vx,y € S

[VF(x) = V()| < Blx =yl
@ Gradient descent for smooth functions:
Xt41 = Xt — T]Vf(Xt)

o Withn= % we have
281x0 — x*|?
- T+ 4

@ Rate can be O(%) using “accelerated” gradient descent

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S
o Sub-differential set 9f(x) is convex, compact

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fy) = f(x)+{yr—x.8), VyeSs
@ A non-smooth function is convex if 9f(x) # 0,Vx € S

o Sub-differential set 9f(x) is convex, compact
o Each g € 0f(x) is a sub-gardient

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fy) = f(x)+{yr—x.8), VyeSs
@ A non-smooth function is convex if 9f(x) # 0,Vx € S

o Sub-differential set 9f(x) is convex, compact
o Each g € 0f(x) is a sub-gardient

@ Lipschitz convex functions f on domain S:

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions

e Hinge loss, L1 norm, etc.
@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S

o Sub-differential set 9f(x) is convex, compact
e Each g € 0f(x) is a sub-gardient

@ Lipschitz convex functions f on domain S:
e f has a minimizer x* in S

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S

o Sub-differential set 9f(x) is convex, compact
e Each g € 0f(x) is a sub-gardient

@ Lipschitz convex functions f on domain S:

e f has a minimizer x* in S
e fis convex on S

Arindam Banerjee

Convex Optimization: Non-Smooth Functions

@ Often work with “non-smooth” functions
e Hinge loss, L1 norm, etc.

@ Consider a non-smooth function f on domain S
o Sub-differential set 9f(x): g € Of(x) if

fly) > f(x)+(y—x,8), VyeSs

@ A non-smooth function is convex if 9f(x) # 0,Vx € S
o Sub-differential set 9f(x) is convex, compact
e Each g € 0f(x) is a sub-gardient

@ Lipschitz convex functions f on domain S:

e f has a minimizer x* in S

e fis convex on S

e fis G-Lipschitz on S, i.e., for any g € Jf(x), we have
lell <G

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

@ Projected sub-gradient descent

Vel = Xt —ngt , Where gr € 9f(x)

. Yet1 if [lyer1l| <R
1 =)
Tyesa Yt+1 o if [|yer1] > R

R
H}’tﬂ\

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R
@ Projected sub-gradient descent

Vel = Xt —ngt , Where gr € 9f(x)

X Yetl s if [lyer1l| <R
t+1 = _
my”l , i [lyes1ll > R

e Withn = %, XT = % 2;1 X; satisfies

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R
@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

@ Projected sub-gradient descent

Vel = Xt —ngt , Where gr € 9f(x)

. Y41 5 if |yt £ R

tr1 = :
Tyesa Yt+1 o if [|yer1] > R

R
H}’tﬂ\

e Withn = %, XT = T thl X; satisfies

e Step-size is more conservative, compared to smooth functions

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

@ Projected sub-gradient descent

Vel = Xt —ngt , Where gr € 9f(x)

X Yetl s if [lyer1l| <R
t+1 = _
my”l , i [lyes1ll > R

e Withn = %, XT = % 2;1 X; satisfies

_ . _ RG
Fixr) =) = 7=

e Step-size is more conservative, compared to smooth functions
o Rate cannot be improved by “acceleration”

Arindam Banerjee

Non-Smooth functions: Subgradient Descent

@ Assume [|x*|| < R

@ Assume f is G-Lipschitz in the R-ball, i.e., ||g|| < G for
g € Of(x) for ||x]| <R

@ Projected sub-gradient descent

Yi+1 = Xt —ngt , Where gy € Of(x¢)
Nerq = {Yt-;l ; ff lyer1ll <R
e Ye+l if |lyerall > R
e Withn = %, XT = % 2;1 X; satisfies

_ . _ RG
Fixr) =) = 7=

e Step-size is more conservative, compared to smooth functions
o Rate cannot be improved by “acceleration”
o Bound holds for X7 = argmin; ., 7 f(xt)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

xe = pe({xr, F(x7), VF(x:)}, 7=0,...,t —1)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:
xt = ¢t({xr, f(x;), VF(x;)}, 7=0,...,t — 1)
@ Iteration complexity: T to get f(x7) — f(x*) <e

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)

o AGD for smooth functions: T = O(ﬁ)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)

o AGD for smooth functions: T = O(ﬁ)

o ‘GD’ for non-smooth functions: T = O(%)

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)
o AGD for smooth functions: T = O(ﬁ)

o ‘GD’ for non-smooth functions: T = O(%)
@ The minimax optimization error for function class F

OCG(F) = ¢0|7.r1f’¢t ?gg <f(xt) — Xlgﬁ(f(x))

Arindam Banerjee

Iteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)
o AGD for smooth functions: T = O(ﬁ)

o ‘GD’ for non-smooth functions: T = O(%)
@ The minimax optimization error for function class F

OCG(F) = ¢0|7.r1f’¢t ?gg <f(xt) — Xlgﬁ(f(x))

@ Oracle complexity: T so that OCy(F) < e

Arindam Banerjee

lteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)
o AGD for smooth functions: T = O(ﬁ)

e ‘GD’ for non-smooth functions: T = O(%)
@ The minimax optimization error for function class F

OCG(F) = fbomiﬁt ?g?: <f(xt) — Xlgﬁ(f(x))

@ Oracle complexity: T so that OCy(F) < e
e Smooth functions: T = O(#)

Arindam Banerjee

lteration Complexity, Oracle Complexity

@ Algorithm needs access to an oracle
o 0% order: Given x, what is f(x)
o 1t order: Given x, what is Vf(x) (or sub-gradient)

@ An algorithm with a 15 order oracle is a mapping:

@ Iteration complexity: T to get f(x7) — f(x*) <e
o GD for smooth functions: T = O(%)
o AGD for smooth functions: T = O(ﬁ)

e ‘GD’ for non-smooth functions: T = O(%)
@ The minimax optimization error for function class F

OCG(F) = fbomiﬁt ?g?: <f(xt) — Xlgﬁ(f(x))

@ Oracle complexity: T so that OCy(F) < e
e Smooth functions: T = O(#)

o Non-smooth functions: T = O(%)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

o Number of iterations O(2)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

o Number of iterations O(2)
o Runtime in each iteration m

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

o Number of iterations O(2)
o Runtime in each iteration m

o Sub-gradient descent for non-smooth functions: O(%)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

o Number of iterations O(2)
o Runtime in each iteration m

o Sub-gradient descent for non-smooth functions: O(%)

o Number of iterations O(E%)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Can we do better than gradient descent?
e Gradient descent for smooth functions: O('7)

o Number of iterations O(2)
o Runtime in each iteration m

o Sub-gradient descent for non-smooth functions: O(%)

o Number of iterations O(%)
o Runtime in each iteration m

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(%)

o Number of iterations O(%)
o Runtime in each iteration m

Main idea:

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(%)

o Number of iterations O(%)
o Runtime in each iteration m

Main idea:

e Decease the runtime in each iteration

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(%)

o Number of iterations O(%)
e Runtime in each iteration m
Main idea:
e Decease the runtime in each iteration
e Possibly increase the number of iterations

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(e%)
o Number of iterations O(%)
o Runtime in each iteration m

Main idea:
o Decease the runtime in each iteration

e Possibly increase the number of iterations
o The decrease should be more than the increase

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(e%)
o Number of iterations O(%)
o Runtime in each iteration m

Main idea:
o Decease the runtime in each iteration

e Possibly increase the number of iterations
o The decrease should be more than the increase

Simplest case: m =1, i.e., compute only 1 gradient

Arindam Banerjee

Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O()

o Number of iterations O(2)
o Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(e%)
o Number of iterations O(%)
o Runtime in each iteration m

Main idea:
o Decease the runtime in each iteration

e Possibly increase the number of iterations
o The decrease should be more than the increase

@ Simplest case: m =1, i.e., compute only 1 gradient
@ Questions: What is the algorithm? Will this converge?

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider

mlnf ZE Xi, Vi),

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w ZE Xi, Vi),

@ Stochastic gradient descent:

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
o Fort=1,...,T

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
o Fort=1,...,T
e Randomly draw j € {1,..., m}

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
o Fort=1,..., T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

o Output wy = % Z;l W

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t
o Output wr = + Z;l W

o Choosing step-size: Assume E[|g|?] < G2

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

o Output wy = % Z;l W
o Choosing step-size: Assume E[||g||?] < G2

o Fixed: n = L0k — E[f(wr)] - f(w*) < Sl

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

o Output wr = + Z;l W
o Choosing step-size: Assume E[|g|?] < G2

o Fixed: e = '“"f'l = el < Sk
w2 4G||lw*]|2

o Decaying: n; = ‘G\/ = E[f(wr)] - f(w") < = 7=

Arindam Banerjee

Stochastic Gradient Descent (SGD)

@ Assume: Samples (x,,y,) are i i. d consider
m|n f(w Zﬁ Xi, Vi),

@ Stochastic gradient descent:
e Fort=1,...,T
e Randomly draw i € {1,..., m}
e Compute (sub)gradlent gt = VL((xi,yi), we)
@ Wil = Wi — M8t

o Output wr = + Z;l W
o Choosing step-size: Assume E[|g|?] < G2

¢ Foed = (8 > Elf(n] - f(w) < Sk
w2 4G||lw*]|2

o Decaying: 7, = ‘Gf = E[f(Wr)] - f(w") < *ebx
o Unknown G, ||w*|:

ne = PEAE = Elf(wr)] - f(w*) < *0l max(s, §)

Arindam Banerjee

Smooth Functions: SGD vs GD

@ SGD convergence rate:

sl - rw) < 0 (=)

VT
1
Iteration complexity T = O <2>
€
’ Smooth functions H GD ‘ SGD ‘
Number of iterations | O(1) | O(%)
Each iteration m 1
Total runtime o(2) | 0(%)
m = 10° ¢ =107 10 | 10

Arindam Banerjee

Smooth Functions: SGD vs GD

@ SGD convergence rate:

1
E[f(wr)] — f(w") <O | —
)]~ fw) < 0 ()
Iteration complexity T = O <12>
€
’ Smooth functions H GD ‘ SGD ‘
Number of iterations | O(1) | O(%)
Each iteration m 1
Total runtime o(2) | 0(%)
m = 10° ¢ =107 10 | 10

o GD vs SGD: full gradient vs random gradient

Arindam Banerjee

Smooth Functions: SGD vs GD

@ SGD convergence rate:

1
E[f(wr)] — f(w") <O | —
)]~ fw) < 0 ()
Iteration complexity T = O <12>
€
’ Smooth functions H GD ‘ SGD ‘
Number of iterations | O(1) | O(%)
Each iteration m 1
Total runtime o(2) | 0(%)
m = 10° ¢ =107 10 | 10

o GD vs SGD: full gradient vs random gradient

@ SGD is memory efficient, extends to mini-batches

Arindam Banerjee

Non-smooth Functions: SGD vs GD

@ SGD convergence rate:

EIf(Wr)] - f(w") < O <%>
lteration complexity T = O <1>

€2

]Non—smooth functions H GD \ SGD ‘

Number of iterations O(E%) O(e%)
Each iteration m 1
Total runtime 0(%) | 0(%)
m=10° ¢=10" 101 | 10*

Arindam Banerjee

Non-smooth Functions: SGD vs GD

@ SGD convergence rate:

sl - fw) < 0 (=)
Iteration complexity T = O <612>

]Non—smooth functions H GD \ SGD ‘

Number of iterations O(E%) O(e%)
Each iteration m 1
Total runtime 0(%) | 0(%)
m=10° ¢=10" 101 | 10*

e GD is O(m) slower than SGD

Arindam Banerjee

Non-smooth Functions: SGD vs GD

@ SGD convergence rate:

EIf(Wr)] - f(w") < O <%>
lteration complexity T = O <1>

€2

]Non—smooth functions H GD \ SGD ‘

Number of iterations O(E%) O(e%)
Each iteration m 1
Total runtime 0(%) | 0(%)
m=10° ¢=10" 101 | 10*

e GD is O(m) slower than SGD
e Examples: Hinge loss (SVMs)

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T
o Learner picks a vector w; € S

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T

o Learner picks a vector w; € S

o Receive convex function f; : S — R

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T

o Learner picks a vector w; € S
o Receive convex function f; : S — R
o Incur loss fy(wy)

Arindam Banerjee

Online Convex Optimization (OCO)

@ ‘Sequential’ optimization with convex losses
e Fort=12...,T

o Learner picks a vector w; € S
o Receive convex function f; : S — R
o Incur loss fy(wy)

@ Regret w.r.t. comparator class U

T T
RegretT(U) = Z fr(we) — Engg z ft(u)
t=1 t=1

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s
o Need to maintain all functions

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s
o Need to maintain all functions

@ Use simple (sub)gradient descent

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s
o Need to maintain all functions

@ Use simple (sub)gradient descent

Arindam Banerjee

Online Gradient Descent (OGD)

o Apply gradient descent for OCO
@ FoReL minimizes 25;11 fr(w)

e May be difficult for more complicated £.'s
o Need to maintain all functions

@ Use simple (sub)gradient descent

Algorithm Online Gradient Descent (OGD)
Set: >0
Initialize wi =0
fort=1,2,3,... do
Wip1 = Wi — 77Vft(Wt)
end for

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions
e Sequence of vectors produced by OGD: wy,wso, ...

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wo, ...
e Then

T T
Regrett = Z fr(we) — TEIQ Z fe(u) = O(ﬁ)
t=1 t=1

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regrett = Z fr(we) — Telg Z fe(u) = O(ﬁ)
t=1 t=1

e Example: Hinge loss

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regrett = Z fr(we) — Telg Z fe(u) = O(ﬁ)
t=1 t=1

e Example: Hinge loss

o Let f; be strongly convex functions

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regrett = Z fr(we) — Telg Z fe(u) = O(ﬁ)
t=1 t=1
e Example: Hinge loss

o Let f; be strongly convex functions
e Sequence of vectors produced by OGD: wy,wo, ...

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regretr = Z fe(we) — Tég Z fi(u) = O(V'T)
t=1 t=1

e Example: Hinge loss
o Let f; be strongly convex functions

e Sequence of vectors produced by OGD: wy,wo, ...
e Then

Regrett = Z fe(we) — m|n Z fe(u O(log(T))

Arindam Banerjee

OGD: Regret Bounds

@ Let f; be general convex functions

e Sequence of vectors produced by OGD: wy,wso, ...
e Then

T T
Regrett = Z fr(we) — Telg Z fe(u) = O(ﬁ)
t=1 t=1

e Example: Hinge loss
o Let f; be strongly convex functions

e Sequence of vectors produced by OGD: wy,wo, ...
e Then

Regrett = Z fe(we) — m|n Z fe(u O(log(T))

o Example: Least square regression

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w)

. 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — WkH%

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w)

. 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — WkH%

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w)

. 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — WkH%

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)
@ Replace the quadratic term by other functions?

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w) 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — w3

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)
@ Replace the quadratic term by other functions?
@ Mirror descent 1

Wi = argminw<Vf(wk),w>+G—kB¢(w,wk)

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w)

. 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — wng

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)
@ Replace the quadratic term by other functions?
@ Mirror descent 1

Wi = argminw<Vf(wk),w>+G—kB¢(w,wk)

o The convergence rate is the same as GD (SGD)

Arindam Banerjee

Gradient Descent, Mirror Descent

e Gradient Descent: miny, f(w) 1
wy1 = argmin,, f(wg) + (VF(wg),w — wk)—i—EHw — w3

. 1
= argmin,, (V F(w), w)-+ > |[w — w3
P

@ Setting the derivative to zero yields wy 1 = wy — V1 (wy)
@ Replace the quadratic term by other functions?
@ Mirror descent 1

Wi = argminw<Vf(wk),w>+Q—kB¢(w, wy)

o The convergence rate is the same as GD (SGD)

@ Let distance-generating function ¢ be differentiable, strictly
convex function, Bregman divergence is defined as

By(w,wy) = p(w) — p(wk) — (Vo(wi), w — wy)

Arindam Banerjee

Bregman Divergence

o By(w,wyi) = dp(w) — p(wi) — (Vp(wi), w — wy)

Bregman Divergence

o By(w,wyi) = dp(w) — p(wi) — (Vp(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.

Arindam Banerjee

Bregman Divergence

o By(w,wyi) = dp(w) — p(wi) — (Vp(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
o Quadratic: ¢(w) = 3| w||3

Arindam Banerjee

Bregman Divergence

o By(w,wyi) = dp(w) — p(wi) — (Vp(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
o Quadratic: ¢(w) = 3| w||3

@ Squared loss:
1 2 1 2
B (w, wi) = 3 w3 — 3 w3 — i, w — w)

1 2
= Sliw — w3

Arindam Banerjee

Bregman Divergence

o By(w,wi) = p(w) — ¢(wi) — (Vo(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
Quadratic: ¢(w) = 3|lw/||3

Squared loss:

1 1
B (w, wi) = 3 w3 — 3 w3 — i, w — w)

1 2
= Sliw — w3

Entropy: ¢(w) = 27:1 w(i)log(w(i)), w(i) is the i-th entry

Arindam Banerjee

Bregman Divergence

o By(w,wi) = p(w) — ¢(wi) — (Vo(wi), w — wy)
@ Examples: Squared loss, relative entropy, etc.
Quadratic: ¢(w) = 3|lw/||3

Squared loss:

1 1
B (w, wi) = 3 w3 — 3 w3 — i, w — w)

1 2
= Sliw — w3

Entropy: ¢(w) = 27:1 w(i)log(w(i)), w(i) is the i-th entry
Relative entropy (un-normalized)

Buww) = 3 {W" o <vvvvk((?>> - +Wk(i)}

i=1

Arindam Banerjee

Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>

Arindam Banerjee

Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>

@ Setting the derivative to zero yields
1
Vi(wi) + Ik(v¢(wk+1) — Vo(wy)) =0

= Wi = Vo (Vo(wi) — axVF(wy))

Arindam Banerjee

Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>

@ Setting the derivative to zero yields
1
Vi(wi) + Ik(v¢(wk+1) — Vo(wy)) =0

= Wi = Vo (Vo(wi) — axVF(wy))

Arindam Banerjee

Mirror Descent

@ Mirror descent update:

Wil = argminwa(wk),W>+alk(¢(W)—¢(Wk)—<V¢(Wk)7W—Wk>

@ Setting the derivative to zero yields
1
Vi(wi) + Ik(v¢(wk+1) — Vo(wy)) =0

= Wi = Vo (Vo(wi) — axVF(wy))

Dual space Original space

Vi

Arindam Banerjee

