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Convex Optimization: Smooth Functions

Smooth convex function f on domain S

f has a minimizer x∗ in S
f is convex and continuously differentiable on S
f is smooth, i.e., gradient ∇f is β-Lipschitz: ∀x , y ∈ S

‖∇f (x)−∇f (y)‖ ≤ β‖x − y‖

Gradient descent for smooth functions:

xt+1 = xt − η∇f (xt)

With η = 1
β , we have

f (xT )− f (x∗) ≤ 2β‖x0 − x∗‖2

T + 4

Rate can be O( 1
T 2 ) using “accelerated” gradient descent
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Convex Optimization: Non-Smooth Functions

Often work with “non-smooth” functions

Hinge loss, L1 norm, etc.

Consider a non-smooth function f on domain S

Sub-differential set ∂f (x): g ∈ ∂f (x) if

f (y) ≥ f (x) + 〈y − x , g〉 , ∀y ∈ S

A non-smooth function is convex if ∂f (x) 6= ∅,∀x ∈ S

Sub-differential set ∂f (x) is convex, compact
Each g ∈ ∂f (x) is a sub-gardient

Lipschitz convex functions f on domain S :

f has a minimizer x∗ in S
f is convex on S
f is G -Lipschitz on S , i.e., for any g ∈ ∂f (x), we have
‖g‖ ≤ G
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Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions

Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”

Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Non-Smooth functions: Subgradient Descent

Assume ‖x∗‖ ≤ R

Assume f is G -Lipschitz in the R-ball, i.e., ‖g‖ ≤ G for
g ∈ ∂f (x) for ‖x‖ ≤ R

Projected sub-gradient descent

yt+1 = xt − ηgt , where gt ∈ ∂f (xt)

xt+1 =

{
yt+1 , if ‖yt+1‖ ≤ R

R
‖yt+1‖yt+1 , if ‖yt+1‖ > R

With η = R
G
√
T

, x̄T = 1
T

∑T
t=1 xt satisfies

f (x̄T )− f (x∗) ≤ RG√
T

Step-size is more conservative, compared to smooth functions
Rate cannot be improved by “acceleration”
Bound holds for x̃T = argmin1≤t≤T f (xt)

Arindam Banerjee Optimization Review



Iteration Complexity, Oracle Complexity

Algorithm needs access to an oracle

0th order: Given x , what is f (x)
1st order: Given x , what is ∇f (x) (or sub-gradient)

An algorithm with a 1st order oracle is a mapping:

xt = φt({xτ , f (xτ ),∇f (xτ )}, τ = 0, . . . , t − 1)

Iteration complexity: T to get f (xT )− f (x∗) ≤ ε

GD for smooth functions: T = O( 1
ε )

AGD for smooth functions: T = O( 1√
ε
)

‘GD’ for non-smooth functions: T = O( 1
ε2 )

The minimax optimization error for function class F

OCt(F) = inf
φ0,...,φt

sup
f ∈F

(
f (xt)− inf

x∈X
f (x)

)
Oracle complexity: T so that OCT (F) ≤ ε

Smooth functions: T = O( 1√
ε
)

Non-smooth functions: T = O( 1
ε2 )
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Stochastic Gradient Descent (SGD)

Can we do better than gradient descent?

Gradient descent for smooth functions: O(mε )

Number of iterations O( 1
ε )

Runtime in each iteration m

Sub-gradient descent for non-smooth functions: O(m
ε2

)

Number of iterations O( 1
ε2 )

Runtime in each iteration m

Main idea:

Decease the runtime in each iteration
Possibly increase the number of iterations
The decrease should be more than the increase

Simplest case: m = 1, i.e., compute only 1 gradient

Questions: What is the algorithm? Will this converge?
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Stochastic Gradient Descent (SGD)

Assume: Samples (xi , yi ) are i.i.d., consider

min
w

f (w) =
1

m

m∑
i=1

`((xi , yi ),w)

Stochastic gradient descent:

For t = 1, . . . ,T

Randomly draw i ∈ {1, . . . ,m}
Compute (sub)gradient gt = ∇`((xi , yi ),wt)
wt+1 = wt − ηtgt

Output w̄T = 1
T

∑T
t=1 wt

Choosing step-size: Assume E [‖g‖2] ≤ G 2

Fixed: ηt = ‖w∗‖2
G
√
T
⇒ E [f (w̄T )]− f (w∗) ≤ G‖w∗‖2√

T

Decaying: ηt = ‖w∗‖2
G
√
t
⇒ E [f (w̄T )]− f (w∗) ≤ 4G‖w∗‖2√

T

Unknown G , ‖w∗‖:
ηt = β‖w∗‖2

G
√
t
⇒ E [f (w̄T )]− f (w∗) ≤ 4G‖w∗‖2√

T
max(β, 1

β )
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Smooth Functions: SGD vs GD

SGD convergence rate:

E[f (w̄T )]− f (w∗) ≤ O

(
1√
T

)
Iteration complexity T = O

(
1

ε2

)

Smooth functions GD SGD

Number of iterations O(1ε ) O( 1
ε2

)

Each iteration m 1

Total runtime O(mε ) O( 1
ε2

)

m = 106, ε = 10−2 108 104

GD vs SGD: full gradient vs random gradient

SGD is memory efficient, extends to mini-batches
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Online Convex Optimization (OCO)

‘Sequential’ optimization with convex losses

For t = 1, 2, . . . ,T

Learner picks a vector wt ∈ S
Receive convex function ft : S 7→ R
Incur loss ft(wt)

Regret w.r.t. comparator class U

RegretT (U) =
T∑
t=1

ft(wt)−min
u∈U

T∑
t=1

ft(u)
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Online Gradient Descent (OGD)

Apply gradient descent for OCO

FoReL minimizes
∑t−1

τ=1 fτ (w)

May be difficult for more complicated fτ ’s
Need to maintain all functions

Use simple (sub)gradient descent

Algorithm Online Gradient Descent (OGD)

Set: η > 0
Initialize w1 = 0
for t = 1, 2, 3, . . . do

wt+1 = wt − η∇ft(wt)
end for
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OGD: Regret Bounds

Let ft be general convex functions

Sequence of vectors produced by OGD: w1,w2, . . .
Then

RegretT =
T∑
t=1

ft(wt)−min
u∈S

T∑
t=1

ft(u) = O(
√
T )

Example: Hinge loss

Let ft be strongly convex functions

Sequence of vectors produced by OGD: w1,w2, . . .
Then

RegretT =
T∑
t=1

ft(wt)−min
u∈S

T∑
t=1

ft(u) = O(log(T ))

Example: Least square regression
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Gradient Descent, Mirror Descent

Gradient Descent: minw f (w)

wk+1 = argminw f (wk) + 〈∇f (wk),w −wk〉+
1

2αk
‖w −wk‖22

= argminw〈∇f (wk),w〉+ 1

2αk
‖w −wk‖22

Setting the derivative to zero yields wk+1 = wk − αk∇f (wk)

Replace the quadratic term by other functions?

Mirror descent

wk+1 = argminw〈∇f (wk),w〉+ 1

αk
Bφ(w,wk)

The convergence rate is the same as GD (SGD)

Let distance-generating function φ be differentiable, strictly
convex function, Bregman divergence is defined as

Bφ(w,wk) = φ(w)− φ(wk)− 〈∇φ(wk),w −wk〉
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Bregman Divergence

Bφ(w,wk) = φ(w)− φ(wk)− 〈∇φ(wk),w −wk〉

Examples: Squared loss, relative entropy, etc.

Quadratic: φ(w) = 1
2‖w‖

2
2

Squared loss:

Bφ(w,wk) =
1

2
‖w‖22 −

1

2
‖wk‖22 − 〈wk ,w −wk〉

=
1

2
‖w −wk‖22

Entropy: φ(w) =
∑d

i=1w(i) log(w(i)), w(i) is the i-th entry

Relative entropy (un-normalized)

Bφ(w,wk) =
n∑

i=1

{
wi log

(
w(i)

wk(i)

)
−w(i) + wk(i)

}
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Mirror Descent

Mirror descent update:

wk+1 = argminw〈∇f (wk),w〉+ 1

αk
(φ(w)−φ(wk)−〈∇φ(wk),w−wk〉)

Setting the derivative to zero yields

∇f (wk) +
1

αk
(∇φ(wk+1)−∇φ(wk)) = 0

⇒ wk+1 = ∇φ−1(∇φ(wk)− αk∇f (wk))
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