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Constrained Optimization

@ The equality & inequality constrained optimization problem

minimize f(x)
subject to hj(x) =0 )
() <0 j=1...n

o Domain D = dom(f) N2, dom(h;) N, dom(g;)
@ The Lagrangian

L(x,\,v) = f(x)+A"h(x)+ v g(x)

= f(x)+ Z Aihi(x) + Z v;gi(x)

e Domain dom(L) =D x R™ x R”
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Lagrange Dual
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Lagrange Dual

@ The Lagrange dual function

L*(\v) = xlg; L(x, A, v)
= <f<x)+ZAfhf(x>+Zuf&-<x)>

@ Let p* be the constrained optimum of f(x)

@ The Lagrange dual L* is

e A concave function, even when original problem is not convex
o A lower bound: for v >0, L*(A,v) < p*

@ How close is the maximum of L*(\,v) to p*?
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An Example

minimize x'x

subject to Ax=b

Lagrangian L(x,A) = x"x + AT (Ax — b)
Recall that L*(X) = infyx L(x,A)
Setting gradient to 0, x = —1ATX

Hence, the dual

1 1
LKA =L(—2ATAX) = —-ATAATA - ATh
2 4

@ L*(\) is a lower bounding concave function
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The Lagrange Dual Problem

maximize L*(A, )

subject tov >0

@ Best lower bound to p*, the optimal of the primal
@ Concave optimization problem with maximum d*
e Constraints are v > 0 and (A, v) € dom(L¥)
@ For example, in linear programming
minimize ¢’ x maximize — b’ A
subject to Ax =b subject to ATA+¢c>0
x>0
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Weak and Strong Duality

@ Weak Duality: d* < p*
e Always holds
o Non-trivial lower bounds for hard problems
e Used in approximation algorithms

@ Strong Duality: d* = p*
e Does not hold in general

e If it holds, it is sufficient to solve the dual
o How to check it if holds?

@ Constraint Qualification

e Normally true on convex problems
e True if the convex problem is strictly feasible, e.g.,

dx € relint(D) st. Ax=b, gi(x) <0, forsome;

e Slater’s Condition for strong duality
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Example: Quadratic Programs

minimize x'x

subject to Ax<b

o Lagrange dual

X

1
L*(v) = inf (xTx +vT(Ax — b)) = —ZVTAATV —bv

@ Dual problem )
maximize — ZVTAATV — b

subject to v >0

@ From Slater's condition, p* = d*
@ It is sufficient to solve the dual
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Complementary Slackness

e If strong duality holds, x* for primal, (A*, v*) for dual
f(x*) = L*(\*,v") = mf (f )+ Z)\* )+ Zl/fgj(x))
j=1
f(x*) + Z Arhi(x*) + ) i gi(x
i=1 j=1

f(x*)

IN

IN
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Complementary Slackness

e If strong duality holds, x* for primal, (A*, v*) for dual

f(x*) = L*(\*,v") = mf f(x)+ Z)\* )+ Zl/fgj(x)
j=1

IN

f(x*) + Z Arhi(x*) + ) i gi(x
i=1 j=1
< f(x%)
@ The two inequalities hold with equality

o x* minimizes the Lagrangian L(x, A*,v*)
o vigi(x*)=0forall j=1,...,nso that

vi>0=gi(x*) =0, and g(x")<0=v'=0
J ) ) J
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Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs
% and (A, D)
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Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs
% and (A, D)
@ Primal Feasibility:
hi(X)=0,i=1,...,n, gi(X)<0,j=1,....,m

@ Dual Feasibility:

@ Gradient condition:

)+ Z AiVhi(X) + Z 7;Vgj(%
@ The conditions are suff|C|ent for a convex problem
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