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Constrained Optimization

The equality & inequality constrained optimization problem

minimize f (x)

subject to hi (x) = 0 i = 1, . . . ,m

gj(x) ≤ 0 j = 1, . . . , n

Domain D = dom(f ) ∩
⋂m

i=1 dom(hi ) ∩
⋂n

j=1 dom(gj)

The Lagrangian

L(x,λ,ν) = f (x) + λTh(x) + νTg(x)

= f (x) +
m∑
i=1

λihi (x) +
n∑

j=1

νjgj(x)

Domain dom(L) = D × Rm × Rn

{λi}mi=1, {νj}nj=1 are the Lagrange multipliers
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Lagrange Dual

The Lagrange dual function

L∗(λ,ν) = inf
x∈D

L(x,λ,ν)

= inf
x∈D

(
f (x) +

m∑
i=1

λihi (x) +
n∑

j=1

νjgj(x)

)

Let p∗ be the constrained optimum of f (x)

The Lagrange dual L∗ is

A concave function, even when original problem is not convex
A lower bound: for ν ≥ 0, L∗(λ,ν) ≤ p∗

How close is the maximum of L∗(λ,ν) to p∗?
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An Example

minimize xTx

subject to Ax = b

Lagrangian L(x,λ) = xTx + λT (Ax− b)

Recall that L∗(λ) = infx L(x,λ)

Setting gradient to 0, x = −1
2A

Tλ

Hence, the dual

L∗(λ) = L

(
−1

2
ATλ,λ

)
= −1

4
λTAATλ− λTb

L∗(λ) is a lower bounding concave function
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The Lagrange Dual Problem

maximize L∗(λ,ν)

subject to ν ≥ 0

Best lower bound to p∗, the optimal of the primal

Concave optimization problem with maximum d∗

Constraints are ν ≥ 0 and (λ,ν) ∈ dom(L∗)

For example, in linear programming

minimize cTx maximize − bTλ

subject to Ax = b subject to ATλ + c ≥ 0

x ≥ 0
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Weak and Strong Duality

Weak Duality: d∗ ≤ p∗

Always holds
Non-trivial lower bounds for hard problems
Used in approximation algorithms

Strong Duality: d∗ = p∗

Does not hold in general
If it holds, it is sufficient to solve the dual
How to check it if holds?

Constraint Qualification

Normally true on convex problems
True if the convex problem is strictly feasible, e.g.,

∃x ∈ relint(D) s.t. Ax = b, gj(x) < 0, for some j

Slater’s Condition for strong duality
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Example: Quadratic Programs

minimize xTx

subject to Ax ≤ b

Lagrange dual

L∗(ν) = inf
x

(
xTx + νT (Ax− b)

)
= −1

4
νTAATν − bTν

Dual problem

maximize − 1

4
νTAATν − bTν

subject to ν ≥ 0

From Slater’s condition, p∗ = d∗

It is sufficient to solve the dual
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Complementary Slackness

If strong duality holds, x∗ for primal, (λ∗,ν∗) for dual

f (x∗) = L∗(λ∗,ν∗) = inf
x

f (x) +
m∑
i=1

λ∗i hi (x) +
n∑

j=1

ν∗j gj(x)


≤ f (x∗) +

m∑
i=1

λ∗i hi (x
∗) +

n∑
j=1

ν∗j gj(x
∗)

≤ f (x∗)

The two inequalities hold with equality

x∗ minimizes the Lagrangian L(x,λ∗,ν∗)
ν∗j gj(x

∗) = 0 for all j = 1, . . . , n so that

ν∗j > 0⇒ gj(x
∗) = 0, and gj(x

∗) < 0⇒ ν∗j = 0
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Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs
x̃ and (λ̃, ν̃)

Primal Feasibility:

hi (x̃) = 0, i = 1, . . . , n, gj(x̃) ≤ 0, j = 1, . . . ,m

Dual Feasibility:
ν̃j ≥ 0, j = 1, . . . ,m

Complementary Slackness:

ν̃jgj(x̃) = 0, j = 1, . . . ,m

Gradient condition:

∇f (x̃) +
n∑

i=1

λ̃i∇hi (x̃) +
m∑
j=1

ν̃j∇gj(x̃) = 0

The conditions are sufficient for a convex problem
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