Constrained Optimization, Duality CSci 8980: ML at Large Scale and High Dimensions

Instructor: Arindam Banerjee

January 29, 2014

Instructor: Arindam Banerjee Constrained Optimization, Duality

• The equality & inequality constrained optimization problem

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & h_i(\mathbf{x}) = 0 & \quad i = 1, \dots, m \\ & g_j(\mathbf{x}) \leq 0 & \quad j = 1, \dots, n \end{array}$

3

• The equality & inequality constrained optimization problem

• Domain $\mathcal{D} = \operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}(h_i) \cap \bigcap_{i=1}^{n} \operatorname{dom}(g_i)$

• The equality & inequality constrained optimization problem

• Domain $\mathcal{D} = \operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}(h_i) \cap \bigcap_{j=1}^{n} \operatorname{dom}(g_j)$

The Lagrangian

L

$$\begin{aligned} (\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) &= f(\mathbf{x}) + \boldsymbol{\lambda}^T h(\mathbf{x}) + \boldsymbol{\nu}^T g(\mathbf{x}) \\ &= f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j g_j(\mathbf{x}) \end{aligned}$$

• The equality & inequality constrained optimization problem

• Domain $\mathcal{D} = \operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}(h_i) \cap \bigcap_{j=1}^{n} \operatorname{dom}(g_j)$

The Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{T} h(\mathbf{x}) + \boldsymbol{\nu}^{T} g(\mathbf{x})$$
$$= f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{j=1}^{n} \nu_{j} g_{j}(\mathbf{x})$$

• Domain dom(L) = $\mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^n$

• The equality & inequality constrained optimization problem

• Domain $\mathcal{D} = \operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}(h_i) \cap \bigcap_{j=1}^{n} \operatorname{dom}(g_j)$

The Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T h(\mathbf{x}) + \boldsymbol{\nu}^T g(\mathbf{x})$$

= $f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j g_j(\mathbf{x})$

• Domain dom $(L) = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^n$

• $\{\lambda_i\}_{i=1}^m, \{\nu_j\}_{j=1}^n$ are the Lagrange multipliers

$$L^*(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

=
$$\inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j g_j(\mathbf{x}) \right)$$

⊸ ≣ ⊁

2

æ

$$L^*(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

=
$$\inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j g_j(\mathbf{x}) \right)$$

• Let p^* be the constrained optimum of $f(\mathbf{x})$

$$L^{*}(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{j=1}^{n} \nu_{j} g_{j}(\mathbf{x}) \right)$$

- Let p^* be the constrained optimum of $f(\mathbf{x})$
- The Lagrange dual L^* is

$$L^{*}(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{j=1}^{n} \nu_{j} g_{j}(\mathbf{x}) \right)$$

- Let p^* be the constrained optimum of $f(\mathbf{x})$
- The Lagrange dual L^* is
 - A concave function, even when original problem is not convex

 L^*

$$f(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j g_j(\mathbf{x}) \right)$$

- Let p^* be the constrained optimum of $f(\mathbf{x})$
- The Lagrange dual L* is
 - A concave function, even when original problem is not convex
 - A lower bound: for $\nu \geq 0$, $L^*(\lambda, \nu) \leq p^*$

 L^*

$$f(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j g_j(\mathbf{x}) \right)$$

- Let p^* be the constrained optimum of $f(\mathbf{x})$
- The Lagrange dual L* is
 - A concave function, even when original problem is not convex
 - A lower bound: for $\nu \geq 0$, $L^*(\lambda, \nu) \leq p^*$
- How close is the maximum of $L^*(\lambda,
 u)$ to p^* ?

minimize $\mathbf{x}^T \mathbf{x}$ subject to $A\mathbf{x} = b$

- Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\lambda}^T (A\mathbf{x} b)$
- Recall that $L^*(\boldsymbol{\lambda}) = \inf_{\boldsymbol{\mathsf{x}}} L(\boldsymbol{\mathsf{x}}, \boldsymbol{\lambda})$
- Setting gradient to 0, $\mathbf{x} = -\frac{1}{2}A^{T}\boldsymbol{\lambda}$
- Hence, the dual

$$L^*(\boldsymbol{\lambda}) = L\left(-\frac{1}{2}A^T\boldsymbol{\lambda},\boldsymbol{\lambda}\right) = -\frac{1}{4}\boldsymbol{\lambda}^TAA^T\boldsymbol{\lambda} - \boldsymbol{\lambda}^Tb$$

• $L^*(\lambda)$ is a lower bounding concave function

 $\begin{array}{l} \mathsf{maximize} \ L^*(\boldsymbol{\lambda},\boldsymbol{\nu}) \\ \mathsf{subject} \ \mathsf{to} \ \boldsymbol{\nu} \geq 0 \end{array}$

• Best lower bound to p^* , the optimal of the primal

 $\begin{array}{l} {\sf maximize} \ {\it L}^*({\boldsymbol \lambda},{\boldsymbol \nu}) \\ {\sf subject to} \ {\boldsymbol \nu} \geq 0 \end{array}$

- Best lower bound to p^* , the optimal of the primal
- Concave optimization problem with maximum d^*

 $\begin{array}{l} {\sf maximize} \ {\it L}^*({\boldsymbol \lambda},{\boldsymbol \nu}) \\ {\sf subject to} \ {\boldsymbol \nu} \geq 0 \end{array}$

- Best lower bound to p^* , the optimal of the primal
- Concave optimization problem with maximum d^*
- Constraints are $oldsymbol{
 u} \geq 0$ and $(oldsymbol{\lambda},oldsymbol{
 u}) \in \mathsf{dom}(L^*)$

maximize $L^*(oldsymbol{\lambda},oldsymbol{
u})$ subject to $oldsymbol{
u}\geq 0$

- Best lower bound to p^* , the optimal of the primal
- Concave optimization problem with maximum d^*
- Constraints are $oldsymbol{
 u} \geq 0$ and $(oldsymbol{\lambda},oldsymbol{
 u}) \in \mathsf{dom}(L^*)$
- For example, in linear programming

 $\begin{array}{ll} \text{minimize } \mathbf{c}^{\mathsf{T}} \mathbf{x} & \text{maximize } -\mathbf{b}^{\mathsf{T}} \boldsymbol{\lambda} \\ \text{subject to } A \mathbf{x} = \mathbf{b} & \text{subject to } A^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{c} \geq 0 \\ \mathbf{x} \geq 0 \end{array}$

• Weak Duality: $d^* \leq p^*$

Instructor: Arindam Banerjee Constrained Optimization, Duality

▶ ★ 문 ▶ ★ 문 ▶

æ

- Weak Duality: $d^* \leq p^*$
 - Always holds

★ 문 ► ★ 문 ►

æ

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
- Constraint Qualification

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
- Constraint Qualification
 - Normally true on convex problems

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
- Constraint Qualification
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,

 $\exists x \in \operatorname{relint}(\mathcal{D}) \quad \text{s.t.} \quad Ax = b, \quad g_j(x) < 0, \ \ \text{for some } j$

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
- Constraint Qualification
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,

 $\exists x \in \operatorname{relint}(\mathcal{D}) \quad \text{s.t.} \quad Ax = b, \quad g_j(x) < 0, \text{ for some } j$

• Slater's Condition for strong duality

minimize $\mathbf{x}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$

Lagrange dual

$$L^*(\boldsymbol{\nu}) = \inf_{\mathbf{x}} \left(\mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (A\mathbf{x} - \mathbf{b}) \right) = -\frac{1}{4} \boldsymbol{\nu}^T A A^T \boldsymbol{\nu} - b^T \boldsymbol{\nu}$$

Dual problem

maximize
$$-\frac{1}{4}\nu^{T}AA^{T}\nu - b^{T}\nu$$

subject to $\nu \ge 0$

-

- From Slater's condition, $p^* = d^*$
- It is sufficient to solve the dual

• If strong duality holds, \mathbf{x}^* for primal, $(\boldsymbol{\lambda}^*, \boldsymbol{
u}^*)$ for dual

$$f(\mathbf{x}^*) = L^*(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}) \right)$$
$$\leq f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}^*)$$
$$\leq f(\mathbf{x}^*)$$

• If strong duality holds, \mathbf{x}^* for primal, $(\boldsymbol{\lambda}^*, \boldsymbol{
u}^*)$ for dual

$$\begin{split} f(\mathbf{x}^*) &= L^*(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}) \right) \\ &\leq f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}^*) \\ &\leq f(\mathbf{x}^*) \end{split}$$

• The two inequalities hold with equality

• If strong duality holds, \mathbf{x}^* for primal, $(\boldsymbol{\lambda}^*, \boldsymbol{
u}^*)$ for dual

$$\begin{aligned} f(\mathbf{x}^*) &= L^*(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \quad \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}) \right) \\ &\leq \quad f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}^*) \\ &\leq \quad f(\mathbf{x}^*) \end{aligned}$$

- The two inequalities hold with equality
 - \mathbf{x}^* minimizes the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{
 u}^*)$

• If strong duality holds, \mathbf{x}^* for primal, $(\boldsymbol{\lambda}^*, \boldsymbol{
u}^*)$ for dual

$$\begin{aligned} f(\mathbf{x}^*) &= L^*(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \quad \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}) \right) \\ &\leq \quad f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}^*) \\ &\leq \quad f(\mathbf{x}^*) \end{aligned}$$

- The two inequalities hold with equality
 - \mathbf{x}^* minimizes the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{
 u}^*)$
 - $u_j^* g_j(\mathbf{x}^*) = 0$ for all $j = 1, \dots, n$ so that

 $u_j^* > 0 \Rightarrow g_j(\mathbf{x}^*) = 0, \quad \text{and} \quad g_j(\mathbf{x}^*) < 0 \Rightarrow \nu_j^* = 0$

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda},\tilde{\nu})$

• Primal Feasibility:

 $h_i(\tilde{\mathbf{x}}) = 0, i = 1, \dots, n, \quad g_j(\tilde{\mathbf{x}}) \le 0, j = 1, \dots, m$

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda},\tilde{\nu})$

• Primal Feasibility:

 $h_i(\mathbf{\tilde{x}}) = 0, i = 1, \dots, n, \quad g_j(\mathbf{\tilde{x}}) \le 0, j = 1, \dots, m$

• Dual Feasibility:

 $ilde{
u}_j \geq 0, j = 1, \dots, m$

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda},\tilde{\nu})$

• Primal Feasibility:

 $h_i(\mathbf{\tilde{x}}) = 0, i = 1, \dots, n, \quad g_j(\mathbf{\tilde{x}}) \le 0, j = 1, \dots, m$

• Dual Feasibility:

$$ilde{
u}_j \geq 0, j = 1, \dots, m$$

• Complementary Slackness:

 $\tilde{\nu}_j g_j(\tilde{\mathbf{x}}) = 0, j = 1, \dots, m$

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda},\tilde{\nu})$

• Primal Feasibility:

 $h_i(\tilde{\mathbf{x}}) = 0, i = 1, \dots, n, \quad g_j(\tilde{\mathbf{x}}) \le 0, j = 1, \dots, m$

• Dual Feasibility:

$$ilde{
u}_j \geq 0, j = 1, \dots, m$$

• Complementary Slackness:

$$\tilde{\nu}_j g_j(\tilde{\mathbf{x}}) = 0, j = 1, \dots, m$$

• Gradient condition:

$$abla f(\mathbf{ ilde{x}}) + \sum_{i=1}^{n} \tilde{\lambda}_i
abla h_i(\mathbf{ ilde{x}}) + \sum_{j=1}^{m} \tilde{\nu}_j
abla g_j(\mathbf{ ilde{x}}) = 0$$

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda},\tilde{\nu})$

• Primal Feasibility:

 $h_i(\tilde{\mathbf{x}}) = 0, i = 1, \dots, n, \quad g_j(\tilde{\mathbf{x}}) \le 0, j = 1, \dots, m$

• Dual Feasibility:

$$ilde{
u}_j \geq 0, j = 1, \dots, m$$

• Complementary Slackness:

$$\tilde{\nu}_j g_j(\tilde{\mathbf{x}}) = 0, j = 1, \dots, m$$

• Gradient condition:

٠

$$\nabla f(\tilde{\mathbf{x}}) + \sum_{i=1}^{n} \tilde{\lambda}_i \nabla h_i(\tilde{\mathbf{x}}) + \sum_{j=1}^{m} \tilde{\nu}_j \nabla g_j(\tilde{\mathbf{x}}) = 0$$

The conditions are sufficient for a convex problem