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Goal: Unifying 
computational 
framework for high-
dimensional 
structured problems 

Motivation

Based on Ravikumar’s presentation in IMA 2013



Statistical Framework: Atomic Sets

Any linear 
function will 
attain its 
minimum over D 
at an atom s: A

D: convex hull of 
atoms



Greedy algorithm (Tewari et al. 2011)

➔ Add atom at every step

➔ Iterate x_t : conv. 
combination of at most 
t+1 atoms

➔ Select atom that makes 
the optimization 
problem easy



Restricted Smoothness
in high dimensions not good 
smoothness constants

Convergence results: 

Contributions (Tewari et al. 2011) 

For Banach spaces: 



Revisiting Frank - Wolfe (Jaggi 2013)

Visualization: from Jaggi’s presentation in Smile, Paris Seminar, 2013



Frank - Wolfe 



CErtificate for current 

approximation quality

Surrogate duality gap.

Primal problem:

g(x)

Linearized problem

The Duality gap and Certificates

Based on Jaggi’s presentation in Smile, Paris Seminar, 2013



Frank-Wolfe Variants



Contribution no.1 

Convergence results: 

1. Duality gap convergence 
guarantee

2. Affine invariance

3. Optimality in terms of 
sparsity

The obtained sparsity k is optimal 
for an approximation quality of 1/k

Contributions (Jaggi 2013)



Table: from Jaggi’s presentation in Smile, Paris Seminar, 2013

Frank - Wolfe on Atomic Domains 



Special case: Sparse vectors 

Visualization: from Jaggi’s presentation in Smile, Paris 
Seminar, 2013



Special case: sparse non-negative vectors 

If we choose || || to be l_1 norm, 
then restricted smoothness 
constant is similar to C_f 

Visualization: from Jaggi’s presentation in Smile, Paris 
Seminar, 2013



Special case: Group Sparse Matrices



Special case: Low rank matrices

Polynomial 
time



❏ (Tewari et al 2011)  Not polynomial time to compute 
greedy step for non negative low rank matrices

❏ Permutation matrices: Efficient optimization over Birkoff 
polytope, Hungarian Algorithm (Conv(A) = set of doubly 
stochastic matrices)

❏ (Jaggi 2013)  
Novel framework for 
factorized matrix norms



Thanks
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