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First Order Methods (FOM)

I The goal is to solve

f∗ = min
x∈X

f(x) (1)

within ε accuracy (f(x̂)− f∗ < ε).

I What class of problems are we dealing with?

I General convex f ∈ F (Probably non-smooth);
I X closed convex (simple).

I First Order Oracle: A black box that takes x & gives you f(x) and a f ′(x).

I FOM is an algorithm that given any ε > 0

I knows F ,X ;
I does not know f , and only has access to oracle.

After finite number of oracle calls should give x̂ ∈ X , s.t. f(x̂)− f∗ < ε.
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Lower Bound on Iterations

Lower Complexity Bounds
Given X ,F , ε, what is the minimum number of Oracle calls an FOM needs to give an
ε-accuracy solution.

Definitions:
I X ⊂ Rn;
I Bp(R) = {x ∈ Rn : ‖x‖p ≤ R}
I Fp(L): set of convex Lipschitz function with given constant L.

Class Complexity Bound Achievable
f ∈ Fp(L), X ⊂ Bp, p ∈ [1, 2] O(1) min[n,L2R2/ε2] O(1)(ln(n))2/p−1L2R2/ε2

f ∈ F∞(L), X ⊂ B∞ O(1)n ln(LR/ε) -
f ∈ S2(L), X ⊂ B2 O(1) min[n,

√
LR2/ε] O(1)

√
LR2/ε
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FOM vs. higher order algorithms

FOM Cons:

I Not suitable for high accuracy.

I sub-linear convergence.

I Speed relies heavily on constant such as L and R.

FOM Pros:

I “Cheap” iteration.

I Almost dimension independent iteration complexity.

I Good for medium accuracy, large scale optimization.

Note that L.R matters in convergence and depends on norm imposed.
No assumption on the structure of functions.
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Mirror Descent (MD) Method

min
x∈X

f(x) (2)

I X ⊂ E = Rn closed convex set.

I f convex Lipschitz (with respect to some norm).

I The problem is solvable.

I Conjugate norm imposed on linear functionals.

E∗ : ‖ξ‖∗ = max
x
{〈ξ, x〉 : ‖x‖ ≤ 1} (3)

I Distance generating function w(·):

〈w′(x)− w′(x′), x− x′〉 ≥ ‖x− x′‖2 (4)

Vx(u) = w(u)− w(x)− 〈w′(x), u− x〉.
I Ω := maxx∈X w(x)−minx∈X w(x) = maxu∈X Vxc(u).
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MD Method (Con’d)

Examples

I Choosing w(x) = 1
2‖x‖

2
F ⇒ Vx(u) = 1

2‖x− u‖
2
F .

I When using ‖ · ‖1 on space X that is probability simplex,
w(x) =

∑n
i=1 xi ln(xi)⇒ Vx(u) =

∑N
i=1 ui ln(uixi ).

Define

Proxx(ξ) = arg min
u∈X
{〈ξ, u〉+ Vx(u)}. (5)

MD algorithm

(a) Start with x1 = arg minx∈X w(x)

(b) In each iteration set xτ+1 = Proxxτ (γtf
′(xτ )), τ = 1, · · · , t

(c) Output x̄t = [
∑t
iτ=1 γτ ]−1

∑t
τ=1 γτxτ and f̄t = f(x̄t).
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Convergence of MD

Theorem 1
Suppose f is Lipschitz continuous on X with L := supx∈X ‖f ′(x)‖∗, then using MD
we have

f̄t − f∗ ≤
Vx1(x∗) + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
(6)

Remark 1
Choosing γt = γ/[‖f ′(xt)‖∗

√
t], will give

f̄t − f∗ ≤ O(1) [
Vx1 (x∗)

γ
+ ln(t+1)γ

2
] Lt−1/2

Remark 2
Setting γτ =

√
2Ω

L
√
t

yields

f̄t − f∗ ≤
√

2ΩL√
t
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Proof

I Start with first order optimality condition of the update

∀ u ∈ X , 〈γτf ′(xτ )− w′(xτ ) + w′(xτ+1), u− xτ+1〉 ≥ 0 (7)

I Massage it to get inequalities similar to

γτ 〈f ′(xτ ),xτ − u〉 ≤
Vxτ (u)− Vxτ+1(u) + [γτ 〈f ′(xτ ), xτ − xτ+1〉 − Vxτ (xτ+1)] (8)

I Plug in x∗ and use optimality of x∗, i.e. f(xτ )− f∗ ≤ 〈f ′(xτ ), xτ − x∗〉

γτ (f(xτ )− f∗) ≤ Vxτ (x∗)− Vxτ+1
(x∗) + δτ (9)
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Proof (Con’d)

I Bounding δτ using strong convexity

δτ ≤γτ 〈f ′(xτ ), xτ − xτ+1〉 −
1

2
‖xτ − xτ+1‖2

≤γτ‖f ′(xτ )‖∗‖xτ − xτ+1‖ −
1

2
‖xτ − xτ+1‖2 ≤

γ2τ
2
‖f ′(xτ )‖2∗ (10)

I Combining results we get

γτ (f(xτ )− f∗) ≤ Vxτ (x∗)− Vxτ+1(x∗) +
γ2τ
2
L2 (11)

Adding up these inequalities for τ = 1. · · · , t, and normalizing the result
by
∑t
τ=1 γτ + convexity of f

f(x̄t)− f∗ ≤ [

t∑
τ=1

γτ ]−1
t∑

τ=1

γτf(xτ ) − f∗ ≤
Vx1(x∗) + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
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Mirror Descent with Stochastic Approximation

I We have a stochastic first order oracle.

I Each time you give it an x, it gives back G(x, ξ); ξ iid for each call.

I g(x) = Eξ{G(x, ξ)}; sub-gradient estimation error ‖g(x)− f ′(x)‖∗ ≤ µ
I E{‖G(x, ξ)‖2∗} ≤ L2.

I Same MD algorithm, replacing f ′(xτ ) with G(xτ , ξτ ).

Proposition 1
Using the Stochastic Mirror Descent Algorithm in t steps we get

E{f(x̄t)− f∗} ≤
Ω + L2

2

∑t
τ=1 γ

2
τ∑N

τ=1 γτ
+ µD, (12)

where D = maxx,x′∈X ‖x− x′‖.
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Proof

I Similar to proof of theorem 1,
γτ 〈G(xτ , ξτ ), xτ − x∗〉 ≤ Vxτ (x∗)− Vxτ+1

(x∗) + γ2τ
L2

2
(13)

I Adding them up fro τ = 1, · · · , t, we get
t∑

τ=1

γτ 〈G(xτ , ξτ ), xτ − x∗〉 ≤ Ω +
L2

2

t∑
τ=1

γ2τ . (14)

I Taking expectation of LHS with respect to ξ1, · · · , ξt:
I xτ is a deterministic function of ξ1, · · · , ξτ−1.
I Given ξ1, · · · , ξτ−1,

Eξτ {〈G(xτ , ξτ ), xτ − x∗〉} = 〈g(xτ ), xτ − x∗〉 ≥ 〈f ′(xτ ), xτ − x∗〉 − µD

Therefore,

E{f(x̄t)− f∗} ≤
1∑t

τ=1 γτ
E
{ t∑
τ=1

γτ 〈f ′(xτ ), xτ − x∗〉
}

≤
Ω + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
+ µD (15)
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Other Extensions of MD

I MD could be modified in order to solve

min
x∈X

f(x)

s.t. fi(x) ≤ 0, i = 1, · · · ,m. (16)

with the same iteration complexity.

I MD could also be modified (in an algorithm with multiple restarts) to
solve

min
x∈X

f(x), (17)

when f is strongly convex with convergence rate of O(1/t).

I MD could also be modified to solve convex-concave saddle point
problem

inf
x∈X

sup
y∈Y

φ(x, y) (18)

with similar convergence rate results.
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Setting up MD for some examples

I ‖ · ‖2: Then MD is equivalent to sub-gradient projection.
I Projection to X might not be easy.
I In some cases such as when X = B2 or a box, then this projection

is easy.

I ‖ · ‖1: There are some choices for w(·):
I When X is probability simplex, choosing w as Entropy function

(Most common choice). MD equivalent to Multiplicative update.

arg min
u∈X
〈γg, u〉+

n∑
i=1

ui ln(ui/xi)⇒

ui = αe−γgixi. (19)

I When X = B1, w(x) = 2e ln(n)
∑n
i=1 |xi|p(n), p(n) = 1 + 1

2 ln(n)

I For matrix case, the Schatten p-norm could be used. As discussed in
the previous presentation.
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Why geometry is important?

I Consider the case where we use MD with constant step size, then

f̄t − f∗ ≤
√

2ΩL√
t

(20)
I We focus on L and Ω.

I Assume two cases, when we use Bp, p = 1, 2, then the relative efficiency
of MD algorithms would be

Eff(Eucl)
Eff(`1)

= O(1).
1

n1−1/p
√

ln(n)
.

supx∈X ‖f ′(x)‖2
supx∈X ‖f ′(x)‖∞

(21)

I First one is in favor of `2-MD; Second one is in favor of `1-MD

1 ≤ B =
supx∈X ‖f ′(x)‖2
supx∈X ‖f ′(x)‖∞

≤
√
n, A =

1

n1−1/p
√

ln(n)
≤ 1 (22)

I If p = 2, then A.B ≤ 1, Euclidean MD will have better performance.

I If p = 1, then there is a good chance that A.B ≥ 1, `1-MD will have better
performance.
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Thank You!
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