- 1. Greedy Algorithms for Structurally Constrained High Dimensional Problems
- 2. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

Presenter: Konstantina Christakopoulou CSci 8980

Motivation

Goal: Unifying computational framework for highdimensional structured problems

Based on Ravikumar's presentation in IMA 2013

Statistical Framework: Atomic Sets

D: convex hull of

Given a set of 'atoms' A

$$x = \sum_{i=1}^{k} c_i a_i, a_i \in A$$

If C_A convex hull of A, Gauge function: $||x||_A = \inf\{t \ge 0 : x \in tC_A\}$

When A is centrosymmetric,

$$\|x\|_{A} = \inf \left\{ \sum_{a \in A} |c_{a}| : x = \sum_{a \in A} c_{a} \cdot a \right\}$$

Support function: $\|x\|_{A}^{*} = \sup \left\{ \langle x, a \rangle : a \in A \right\}$

Any *linear* function will attain its *minimum* over *D* at an *atom* s: *A*

Greedy algorithm (Tewari et al. 2011)

 $\min_{x:\|x\|_A\leq\kappa}f(x)$

where f is **convex**, **smooth** and atomic norm is bounded $\{x : ||x||_A \le \kappa\}$ and f : goodness of fit measure.

Greedy Algorithm to minimize convex function f over κ scaled atomic norm ball

Let $x^0 = \kappa a_0$ for an aribitrary atom $a_0 \in A$ for t = 0, ..., do

$$a_t = \arg\min_{a \in A} \langle \nabla f(x_t), a \rangle \tag{1}$$

(Line search for step size) $\gamma_t = \arg \min_{\gamma \in [0,1]} f(x_t + \gamma(\kappa a_t - x_t))$ (Update as linear combination) $x_{t+1} = x_t + \gamma_t(\kappa a_t - x_t)$ end for

- Add atom at every step
- Iterate x_t : conv.
 combination of at most t+1 atoms
- Select atom that makes the optimization problem easy

Contributions (Tewari et al. 2011)

Restricted Smoothness

in high dimensions not good smoothness constants

Restricted Smoothness Property

$$L_{\|\cdot\|}(f;S) = \sup_{x,y\in S, \alpha\in(0,1]} \frac{f((1-\alpha x) + \alpha y) - f(x) - \langle \nabla f(x), \alpha(y-x) \rangle}{\alpha^2 \|y-x\|^2}$$

 $L_{\|\cdot\|}(f; S) \ge 0$ (since f is convex). How smooth in S with respect to $\|\cdot\|$ **Connection with L-Lipschitz:** $L_{\|\cdot\|}(f; S) \le L$ (cares about smoothness just in S). **Connection with Hessian:** $\||\nabla^2 f(z)|\| \le H$

Convergence results:

Convergence $f(x_T) - f(x^*) \le \frac{8\kappa^2 L_{\parallel\parallel}(f; \kappa C_A) \|A\|^2}{T}$ For Banach spaces: $\|A\| = sup_{a \in A} \|a\|$ TExtension to infinite dimensional Banach spacesV: Banach space equipped with inner product. ∇f : Fechel derivative:
elements of the dual space V*, inner product $\langle X, x \rangle = X(x), x$
 $\in V, X \in V*$
 $L_{\parallel:\parallel}(f; S) = sup_{x,y \in S, \alpha \in \{0,1\}} \frac{f((1-\alpha x)+\alpha y)-f(x)-\langle \nabla f(x), \alpha(y-x) \rangle}{\frac{1}{2}\alpha' \|y-x\|'}, r \in [1, 2]$

 $\rightarrow O(\frac{1}{T_{\ell-1}})$

Visualization: from Jaggi's presentation in Smile, Paris Seminar, 2013

Frank - Wolfe

Algorithm 1 Frank-Wolfe (1956) fLet $x^0 \in D$ for k = 0, ..., K do Compute $s = \arg \min_{s' \in D} \langle s', \nabla f(x^{(k)}) \rangle$ Let $\gamma = \frac{2}{k+2}$ Update $x^{(k+1)} = (1 - \gamma)x^{(k)} + \gamma s$ end for

The Duality gap and Certificates

Frank-Wolfe Variants

Algorithm 1 Frank-Wolfe (1956) Let $x^0 \in D$ for k = 0, ..., K do Compute $s = \arg \min_{s' \in D} \langle s', \nabla f(x^{(k)}) \rangle$ Let $\gamma = \frac{2}{k+2}$ Update $x^{(k+1)} = (1 - \gamma)x^{(k)} + \gamma s$ end for

Algorithm 2 Frank-Wolfe with Approximate Linear Subproblems, for Quality $\delta \ge 0$ Let $x^0 \in D$ for k = 0, ..., K do Let $\gamma = \frac{2}{k+2}$ Find $s \in D$ s.t $\langle s, \nabla f(x^{(k)}) \le \min_{s' \in D} \langle s', \nabla f(x^{(k)}) \rangle + \frac{1}{2} \delta \gamma C_f$ a) Optionally: perform line search for γ b) Update $x^{(k+1)} = (1 - \gamma)x^{(k)} + \gamma s$ end for Algorithm 3 Line-Search for the step size γ As Algorithm 2, except replacing line a) with :

$$\gamma = \arg\min_{\gamma \in [0,1]} f\left(x^{(k)} + \gamma(s - x^{(k)})\right)$$

Algorithm 4 Fully Corrective, Re-optimizing over all previous directions As Algorithm 2, except replacing line b) with : Do the update $x^{(k+1)} = \arg \min_{x \in conv(s^{(0),...,s^{(k+1)}})} f(x)$

Contributions (Jaggi 2013)

The Curvature

$$C_f := \sup_{x,s\in D,\gamma\in[0,1],y=x+\gamma(s-x)} \frac{2}{\gamma^2} \left(f(y) - f(x) - \langle y-x,
abla f(x)
angle
ight)$$

Connection with L-Lipschitz: $C_f \leq \operatorname{diam}_{\|\cdot\|}(D^2)L$

Convergence results:

Primal Convergence

$$f(x^{(k)}) - f(x^*) \le \frac{2C_f}{k+2}(1+\delta)$$

 δ accuracy for solving the linear sub-problems.

Primal-Dual Convergence

$$g(x^{(\hat{k})}) \leq \frac{7C_f}{K+2}(1+\delta)$$

where
$$1 \leq \hat{k} \leq K$$

 Duality gap convergence guarantee
 Affine invariance

3. Optimality in terms of sparsity

CONTRIBUTION The obtained sparsity k is **optimal** for an approximation quality of 1/k NO.1

Frank - Wolfe on Atomic Domains

x	Optimization Domain		Complexity of one Frank-Wolfe Iteration	
	Atoms A	$\mathcal{D} = \operatorname{conv}(\mathcal{A})$	$\sup_{s\in\mathcal{D}}(s,y)$	Complexity
\mathbb{R}^{n}	Sparse Vectors		y ~	O(n)
\mathbb{R}^{n}	Sign-Vectors	. orball	y,	O(n)
\mathbb{R}^{n}	ℓ _p -Sphere		y g	O(n)
\mathbb{R}^{n}	Sparse Non-neg. Vectors	Simplex Δ_n	$\max_i \{y_i\}$	O(n)
\mathbb{R}^{n}	Latent Group Sparse Vec.	∥.∥ _g -ball	$\max_{g \in \mathcal{G}} \ \boldsymbol{y}_{(g)} \ _{g}^{*}$	$\sum_{g \in \mathcal{G}} g $
$\mathbb{R}^{m\times n}$	Matrix Trace Norm	. _{tr} -ball	$\left\ \boldsymbol{y}\right\ _{op} = \sigma_1(\boldsymbol{y})$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)
$\mathbb{R}^{m \times n}$	Matrix Operator Norm	. op-ball	$\ \boldsymbol{y} \ _{tr} = \ (\sigma_i(\boldsymbol{y})) \ _1$	SVD
$\mathbb{R}^{m \times n}$	Schatten Matrix Norms	$\ (\sigma_i(.))\ _p$ -ball	$\ (\sigma_i(\boldsymbol{y}))\ _q$	SVD
$\mathbb{R}^{m\times n}$	Matrix Max-Norm			$ ilde{O}ig(N_f(n+m)^{1.5}/arepsilon'^{2.5}ig)$
$\mathbb{R}^{n \times n}$	Permutation Matrices	Birkhoff polytope	800000000000000000000000000000000000000	$O(n^3)$
$\mathbb{R}^{n \times n}$	Rotation Matrices	CROSCORD CONTRACTOR	REFERENCESCONSECTION	SVD (Procrustes prob.)
$\mathbb{S}^{n \times n}$	Rank-1 PSD matrices of unit trace	$\{x \succeq 0, \operatorname{Tr}(x) = 1\}$	$\lambda_{\max}(y)$	$\tilde{O}(N_f/\sqrt{\varepsilon'})$ (Lanczos)
Sn×n	PSD matrices of bounded diagonal	$\{x \succeq 0, x_{ii} \leq 1\}$	Contraction of the local distance	$\tilde{O}(N_f n^{1.5} / \epsilon^{2.5})$

Table: from Jaggi's presentation in Smile, Paris Seminar, 2013

Special case: Sparse vectors

Set of atoms: $A = \{\pm e_i | i \in [n]\}$

 $Conv(A) = unit ball of \ell_1 norm$

Compute

$$a_t = \arg\min_{a \in \pm \{e_1, \dots, e_p\}} \langle \nabla f(x_t), a \rangle$$

Greedy coordinate descent: Find $j = \arg \max_{j' \in \{1,...,p\}} |[\nabla f(x_t)]_{j'}|$ and set $a_t = -\operatorname{sign}([\nabla f(x_t)]_j])e_j$

Obtain O(1/k) approximate solution of sparsity k Equivalent to (Orthogonal) Matching Pursuit. Original Frank-Wolfe to polyhedral sets.

Visualization: from Jaggi's presentation in Smile, Paris Seminar, 2013

Special case: sparse non-negative vectors

Set of atoms: $A = \{e_i | i \in [n]\}$

Conv(A) = Simplex

Compute

 $a_t = \arg\min_{a \in \pm \{e_1, \dots, e_p\}} \langle \nabla f(x_t), a \rangle$

Find
$$j = \arg\min j' \in \{1, \ldots, p\}[\nabla f(x_t)]_{j'}$$
 and set $a_t = e_j$

Clarkson 2010.

Tradeoff between **sparsity** and **approximation quality** Sparsity of FW iterates is **Optimal** in primal and dual approximation quality

If we choose || || to be I_1 norm, then restricted smoothness constant is similar to C_f

Visualization: from Jaggi's presentation in Smile, Paris Seminar, 2013

Special case: Group Sparse Matrices

Infinite Set of atoms: All matrices with a single non-zero row where the row has ℓ_q norm 1 for some q > 1Conv(A) = unit ball of the $\|\cdot\|_{q,1}$ group norm on $R^{p \times k}$ (sum of ℓ_q norms on the rows) Compute $a_t = \arg \min_{a:nnzrows(a)=1, \|a\|_{q,1}=1} \langle \nabla f(x_t), a \rangle$ Find row j of $\nabla f(x_t)$ with maximal $\ell_{q'}$ norm. Set a_t to be the matrix with the only non zero row in j equal to u^T such that $\langle u, [\nabla f(x_t)]_{j,:}^T \rangle = -\|[\nabla f(x_t)]_{j,:}^T\|_{q'}$

Special case: Low rank matrices

Infinite Set of atoms: All rank 1 matrices with Frobenius norm = 1

$$A := \left\{ uv^{T} | u \in R^{n}, \|u\|_{2} = 1, v \in R^{n}, \|v\|_{2} = 1 \right\}$$

 $Conv(A) = unit ball of the Trace norm (Schatten <math>\ell_1$ norm) Greedy step: Compute

$$a_t = \arg \min_{a: \operatorname{rank}(a)=1, \|a\|_F=1} \langle \nabla f(x_t), a \rangle$$

Compute SVD $\nabla f(x_t) = U \Sigma V^T$ and set $a = -u_1 v_1^T$, where u_1, v_1 left and right singular vectors corresponding to largest singular value.

Polynomial time

- (Tewari et al 2011) Not polynomial time to compute greedy step for non negative low rank matrices
- Permutation matrices: Efficient optimization over Birkoff polytope, Hungarian Algorithm (Conv(A) = set of doubly stochastic matrices)
- □ (Jaggi 2013)

Novel framework for

factorized matrix norms

Novel framework for matrix factorization:

$$A = \left\{ LR^T | L \in A_{\mathsf{left}}, R \in A_{\mathsf{right}}
ight\},$$

 $A_{\text{left}} \subseteq R^{m \times r}, A_{\text{right}} \subseteq R^{n \times r}$ All Frank-Wolfe iterates are low-rank updates: $s = LR^T$

Thanks

References

Greedy Algorithms for Structurally Constrained High Dimensional Problems, A. Tewari, P. Ravikumar, I. Dhillon. In Advances in Neural Information Processing Systems (NIPS) 24, 2011.

2 Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, ICML 2013